
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

46

BLOSUM Trie for Faster Hit Detection

in FSA Protein BLAST

M Anuradha
Research scholar

Department of Computer
Science & Systems

Engineering, Andhra University
Visakhapatnam - 530 003

K Suman Nelson
Software Engineer

Google India
Hyderabad

P V G D Prasad Reddy
Professor

Department of Computer
Science & Systems

Engineering, Andhra University
Visakhapatnam - 530 003

ABSTRACT

Basic Local Alignment Search Tool (BLAST) is one of the

most widely used bioinformatics tools to determine

similarities between genomic sequences. Ever since its

inception several algorithmic improvements have been made

to improve speed and runtime memory requirements without

affecting the sensitivity and selectivity of the tool. Fast search

algorithm (FSA) BLAST has been the most successful among

such improvements with 20-30% faster processing rate. A

DFA with hashed prefix word structures for the hit detection

process in FSA BLAST has been proposed in the earlier work.

Coding of the algorithms and testing on protein samples

showed that the use of the new structure resulted in significant

reduction in run time space but not the hit detection time. This

paper proposes the use of a BLOSUM trie structure which

eliminates the process of computing neighborhood words,

resulted in a reduction of up to 75% in hit detection time.

Tests were conducted with different BLOSUM matrices and

threshold values and the proposed algorithm was found to be

beneficial in terms of space, time complexity and accuracy

without compromising on sensitivity and selectivity of the

currently being used algorithm.

General Terms

Sequence Analysis, Protein BLAST, Hit Detection Algorithm,

Time Complexity, Space Complexity, Sensitivity and

Selectivity.

Keywords

Deterministic finite automaton, prefix word table

neighborhood words, query pointers, hits and BLOSUM Trie.

1. INTRODUCTION
Basic local alignment search tool (BLAST) is the most widely

used sequence similarity search tool used by computational

biologists to understand the role, structure and function of

genomic sequences. BLAST performs comparisons between a

pair of sequences in order to find regions of local similarity

[1]. The popular BLAST derivatives are NCBI-BLAST (web

based and standalone versions are available), WU-BLAST,

Paracel BLAST and fast search algorithm (FSA)-BLAST [2,

3, 4, 5, 6, 7]. Among them, NCBI-BLAST (standalone) and

FSA-BLAST are open source programs and any one can

download

(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/Latest,

http://www.fsa-blast.org) and experiment with the program

code and algorithms.

Because of its widespread usage (used over 120,000 times

each day) and exponential growth in genomic databases,

BLAST is becoming slower [8, 9]. In view of the above

reasons, any improvement to the BLAST algorithm that can

reduce runtime space and time without effecting sensitivity

and selectivity would be very much desirable [10].

Over the years several modifications to the fundamental

algorithms and new heuristics in BLAST were proposed to

improve speed and minimize runtime space [3-7], [11-18].

Basically, BLAST program was designed to analyze both

protein and DNA sequences. It has mainly four algorithmic

steps namely finding hits, performing un-gapped alignments,

performing gapped alignments and computing trace back and

outputting the results [2, 3, 6, 7]. The main functional

differences between NCBI BLAST and FSA BLAST are, one

is the structure used for finding hits between a query sequence

and database sequence during the hit detection process and the

other is using semi-gapped and restricted insertion alignments

during alignment stage of the algorithm [6,7]. A modified

DFA proposed in the earlier work, reduced the runtime space

significantly during the hit detection stage of the FSA protein

BLAST algorithm [19]. But reduction in hit detection time is

not significant. This paper proposes a method that eliminates

the process of computing neighborhood words during hit

detection process. It resulted in significant reduction in hit

detection time of FSA protein BLAST algorithm.

 Hits are short, fixed length high scoring matches between

query sequence and database sequence. For protein search, hit

is a match of word length 3 and inexact matches are permitted

whereas for nucleotide search, hit is an exact match of word

length 11. For finding hits, FSA-BLAST used an optimized

deterministic finite automaton (DFA) which reduced the total

BLAST search time by 6 to 30% compared with table look-up

used in NCBI BLAST[3,7]. But study on this implementation

revealed that, the number of query pointers used by the

structure is fixed and dependent on alphabet size (a) and word

length (w), and is equal to ‘aw ‘(for protein sequence, a=24

and w=3), i.e., 243=13,824, not on the length of the query. In

the modified structure, it is made dependent on length of

query sequence and the number of neighborhood words to

each query word. This reduces the run time space of algorithm

by a considerable amount, by initializing only the necessary

query pointers [19].

