
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.13, February 2013

35

SCH_ACR and SCH_LD based Job Scheduling Algorithm

in Grid Environment

Deepti Malhotra
Assistant Professor

Department of Computer Science
Central University of Jammu, Jammu

ABSTRACT

To achieve the promising potentials by using tremendous

distributed resources, effective and efficient scheduling

algorithms are fundamentally important. Scheduling such

applications is challenging because target resources are

heterogeneous, their load and availability varies

dynamically. Previous parallel system was assumed to be

organized with homogeneous platform and connected via

memory, bus, or LAN. But today its platform is

heterogeneous and connected via Internet so each platform

has different ability of computation performance and

different network bandwidth. So, traditional list scheduling

algorithms are inefficient to current parallel system. This

research paper proposes and discusses in detail, the two new

algorithms for Job scheduling on computational Grids so

that the jobs are executed in minimum time and also all

nodes of Grid execute equal load relative to their executing

power. The main objective of this research paper is to

allocate all the incoming jobs to the available computing

power.

Keywords

Grid Computing, Job Scheduling, Scheduler, ACR,

SCH_ACR, SCH_LD.

1. INTRODUCTION

Grid is a large scale distributed system, concerned with

coordinated resource sharing and problem solving. The grid

infrastructure provides a mechanism to execute applications

over autonomous and geographically distributed nodes by

sharing resources which may belong to different individuals

and institutions [1]. Computational grid is a kind of grid

environments, targeted at solving computationally intensive

problems.

A computational Grid is a hardware and software

infrastructure that provides dependable, consistent,

pervasive, and inexpensive access to high-end

computational capabilities [2]. It is a shared environment

implemented via the deployment of a persistent, standards-

based service infrastructure that supports the creation of,

and resource sharing within, distributed communities.

Resources can be computers, storage space, instruments,

software applications, and data, all connected through the

Internet. Since multiple applications may require numerous

resources which often are not available for them so that in

order to allocate resources to input jobs, having a

scheduling system is essential. Because of the vastness and

separation of resources in the computational grid,

scheduling is one of the most important issues in grid

environment [3]. Vast investigations have been done in this

scope, which have led to theories and practical results [4, 5,

and 6]. However new scheduling algorithms have been

offered with emergence of grid computing. Objectives of

scheduling algorithm are increasing system throughput [6],

efficiency, and decreasing job completion time.

There are relatively a large number of task scheduling

algorithms to minimize the total completion time of the

tasks in distributed systems [7, 8, 9, 10, 11, and 12]. These

algorithms try to minimize the overall completion time of

the tasks by finding the most suitable resources to be

allocated to the tasks. It should be noticed that minimizing

the overall completion time of the tasks does not necessarily

result in the minimization of execution time of each

individual task.

The rest of the paper is organized as follows. Section 2

presents the background and related work. Problem

formulation for the proposed algorithms is given in Section

3. Section 4 discusses the details of the proposed scheduling

algorithm i.e SCH_ACR. (which used maximum ACR

(Available Computing Resource) as a selection

mechanism).Section 5 discusses the details of the proposed

SCH_LD based scheduling algorithm.Section6 gives the

comparison results of SCH_ACR based scheduling with the

SCH_LD based scheduling algorithm. Finally Section 7

concludes the paper by summarizing our contributions and

future works.

2. RELATED WORK

Due to relatively high communication costs in grid

environments most of the well known scheduling

algorithms are not applicable in large scale distributed

systems such as grid environments [7, 13, and 14]. There

has been an ongoing attempt to build scheduling algorithms

specifically within grid environments. Various algorithms

have been proposed which in recent years each one has

particular features and capabilities. In this section we

review several scheduling algorithms which have been

proposed in grid environment. In [15] a scheduling

algorithm which is based on HQ-GTSM is presented. This

algorithm not only takes into account the input jobs but also

considers the resource migration time in deciding on the

scheduling. One of the most important features of this

algorithm is that it guarantees the grid quality of service. At

the present time, job scheduling on grid computing is not

only aims to find an optimal resource to improve the overall

system performance but also to utilize the existing resources

more efficiently.

X. He et al. have presented a new algorithm based on the

conventional Min-min algorithm [7].The proposed

algorithm which is called QoS guided Min-min, schedules

tasks requiring high bandwidth before the others. Therefore,

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.13, February 2013

36

if the bandwidth required by different tasks varies highly,

the QoS guided Min-min algorithm provides better results

than the Min-min algorithm. Whenever the bandwidth

requirement of all of the tasks is almost the same, the QoS

guided Min-min algorithm acts similar to the Min-min

algorithm.