 This paper is organized into seven sections. The hit

detection process used in FSA protein BLAST is described in

section 2 using a small sample query as an example.

Description of DFA with hashed prefix word structures and

trie used in this study are given in section 3. In Section 4,

implementation details and testing of code are explained.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

47

Results are analyzed and discussed in Section 5. Conclusions

are given in section 6 and acknowledgements in section 7.

2. HIT DETECTION PROCESS
In this stage, BLAST compares query sequence with each

sequence of the database using Wilbur and Lipmann

algorithm [20]. This process is done in two steps; one is

structure construction which is unique for a query, and second

is processing the database sequence to find word matches

between query sequence and database sequence.

During the structure construction, fixed length overlapping

words of length ‘w’ are extracted from the query sequence.

For example, let ‘BABBC’ be the query sequence made up of

an alphabet: {A, B, C} and w=3, then the fixed length

overlapped words extracted from the query are: BAB, ABB,

and BBC. For each query word, neighborhood words of

length ‘w’ are generated. A neighborhood word is a word

obtaining a score greater than or equal to some threshold

value ‘T’ (default values used by NCBI-BLAST for protein

search are T=11 and w=3) [21-24], using a selected scoring

matrix. For example for query word BAB, BAC is

neighborhood word. When B is matched with B, score is 6,

when A is matched with A, score is 5 and when C is matched

with B, score is 0. Then the word score is sum of the

individual scores and given below.

B A B

 | | |

B A C 6+5+0=11 which is equal to T.

 The default scoring matrix used for protein BLAST is

BLOSUM62 [25]. Each query word along with its

neighborhood words will be associated with a query position

and are stored in a structure. In the above example, query

positions of query words BAB, ABB, and BBC are 1, 2, and 3

respectively.

 While processing the database sequences, each sequence is

processed sequentially, that is each sequence is read from the

database, parsed into words of length ‘w’ and searched for

query word match in the structure. If a match is found,

corresponding query word position ‘i’ and database sequence

word position ‘j’ are recorded as hit, which will be the input

to the alignment stage of the BLAST algorithm.

3. STRUCTURES USED FOR FINDING

HITS

3.1 Existing FSA-DFA Structure
FSA-DFA consists of states, and transitions between the

states. A state is a prefix word of length (w-2). The total

number of states is equal to a(w-2) (24 for a protein sequence).

FSA-DFA shown in Figure.2 for an input given in Figure.1 is

constructed as follows.

Position: 1 2 3 4 5

Query: B A B B C

Subject: C B A B B

Threshold: 11

(a)

 A B C

A 5 -1 2

B -1 6 0

C 2 0 4

(b)

QP QW NHWs

1 BAB BAC, BBB, BCB, CAB

2 ABB ABC, ACB,BBB, CBB

3 BBC BBA, BBB

(c)

Figure 1: (a) Example Query and Database sequences

constructed with an alphabet:{A,B,C};word length(w)=3

(b) Scoring Matrix (c) List of query words(QW) and their

neighborhood words (NHWs) along with their query

positions (QP) for the given query

Figure 2: Existing FSA-DFA constructed for the input given in Figure 1(a) and (b)

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

48

 a(w-2) states are initialized in such a way that each

state consists of ‘a’ transitions and each transition is

associated with two pointers, one to the next state

and other to a collection of words that share

common prefix of length ‘(w-1)’. Each word in the

prefix table is associated with a query pointer

pointing to a list of query positions which is initially

initialized to NULL.

 For each query word, neighborhood words given in

Figure 1(c) are computed based on the given

threshold T using alignment scoring matrix, and

their query positions are stored in the structure.

For the given example, structure consists of 3 states A, B and

C. Each state consists of 3 transitions A, B and C, and each

transition is associated with corresponding prefix table. For a

given query, we start with word BAB. Transition A of state B

has pointer to next state A and pointer to prefix word table

BA. In the prefix word table, for the word BAB, the query

position is marked as 1 because it is available in query

sequence at position 1. The neighborhood words to BAB,

listed in fig 1(c), are now computed and their positions are

also stored in the structure. This process repeats for every

query word.

While processing the database sequence ‘CBABB’, the first

character ‘C’ is read. That is we are starting with the state C.

Then the next character ‘B’ is read, transition ‘B’ from state C

is followed. Here transition B of state C has, one pointer to

next state B and other pointer to prefix table of word CB.

Since the next character read is A, and for the word CBA

there is no match in the query sequence the search advances to

next state B. Now we are at state B, and next character read is

A, then transition A from state B is followed which has

pointers to next state A and prefix word table BA. When the

next character B is read, transition ‘B’ from prefix table ‘BA’

is followed. Here the transition has a query position 1, hence

outputs the hit as (1, 2), i.e., match occurs at query position

‘1’ and database sequence position ‘2’ and search advances to

next state ‘A’. This process continues until the data base

sequence is exhausted.

3.2 FSA-DFA with hashed prefix word

structures
The limitation of currently being used FSA-DFA is, whatever

may be the query length, size of the DFA and the number of

query pointers initialized during the structure construction

stage is fixed (aw). For a protein sequence, it is equal to

243=13,824. Indeed, for a given query we may not be using

these many pointers. Whether we use or not, 4 bytes of

memory is allocated to each pointer which will be a

considerable overhead on run-time space utilization. It can be

overcome by using an array of states and prefix word hash

table which makes the number of query pointers to be

initialized dependent on the size of query and the number of

neighborhood words each query word is associated with,

instead of initializing fixed number of pointers. This section

presents construction of such structure with an example and is

explained below.

 It consists of array of states, where each state is a word block

of (w-2) length. The size of the array is equal to a(w-2) (24 for a

protein sequence). Each state is associated with a hashed

prefix word table with query or neighborhood word as key

and pointer to list of query positions as value. Initially the size

of each hash table is zero and it grows by one key and one

value for each query word and its neighborhood words, while

constructing FSA-DFA.

A portion of the modified FSA-DFA shown in Figure.3, for

the given query sequence ‘BABBC’ is constructed as follows.

Let the query word be ‘w1w2w3’. For each query word, w1 is

the current state, w2 is the next state and w3 is the transition

that maps query word w1w2w3 from current state into

corresponding query position in prefix word hash table w1w2.

In this example, for query word ‘BAB’, B is the current state,

A is next state and B is the transition that maps query word

BAB into query position 1 in prefix word hash table BA.

Similarly neighborhood words to word BAB are also mapped

into query position 1. Similarly the remaining query words,

ABB and BBC, and their neighborhood words are also

mapped into their corresponding query positions in

corresponding prefix word hash tables. So whenever a query

word or neighborhood word is mapped into corresponding

query position, two pointers are initialized. One maps into the

hash table of that state and other to the next state. Hence the

number of query pointers initialized is less than or equal to the

sum of the number of query words and their neighborhood

words.

The database sequence ‘CBABB’ is processed as follows.

When the first character ‘C’ is read, we are starting with state

C. Then the next character ‘B’ is read, a pointer to next state

B is followed. When next character ‘A’ is read, since there is

no match for the word CBA in the query, search advances to

next state B. At state B, a pointer to next state A and other to

the prefix word hash table BA of state B is followed. When

the next character B is read, word BAB will be hashed into

slot B of prefix word hash table ‘BA’ of state B and outputs a

hit (1, 2). Now we are at state A. when character B is read a

pointer to next state B and other to the prefix word hash table

AB of state A is followed. When the next Character B is read,

word ABB is hashed into slot B of prefix word hash table AB

of state A (where match is found for the word ABB in the

query sequence at position 2, that outputs a hit (2, 3)). The

process continues until the data base sequence is exhausted.

3.3 BLOSUM trie structure
Finding neighborhood words to each query word during the

structure initialization stage is most time consuming because

each word needs to be compared with aw words where each

 HASHED PREFIX WORD STRUCTURES

Figure 3: FSA-DFA with hashed prefix word

structures constructed for the input given in

Figure 1 (a) and (b)

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

49

query word will be having very few neighborhood words out

of aw words and the process repeats for every query. Cost of

finding neighborhood words can be reduced by using a

BLOSUM trie structure consisting of pre-computed lists of

neighborhood words to each possible word of length ‘w’ for a

given alphabet and scoring matrix. This section presents

construction of such structures with an example.