E. Elmroth et al. have proposed a user oriented algorithm

for task scheduling in grid environments, using advanced

reservation and resource selection [16]. The algorithm

minimizes the total execution time of the individual tasks

without considering the total execution time of all of the

submitted tasks. Therefore, the overall makespan of the

system does not necessarily get small.

F. Dong et al. have proposed a similar algorithm called QoS

priority grouping scheduling [17]. This algorithm, considers

deadline and acceptation rate of the tasks and the makespan

of the wholes system as major factors for task scheduling.

In comparison with Min-min and QoS guided Min-min, the

QoS priority grouping scheduling algorithm achieves better

acceptance rate and completion time for the submitted tasks.

K. Etminani et al. have proposed a new algorithm which

uses Max-min and Min-min algorithms [12]. The algorithm

determines to select one of these two algorithms, dependent

on the standard deviation of the expected completion times

of the tasks on each of the resources

B. Yagoubi et al. have offered a model to demonstrate grid

architecture and an algorithm to schedule tasks within grid

resources [18]. The algorithm tries to distribute the

workload of the grid environment amongst the grid

resources, fairly. Although, the mechanism used in [18] and

other similar strategies which try to create load balancing

within grid resources can improve the throughput of the

whole grid environment, the total makespan of the system

does not decrease, necessarily.

3. PROBLEM FORMULATION

Grid Scheduler is the important part of Grid Resource

Management System (GRMS), which gathers the

information about the resources and chooses the best

resource as per the job requirements. This is followed by the

actual execution of the jobs. The problem of finding the best

“job-resource” pair is a compute-intensive problem and

need to be formulated mathematically to find the optimal

solution.

In the present setup, each Grid node consists of number of

computational resources (processors, denoted

by

).The resources on the Grid are usually accessed via an

executing "job”. Each resource has a limited capacity (e.g.,

number of CPUs, amount of memory). It is assumed that

each node consist of 4 processors. The specification of each

processor is Intel(R) Core(TM)2 Duo CPU with different

computing power.

To formulate the problem, we consider mapping a set of

independent user jobs to a set of

heterogeneous nodes and processors /

resources (Though there can be any type

of resource that can be shared on a computational Grid, but

for the simulations only nodes and processors of a node

will be taken into consideration as a resource).This mapping

is done with an objective of minimizing the execution time

and utilizing the resources effectively, and also minimizing

the delay in meeting user specified deadline.

The load of each node is expressed as the summation of

load of all the processors of a respective node.

Any job J has to be processed

by

, until completion.

4. SCH_ACR BASED SCHEDULING

 ALGORITHM

In this section proposed Grid scheduling algorithm based on

ACR is discussed in detail. It uses the ACR (Available

Computing Resource) as a selection mechanism. In

SCH_ACR based schedule all the processors of the nodes

are accessed and the processor that has the maximum

value of ACR is determined and then assigned to the job.

The proposed scheduling algorithm allows single job

request to be processed on multiple processors irrespective

of the nodes. Assume the total number of nodes in a Grid as

3.Then all the 12 processors are accessed to determine the

 that has the maximum value of ACR.

4.1 ACR Representation

The GRD keeps track of the ACR (Available Computing

Resources) of all the computers on the Grid. Here is the

representation for ACR given in figure1:

Fig 1: ACR Representation

4.2 Selection

SCH_ACR uses the ACR as a selection mechanism. The

main idea of this scheme is to predict the performance of

each resource by estimating the maximum ACR of each

processor and then maps the job with the resource/processor

having maximum value of ACR. For example, in Figure2,

job is allocated to the processor 1 of node 2. Consider ,

which means processor 1 of node 2.

Fig 2: Selection Process in SCH_ACR

 U_Frequency (MHz) U_Idle (%)

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.13, February 2013

37

4.3 Flowchart

Fig 3: Flowchart of ACR based Algorithm

4.4 Algorithm Description

In step 1 of Algorithm given in section 4.4.1, the user’s

request is processed and split into individual job requests.

Step 2, consists of list of all nodes available in the Grid. The

actual scheduling process starts from step 3 that is repeated

for each job request. In step 4, the scheduler discovers the

available resources by contacting GRD (GridResource

Database). Here resources are evaluated according to the

requirements in the job request and only the appropriate

resources are kept for further processing. Step 5 gives the

total number of nodes. Variables are initialized in step 6.

Step 7 checks if number of nodes is less than 1 then go to

Step 11. Step 8 & 9 initializes the load of a node as zero.