Let ‘Q’ be set of query words where qi is query word available

at ith position of query sequence, ‘Qi’ be the set of

neighborhood words to query word qi and ‘S’ be the set of all

possible words of fixed length w with the given alphabet of

size ‘a’. Let n(Qi) and n(S) are number of elements in the sets

Qi and S respectively where n(S)=aw. For any query, Q is a

proper subset of S and n(Qi) is very small when compared

with n(S). For a specific scoring matrix if we compute the set

of neighborhood words to each word in S once, they can be

reused for all query words and any number of queries. By

taking the above facts into consideration a BLOSUM trie is

constructed as follows.

• For the scoring matrix given in Figure 1(b), alphabet: {A, B,

C} and word length w=2, the word matrix ‘W’ of size (aw x

aw) (9x9 in this example) is computed in such a way that the

element wij of W is the score when the word in ith row is

matched with the word in jth column.

• The lists of neighborhood words (words with wij ≥ T) to each

word in S are extracted from W and are arranged in

descending order as shown in the Figure 4(a) and (b).

Figure 4: (a) Pre-computed word matrix consisting of

scores of all possible words of size w=2, obtained using

alphabet: {A, B, C} and the scoring matrix given in Fig. 1

(b) Lists of neighborhood words to each possible word of

size w=2 and word score ≥7 obtained from pre-computed

word matrix

The lists of neighborhood words to each word in S are stored

as a trie structure because trie is more space efficient,

particularly when there is large number of known short length

keys. Another advantage of trie structure is, searching and

data retrieval is faster (of order of O(w)). Trie structure for the

lists given in Figure 3(b) is shown in Figure 4. It is

implemented as non-binary search tree, where each node

contains at most ‘a’ pointers, corresponding to ‘a’ possible

characters in each position of the word except leaf nodes. The

root node corresponds to an empty string whereas the other

nodes correspond to prefixes of words in S. Each path from

root to a leaf corresponds to one word in S.

• The neighborhood words to each word in S are extracted

from the trie by traversing from root node with the prefix of

word, to a node where the word ends. All the leaf nodes under

that node are nothing but the set of neighborhood words

including the word itself.

4. TESTING
Proposed hit detection algorithm has been developed using

C++ in visual studio 2010 environment. To evaluate the

efficiency of proposed algorithm, hit detection process from

FSA-BLAST has been taken as reference. To test the code,

input and output files were created. The input file consisted of

twenty five protein sequences, randomly extracted from the

non-redundant protein database (a collection of sequences

from several sources, including translations from annotated

coding regions in GenBank, RefSeq and TPA, as well as

records from SwissProt, PIR, PRF, and PDB) using Entrez,

listed in Appendex A; BLOSUM 45, 62 and 80 scoring

matrices and their corresponding pre-computed word

matrices. The size of the proteins so selected varied from 110

to 6907 amino acids in order to study the effect of query

length on the performance of hit detection algorithm. Here,

the set of 25 protein sequences extracted are considered as

database and each one of the 25, taken one at a time as a

query to be searched against the database. Threshold value

needed to find neighborhood words for each query word is

taken as 9, 11 and 13. Trie is constructed from the pre-

computed word matrix during structure initialization stage as

explained in section 3.3. When each query is run on the

database, the program outputs, pairs (i, j), that identify

matches between the query and database sequences. The

number of hits and the number of query pointers initialized for

the structure are stored into the output file. This process is

repeated for both the algorithms, existing FSA DFA and

hashed FSA DFA with BLOSUM 45, BLOSUM 62 and

BLOSUM 80 scoring matrices and with trie structure with

threshold values 9, 11 and 13. Time taken to initialize the

FSA DFA structure and processing the database sequence has

been measured separately using a utility program known as

performance counter. Quantitative and qualitative analysis on

Figure 5: A Trie structure consisting of lists of neighborhood

words represented in Figure 4(b)

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

50

Table 1. Comparison of hit detection time and number of query pointers used in FSA-DFA using trie and hashed FSA-DFA

using trie with FSA-DFA for BLOSUM 62 scoring matrix and T=11

the results is done and discussed in the next section.
5. RESULT ANALYSIS

5.1 Quantitative Analysis

5.1.1 Space complexity
The number of query pointers initialized during structure

construction is taken as measuring factor for space

complexity. For a small set of query sequences, the results are

tabulated in Table 1 given above.

From the results we can see that, the number of query pointers

initialized in the existing FSA DFA structure is fixed and is

maximum possible. It is dependent on alphabet size ‘a’ (24 for

proteins) and word size ‘w’ (3 for proteins), i.e., 243=13,824

whereas for the proposed structures it is made dependent on

size of the query sequence and the number of neighborhood

words, each query word has. It is found that the reduction in

space is significant and varied based on threshold, BLOSUM

and query length. For larger threshold, higher BLOSUM and

shorter query, the reduction in space is more. Test results are

tabulated in Table 2 and graphically represented in Figure 6

given below.

Table 2. Space efficiency of hashed FSA-DFA as a

function of T and BLOSUM scoring matrix

Threshold

(T)

Average Reduction in Memory Space (bytes)

BLOSUM 45 BLOSUM 62 BLOSUM 80

9 2027 5925 4523

11 6136 15226 12051

13 13920 29662 24851

S.No

.
Query protein sequence Gene – id

Sequenc

e

Length

(aa)

Hit Detection Time (ms)
Number of Query

Pointers used

FSA-

DFA

FSA-

DFA

with

Trie

Hashed

FSA-DFA

with Trie

without

hash

with

hash

1.

B Chain B, Structure Of P. Citrinum gi|20151022|pdb|1KRF| 511 49.89 4.75 16.78 13824 7338

2. 2-oxoglutarate dehydrogenase-like,

mitochondrial isoform a [Homo sapiens]

gi|221316661|ref|NP_0

60715.2|
1010 101.64 9.54 27.21 13824 10393

3.
myosin [Arabidopsis thaliana]

gi|433663|emb|CAA82

234.1|
1520 149.96 11.4 36.51 13824 11436

4. chromodomain-helicase-DNA-binding

protein 3 isoform 1 [Homo sapiens]

gi|52630326|ref|NP_00

1005273.1|
2000 192.21 19.89 47.9 13824 11557

5.

NOTC2_MOUSE RecName:

Full=Neurogenic locus notch homolog

protein 2;

gi|20138876|sp|O35516

.1|
2470 254.64 30.93 73.84 13824 11076

6. novel protein similar to vertebrate low density

lipoprotein-related protein 2 (LRP2) [Danio

rerio]

gi|169158323|emb|CA

Q13433.1|
3091 309.36 37.18 93.42 13824 11865

7. CUB and sushi domain-containing protein 3

isoform 1 [Homo sapiens]

gi|38045888|ref|NP_93

7756.1|
3707 365.9 42.67 96.22 13824 11861

8. novel gene similar to vertebrate polycystic

kidney and hepatic disease 1 (autosomal

recessive)-like 1 (PKHD1L1) [Danio rerio]

gi|157886135|emb|CAP

09460.1|
4191 409.01 37.92 91.63 13824 12314

9. dynein heavy chain 64C, isoform C

[Drosophila melanogaster]

gi|221330856|ref|NP_7

29034.2|
4638 450.12 44.38 93.38 13824 12512

10.
novel hemicentin protein [Danio rerio]

gi|55962332|emb|CAI1

1663.1|
5533 551.04 60.97 130.53 13824 12410

11.
nesprin-2 isoform 5 [Homo sapiens]

gi|118918407|ref|NP_8

78918.2|
6907 689.29 66.37 153.82 13824 12571

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

51

5.1.2 Time complexity
Time complexity of modified structure with the currently

being used structure is compared as follows. Performance

counter has been set separately to measure the structure

construction time for the given query and time for processing

the database sequence for finding hits. The least time unit that

can be measured by the performance counter is millisecond.

For better accuracy, processing of database sequences has

been set to run 10 times. It is observed that there is slight

increase in processing database sequence time due to hashing

function used to map the database sequence word into

corresponding query position during the processing stage. But

there is drastic improvement in structure initialization time

due to modified structure and usage of trie to find the

neighborhood words. Percentage reduction in overall time for

finding hits using modified structure is calculated for a set of

query sequences. The results are graphically represented in

Figure 7 given below.

5.2 Qualitative Analysis
BLAST performs similarity search which can be improved

either by increasing sensitivity or selectivity. Sensitivity of

BLAST is defined as ability to recognize distantly related data

base sequences to that of a query sequence. Selectivity is

defined as ability to reject unrelated database sequences to

(a)

(b)

(c)

Figure 7: Graphical representation of (a) performance (time) of

FSA-DFA and Hashed FSA-DFA with and without Trie using

BLOSUM 62 and T=11 (b) Average percentage reduction in hit

detection time of FSA-DFA using Trie (c) Average percentage

reduction in hit detection time of Hashed FSA-DFA using Trie.

that of a query sequence. The number of alignments being

considered in the second stage of the BLAST is dependent on

the number of hits generated in the first stage of the BLAST.