Step10 calculate the ACR of the processor and predict the

performance of each resource by estimating the maximum

ACR of each processor and then maps the job with the

resource/processor having maximum value of ACR. Step11

is the end of the program.

4.4.1 Algorithm (PSEUDO CODE)

Step 1: cList= list of all individual requests by validating

the client specification(s);

Step 2: nodeList =list of all nodes. Each Grid node

comprises a number of computational resources

(processors, denoted by

);

Step 3: For each job do the following steps;

Step 4: Filter out the resources that do not fulfill the job

requirements. Contact GRD (GridResource

Database) to obtain a list of available resources;

Step 5:

Step 6: ;

Step 7:

{

 }

/*Checking Nodes*/

Step8:

{

/*initialize the load of a node as zero*/

Step9:

Step10:

{

/*Calculate the load of a node */

/* Frequency for Processor*/

/* Idle time for Processor*/

/* Available Computing Resource for Processor*/

 {

/* Processor selected*/

/* Node no of which processor is selected*/

 } /* End If*/

}/*End For */

} /*End For */

Step11: exit.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.13, February 2013

38

5. SCH_LD BASED SCHEDULING

ALGORITHM

SCH_LD is a scheduling algorithm which is based on the

rule that first the selection of a light-loaded processing node

takes place then the job is allocated to the processor of a

selected node having maximum available CPU resource

(ACR). The proposed scheduling algorithm allows single

job request to be processed on multiple nodes. The

SCH_LD schedule introduces NS (node-selection) at the

global scheduler and the PS (processor selection) at the

local scheduler. The NS is based on the rule that the light-

loaded processing node is selected for the job allocation.

This technique fetches the jobs from the Global job queue

that is ready to execute and assign these jobs to the best

nodes (i.e. node having minimum value of a load) of the

Grid. The PS (processor selection) schedule the job to the

processor of a selected node having maximum available

CPU resource (ACR). So this selection mechanism has the

advantage of lesser number of computations as compared to

the SCH_ACR based scheduling.

5.1 Selection

SCH_LD is a scheduling algorithm which uses the load of a

node and ACR (Available Computing Resource) of a

processor as a selection mechanism. In SCH_LD based

schedule assigning job to the resource is a two step

process-First the lightly loaded node among all the nodes in

a Grid is selected; then in the second step only the

processors of the selected node are estimated for the

maximum value of ACR. Thus, SCH_LD based schedule

help in mapping jobs to resources allows good solutions to

be found quickly. Table1 and Figure 4 show the selection

process by considering the number of nodes is equal to 3.

Step1: Estimation of lightly loaded node

Table 1: Load Estimation

 = 34

 = 59

 = 33

 = 91

 = 217

 = 46

 = 51

 = 31

 = 28

 = 156

 = 91

 = 86

 = 58

 = 77

 = 312

Node Selected = 2

Step2: Processor Selection for Node 2

Available Computing Resource for = 0.923

(maximum value of ACR)

Available Computing Resource for =0.800

Available Computing Resource for =0.288

Available Computing Resource for =0.810

Fig 4: Selection Criterion for SCH_LD based Scheduling

Algorithm

5.2 Algorithm Description

In this section, we describe the routing strategies involved

in the Grid model, which is integrated by the node-selection

(NS) at the global scheduler (GS) and the processor

selection (PS) at the local scheduler (LS).

In step 1 of Algorithm given in section 5.2.1, the user’s

request is processed and split into individual job requests.

Step 2, consists of list of all nodes available in the Grid. The

actual scheduling process starts from Step 3 that is repeated

for each job request. In step 4, the scheduler discovers the

available resources by contacting GRD (GridResource

Database). Here resources are evaluated according to the

requirements in the job request and only the appropriate

resources are kept for further processing. Step 5 gives the

total number of nodes. Variables are initialized in Step 6.

Step 7 checks if number of nodes is less than 1 then go to

Step14. Step 8 calculate the load for each combination of

processor i and node j. In Step 9 is assigned as

minimum loaded node.Step10 predicts the performance of

each resource by estimating the minimum load of each node

and then maps the job with the resource/node having

minimum value of load. Step11 calculate the ACR of each

processor of selected node by using the frequency and idle

time of each processor. Initialization of variables

and p takes place in Step 12.In Step 13 the job is assigned to

the processor having maximum value of ACR. Step 14 is the

end of the program.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.13, February 2013

39

5.2.1 Algorithm (PSEUDO CODE)

Step 1: cList= list of all individual requests by validating

the client specification(s);

Step 2: nodeList =list of all nodes. Each Grid node

comprises a number of computational resources

(processors, denoted by

);

Step 3: For each job do the following steps;