For example, for a query of length 110 amino acids, the

number of hits recorded for both existing structures and

proposed structures is 984, when run on the database sequence

of length 48748 amino acids. In the alignment stage, the

scores of all 984 alignments are computed and best scored

alignments will be taken into account for final output of

BLAST. The experimental results tabulated in Table 3 given

below reveals that the number of hits recorded for FSA-DFA

and modified structures are similar. Hence we can say that,

space and time complexity of the algorithm is reduced without

effecting sensitivity and selectivity.

0

200

400

600

800

5
1

1

1
0

1
0

1
5

2
0

2
0

0
0

2
4

7
0

3
0

9
1

3
7

0
7

4
1

9
1

4
6

3
8

5
5

3
3

6
9

0
7

 H
it

 D
e

te
ct

io
n

Ti

m
e

(m
ill

is
ec

o
n

d
s)

Query Length in terms of amino acids

Existing FSA

With Trie

With Hash

5
8

.6

7
7

.1

8
8

.7

7
8

.2

9
0

.1

9
5

.6

7
6

.6

8
9

.8

9
5

.5

0
20
40
60
80

100
120

9 11 13 A
ve

ra
ge

 %
 R

e
d

u
ct

io
n

in

 T
im

e

Threshold

BLOSUM 45
BLOSUM 62
BLOSUM 80

7
.2

4
1

.9
 6

8
.6

4
6

.3
 7

0
.7

8
3

.3

4
2

.9
 6

9
.7

8
3

.6

0

20

40

60

80

100

9 11 13 A
ve

ra
ge

 %
 R

ed
u

ct
io

n

in
 T

im
e

Threshold

BLOSUM 45

BLOSUM 62

BLOSUM 80

(a)

(b)

Figure 6: Graphical representation of (a) Hashed FSA-DFA

performance (space) with BLOSUM 62 and T=11 in terms of

query pointers (b) Average reduction in memory space in terms

of bytes when Hashed FSA-DFA is used

0

5000

10000

15000

5
1

1

1
0

1
0

1
5

2
0

2
0

0
0

2
4

7
0

3
0

9
1

3
7

0
7

4
1

9
1

4
6

3
8

5
5

3
3

6
9

0
7

N
u

m
b

er
 o

f
Q

u
er

y
p

o
in

te
rs

 U
se

d

Query Length in terms of amino acids

Without
Hash

2
0

2
7

6
1

3
6

 1
3

9
2

0

5
9

2
5

 1
5

2
2

6

2
9

6
6

2

4
5

2
3

 1
2

0
5

1

2
4

8
5

1

0

5000

10000

15000

20000

25000

30000

35000

9 11 13

A
ve

ra
ge

 R
e

d
u

ct
io

n
 in

sp

ac
e

 (
b

yt
e

s)

Threshold

BLOSUM 45
BLOSUM 62
BLOSUM 80

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

52

Table 3: Number of hits recorded when each query sequence is searched against the database using FSA-DFA and hashed

FSA-DFA with and without trie for BLOSUM 62 scoring matrix and T=11

6. CONCLUSIONS
An alternative data structure for FSA DFA and a trie structure

in place of BLOSUM62 matrix, during the structure

construction stage have been successfully implemented and

tested. It is concluded that:

• Use of the new data structure resulted in significant

reduction in runtime space. For smaller query lengths (110 aa)

the reduction in run time space was found to be up to 78.7%,

for very large query length (6907 aa) it is about 9.1% using a

threshold of 11 and BLOSUM 62 scoring matrix.

• Use of trie in place of BLOSUM62 reduced the hit

detection time very significantly. Percentage reduction in hit

detection time was found to be directly proportional to the

query length, i.e., as the query length increases the percentage

reduction in hit detection time also increases.

• Use of trie also improves the accuracy of BLAST output.

In the existing implementation, the number of neighborhood

words to each query word to be taken into account is

limited to ~50 on the first come first serve basis (if it

exceeds50), whereas trie structure consists of the best 50

words

words (since trie is constructed from pre-computed lists of

neighborhood words arranged in descending order according

to word score when compared with T).

• The number of hits detected remained the same for both

FSA DFA and hashed FSA DFA, with and without trie for a

specific BLOSUM matrix and threshold. It indicates that the

use of hashed FSA DFA and trie did not alter the sensitivity

and selectivity of the BLAST tool.

• The data structures proposed in this work can be of use

for stand-alone BLAST as well as web based one.

The above said improvements can be incorporated into FSA

BLAST and the overall reduction in run time space utilization

as well as time can be tested on real time databases.

This work focuses only on improving run time space and

reducing hit detection time of the structure construction stage.

While scanning the database, the number of hits is known

when a specific query is compared with each sequence of the

database. This information can be used to filter some of the

database sequences that have negligible number of hits from

being used in alignment stage.

Database

sequence

Query

1

Query

2

Query

3

Query

4

Query

5

Query

6

Query

7

Query

8

Query

9

Query

10

Query

11

1. 99 230 257 466 835 995 1031 960 984 1299 1454

2. 26 485 714 881 2277 2268 241 2217 2012 2993 2920

3. 364 654 959 1338 1461 1949 2551 2853 3003 3326 4223

4. 481 990 1309 1977 2957 3522 4140 4135 3941 5630 5477

5. 1237 1138 1418 2247 2947 3840 5002 4861 4591 6182 6194

6. 819 1262 1632 2496 3672 4695 6109 5999 5048 7604 6806

7. 962 1814 2388 401 4728 6136 7806 7223 7421 9072 10597

8. 1047 1932 2807 4625 4829 6865 7662 8191 8696 10868 13166

9. 1138 3152 2970 465 5928 7258 9066 8846 9584 11996 13475

10. 1187 2488 3216 5333 8158 9762 11183 10238 10311 14800 14455

11. 1184 2226 3394 4891 6886 7978 9447 9950 10325 13440 16842

12. 1336 2735 3749 5922 6903 8628 9919 10003 12077 14232 18940

13. 1446 2875 4142 5781 6522 8785 10771 11694 12788 14831 18760

14. 1418 2970 5874 6252 7613 9654 11424 11457 13436 15532 20642

15. 1867 3474 4872 8938 9373 12716 13397 13634 15662 19093 24937

16. 1952 3809 5288 8504 10204 12449 15017 15020 16494 20876 24898

17. 2247 4658 6252 14760 12981 15711 19217 17616 19693 28200 30829

18. 2947 5928 7613 12981 45804 36870 36106 28078 22690 49048 33906

19. 3840 7258 9654 15711 36870 48317 39363 33411 30611 53490 41796

20. 3579 7208 9609 14742 16003 22216 25958 27616 34976 36971 47964

21. 5002 9066 11424 19217 36106 39363 59007 43725 34445 62938 46425

22. 4861 8846 11457 17616 28078 33411 43725 48883 36491 56969 47771

23. 4591 9584 13436 19693 22690 30611 34445 36491 48748 50307 66640

24. 6182 11996 15532 28200 49048 53490 62938 56969 50307 115243 69181

25. 6194 13475 20642 30829 33906 41796 46425 47771 66640 69181 127841

(b)

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

53

Pre-computed word matrices require more memory than the

BLOSUM matrices. This can be overcome by creating a

database of tries for all BLOSUM matrices and giving it as

one of the input to the BLAST tool.

7. ACKNOWEDGEMENTS
This research work is done independently and is part of Ph.D

work. It is not supported by any funding body.

8. REFERENCES
[1] Pertsemlidis, A. and John, W. Fondon III. 2001. Tutorial

- Having BLAST with bioinformatics (and avoiding

BLASTphemy), Genome Biology 2(10).

[2] Altschul, S. F. Gish, W. Miller, W. Myers, E. W. and

D.J. Lipman, D. J. 1990. Basic local alignment search

tool. Journal of Molecular Biology, 215(3):403– 410.

[3] Altschul, S. F. Madden, T. L. Schaffer, A. A. Zhang, J.

Zhang, Miller, Z. W. and D.J. Lipman, D. J. 1997.

Gapped BLAST and PSI–BLAST: A new generation of

protein database search programs. Nucleic Acids

Research, 25(17):3389–3402.

[4] WU-BLAST [http://blast.wustl.edu/]

[5] Boysen, C. and Marc, A. Rieffel. 2004. Enhancing

BLAST Performance by using paracel filtering package,

Paracel Technology.