Step 4:Filter out the resources that do not fulfill the job

requirements. Contact GRD (GridResource

Database) to obtain a list of available resources;

Step 5:

Step 6: ;

Step 7:

{

 }

/*Checking Nodes for selection)*/

Step 8:

{

/*initialize the load of a node as zero*/

 {

/*Calculate the load of a node */

 } /*End For */

}/*End For */

Step 9: = ;

/* Selection for lightly loaded node*/

Step10:

{

{

 ;

 ;

 } /*End If */

} /*End For*/

Step 11:

{

/*Calculate the idle time of each processor of selected Node

n */

 idle[i]=100-pload[nd][i];

/* Available Computing Resource for Processor*/

} /*End For*/

Step 12:

/* Processor selection for maximum ACR*/

Step13:

{

{

 ;

 ;

 } /*End If */

 } /*End For*/

Step14: exit

5.3 Flowchart

Fig5: Flowchart of SCH_LD based Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.13, February 2013

40

6. COMPARISON BETWEEN SCH_ACR

 AND SCH_LD

Next experiments were carried on to compare the ACR based

scheduling algorithm (SCH_ACR) and the light-loaded

processing node based scheduling algorithm (SCH_LD).Table

2 shows the comparison result obtained between SCH_ACR

and SCH_LD based schedule in terms of number of

computations. Thus, SCH_LD based scheduling algorithm

works better than SCH_ACR based scheduling algorithm.

Table 2: No of Computations in SCH_ACR and SCH_LD

based Scheduling

Table3: Analysis of number of computations

Number of computations

required to calculate

SCH_ACR SCH_LD

No of Nodes 2 2

No of Processors 8 8

Load of all processors 8 8

Load of all processors of

selected node

NA 4

Frequency of all Processors 8 4

Idle Time of all Processor 8 4

ACR of all Processors 8 4

Total number of computations 8+8+8+8=3

2

8+4+4+

4+4=24

Table3 gives the calculation of total number of computations

required in SCH_ACR and SCH_LD based schedule when the

number of nodes is equal to 2. It is clear from the table that

the number of computations required in computing the load of

all processors in SCH_ACR and SCH_LD is 8 and 8

respectively. Similarly, computing load of all processors of

selected node in SCH_ACR and SCH_LD is zero and 4

respectively. To calculate the frequency of all processors in

SCH_ACR and SCH_LD based schedule, no. of computations

required are 8 and 4 respectively.

Idle Time of all Processor is computed by taking 8

computations in case of SCH_ACR and 4 computations in

case of SCH_LD. To compute the ACR of all processors the

no. of computations required in SCH_ACR and SCH_LD

based schedule is 8 and 4 respectively. Last row of table3

gives the total number of computations i.e. 32 and 24

respectively in case of SCH_ACR and SCH_LD based

schedule when the number of nodes is equal to 2.

Fig 6: Comparison results for SCH_ACR and

SCH_LD

Graph in Figure 6 show the comparison of SCH_ACR based

schedule and the SCH_LD based schedule. X-axis of the

graph consists of number of nodes and Y-axis consists of

number of computations. From the graph, it is clear that the

number of computations in case of SCH_ACR is always

greater than the number of computations in SCH_LD. Thus,

SCH_ACR works better than SCH_LD.

7. CONCLUSION AND FUTURE WORK

The success of grid computing will depend on the effective

utilization of the system for various computationally intensive

jobs. Given a vast number of resources that are available on a

Grid, an important problem is the scheduling of jobs on the

grid with various objectives. There are relatively a large

number of task scheduling algorithms to minimize the total

completion time of the tasks in distributed systems. These

algorithms try to minimize the overall completion time of the

tasks by finding the most suitable resources to be allocated to

the tasks. It should be noticed that minimizing the overall

completion time of the tasks does not necessarily result in the

minimization of execution time of each individual task. The

above mentioned algorithms SCH_ACR and SCH_LD have

adopted an application-centric scheduling objective function

taking the execution time parameters into considerations,

which tries to take care of user specified deadlines, as well as

tries to ensure the maximum utilization of resources. The

main objective of this research paper is to allow all the

incoming applications to be allocated to the available

computing power.

Now we discuss some of the limitations of this work and

present some possible directions for future research. In this

work, we assume that there is no precedence constraint among

different jobs or different tasks of a job. Usually, the jobs are

independent of each other in the grid, but different tasks of a

job may have some precedence constraints. Hence, it is an

interesting direction for future research. Such dependencies

will not only make the problem extremely difficult to solve,

but would also require estimating a very large number of

parameters. In the future we should also consider some fault

tolerant measures to increase the reliability of our algorithm.