[6] Cameron, M.. Williams, H. E. and Cannane, A. 2004.

Improved gapped alignment in BLAST. IEEE

Transactions on Computational Biology and

Bioinformatics, 1(3):116-129.

[7] Cameron, M.. Williams, H. E. and Cannane, A. 2006. A

deterministic finite automaton for faster protein hit

detection in BLAST, Journal of Computational Biology

13(4), 965–978.

[8] McGinnis, S. and T.L. Madden, T. L. 2004. BLAST: at

the core of a powerful and diverse set of sequence

analysis tools. Nucleic Acids Research, 32:W20–W25.

[9] Chen, X. L. 2004. personal communication.

[10] Shapaer, E. G. Robinson, M. Yee, D. Candlin, J. D.

Mines, R. and Hunkapiller, T. 1996. Sensitivity and

selectivity in protein similarity searches: A Comparison

of Smith-Waterman in Hardware to BLAST and FASTA.

Genomics,38, 179-191.

[11] Gotoh, O. 1982. An improved algorithm for matching

biological sequences. Journal of Molecular Biology,

162(3):705–708.

[12] Jian, Y. McGinnis, S. and Madden, T. L. 2006. BLAST:

improvements for better sequence analysis, W6–W9

Nucleic Acids Research, Vol. 34, Web Server issue

doi:10.1093/nar/gkl164

[13] Noé,* L. and Kucherov, G. 2004. Improved hit criteria

for DNA local alignment, BMC Bioinformatics, 5:149

doi:10.1186/1471-2105-5-149.

[14] Delaney, S. Butler, G. Lam, C. and Thiel, L. Three

Improvements to the BLASTP Search of Genome

Databases, 0-7695-0686-0/00 $10.00 _ 2000 IEEE

[15] Cameron, M. and Williams, H. E. 2007. Comparing

Compressed Sequences for Faster Nucleotide BLAST

Searches, IEEE Transactions.

[16] Afratis, P. Galanakis, C. Sotiriades, E. Mplemenos, G. G.

Chrysos, G. Papaefstathiou, I. and Pnevmatikatos, D.

Design and Implementation of a Database Filter for

BLAST Acceleration, 978-3-9810801-5-5/DATE09 ©

2009 EDAA.

[17] Guo, X. Wang, H. Vijay, D. Design of a FPGA-Based

Parallel Architecture for BLAST Algorithm with Multi-

hits Detection, 2011 Eighth International Conference on

Information Technology: New Generations, 978-0-7695-

4367-3/11 $26.00 © 2011 IEEE, DOI

10.1109/ITNG.2011.122.

[18] Boratyn, G. M. Schaffer, A. A. Agarwala, R. Altschul, S.

F. Lipman, D. J. and Madden, T. L. 2012. Domain

enhanced lookup time accelerated BLAST, Biol Direct

Apr 17;7(1):12.

[19] Anuradha, M. Suman Nelson, K. and Prasad Reddy, P.

V. G. D. March 2012. Improved hit detection algorithm

for FSA protein BLAST. International Journal of

Bioscience, Biochemistry and Bioinformatics, Vol. 2,

No. 2:61-65.

[20] Wilbur, W. J. and Lipman, D. J. 1983. Rapid similarity

searches of nucleic acid and protein data banks.

Proceedings of the National Academy of Sciences USA,

80(3):726–730.

[21] Karlin, S. and Altschul, S. F.1990. Methods for assessing

the statistical significance of molecular sequence features

by using general scoring schemes. Proceedings of the

National Academy of Sciences USA, 87(6):2264–2268.

[22] Altschul, S. F. Boguski, M. Gish, W. and Wootton, J.

1994. Issues in searching molecular sequence databases.

Nature Genetics, 6:119–129.

[23] Altschul, S. F. and Gish, W. Local alignment statistics.

Methods in Enzymology, 266:460–480, 1996.

[24] Altschul, S. F. Bundschuh, R. Olsen, R.. and Hwa, T.

2001. The estimation of statistical parameters for local

alignment score distributions. Nucleic Acids Research,

29(2):351–361.

[25] Henikoff, S. and Henikoff, J. 1992. Amino acid

substitution matrices from protein blocks. Proceedings of

the National Academy of Sciences USA, 89(22):10915–

10919.