No of nodes SCH_ACR SCH_LD

2 32 24

4 64 32

6 96 40

8 128 48

10 160 56

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.13, February 2013

41

8. REFERENCES

[1] I. Foster, and C. Kesselman.2004.The Grid 2:

Blueprint for a New Computing Infrastructure, Second

Edition, Elsevier and Morgan Kaufmann Press.

[2] I. Foster and C. Kesselman (editors).1999. The Grid:

Blueprint for a Future Computing Infrastructure,

Morgan Kaufmann Publishers, USA.

[3] Rajkummar Buyya.2002.Economic-based Distributed

Resource Management and Scheduling for grid

computing.PhD thesis, Monash university, Melborn,

Australia.

[4] K. Al-Saqabi, S. Sarwar, and K. Saleh.1997.

Distributed gang scheduling in networks of

heterogeneous workstations, Computer

Communications Journal, pp.338-348.

[5] Maheswaran M, Ali S, Siegel H J, et al.1999.Dynamic

mapping of a class of independent tasks on to

heterogeneous computing systems. In the 8th IEEE

Heterogeneous Computing Workshop (HCW '99),San

Juan, Puerto Rico,(Apr. 1999), pp.30-44.

[6] XiaoShan He, XianHe Sun, and Gregor von

Laszewski.2003.QoS Guided Min-Min Heuristic for

Grid Task Scheduling, Computer Science and

Technology, 18(4):442-451.

[7] X. He, X-He Sun, and G. V. Laszewski.2003.QoS

Guided Min-min Heuristic for Grid Task Scheduling,

Journal of Computer Science and Technology, Vol. 18,

pp. 442-451.

[8] M. Maheswaran, Sh. Ali, H. Jay Siegel, D. Hensgen,

and R. F. Freund.1999. Dynamic Mapping of a Class

of Independent Tasks onto Heterogeneous Computing

Systems, Journal of Parallel and Distributed

Computing, Vol. 59, pp. 107-13.

[9] T. D. Braun, H. Jay Siegel, N. Beck, L. L. Boloni, M.

Maheswaran, A. I. Reuther, J. P. Robertson, M. D.

Theys, and B. Yao.2001.A Comparison of Eleven

Static Heuristics for Mapping a Class of Independent

Tasks onto Heterogeneous Distributed Computing

Systems,Journal of Parallel and Distributed

Computing, Vol. 61, pp. 810-837.

[10] F. Dong, J. Luo, L. Gao, and L. Ge.2006.A Grid Task

Scheduling Algorithm Based on QoS Priority

Grouping," In the Proceedings of the Fifth

International Conference on Grid and Cooperative

Computing (GCC’06), IEEE.

[11] E. Ullah Munir, J. Li, and Sh. Shi.2007. QoS Sufferage

Heuristic for Independent Task Scheduling in Grid.

Information Technology Journal, 6 (8): 1166-1170.

[12] K. Etminani, and M. Naghibzadeh.2007.A Min-min

Max-min Selective Algorithm for Grid Task

Scheduling,The Third IEEE/IFIP International

Conference on Internet, Uzbekistan.

[13] B.T. Benjamin Khoo, B. Veeravalli, T. Hung, and

C.W. Simon See.2007.A multi-dimensional scheduling

scheme in a Grid computing environment," Journal of

Parallel and Distributed Computing, Vol. 67, pp. 659-

673.

[14] B. Yagoubi, and Y. Slimani.2007.Task Load Balancing

Strategy for Grid Computing, Journal of Computer

Science, Vol. 3, No. 3, pp. 186-194.

[15] Huyn zhang, chanle wu, Q.xiong, and L.Wu,G. Ye.

2006. Research on an Effective Mechanism of Task

Scheduling in Grid Environment. In IEEE, Fifth

International Conference on Grid and Cooperative

Computing (GCC’06).

[16] E. Elmroth, and J. Tordsson.2008.Grid resource

brokering algorithms enabling advance reservations

and resource selection based on performance

predictions," Journal of Future Generation Computer

Systems, Vol. 24, pp. 585-593.

[17] F. Dong, J. Luo, L. Gao, and L. Ge.2006.A Grid Task

Scheduling Algorithm Based on QoS Priority

Grouping," In the Proceedings of the Fifth

International Conference on Grid and Cooperative

Computing (GCC’06), IEEE.

[18] B. Yagoubi, and Y. Slimani.2007.Task Load Balancing

Strategy for Grid Computing," Journal of Computer

Science, Vol. 3, No. 3, pp. 186-194.

