
International Journal of Computer Applications (0975 – 8887)  

Volume 64– No.1, February 2013   

46 

BLOSUM Trie for Faster Hit Detection   

in FSA Protein BLAST 
 

M Anuradha 
Research scholar 

Department of Computer 
Science & Systems 

Engineering, Andhra University 
Visakhapatnam - 530 003 

 

K Suman Nelson 
Software Engineer 

Google India 
Hyderabad 

 

P V G D Prasad Reddy 
Professor 

Department of Computer 
Science & Systems 

Engineering, Andhra University 
Visakhapatnam - 530 003 

 

ABSTRACT 

Basic Local Alignment Search Tool (BLAST) is one of the 

most widely used bioinformatics tools to determine 

similarities between genomic sequences. Ever since its 

inception several algorithmic improvements have been made 

to improve speed and runtime memory requirements without 

affecting the sensitivity and selectivity of the tool. Fast search 

algorithm (FSA) BLAST has been the most successful among 

such improvements with 20-30% faster processing rate. A 

DFA with hashed prefix word structures for the hit detection 

process in FSA BLAST has been proposed in the earlier work. 

Coding of the algorithms and testing on protein samples 

showed that the use of the new structure resulted in significant 

reduction in run time space but not the hit detection time. This 

paper proposes the use of a BLOSUM trie structure which 

eliminates the process of computing neighborhood words, 

resulted in a reduction of up to 75% in hit detection time. 

Tests were conducted with different BLOSUM matrices and 

threshold values and the proposed algorithm was found to be 

beneficial in terms of space, time complexity and accuracy 

without compromising on sensitivity and selectivity of the 

currently being used algorithm. 

General Terms 

Sequence Analysis, Protein BLAST, Hit Detection Algorithm, 

Time Complexity, Space Complexity, Sensitivity and 

Selectivity. 

Keywords 
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1. INTRODUCTION 
Basic local alignment search tool (BLAST) is the most widely 

used sequence similarity search tool used by computational 

biologists to understand the role, structure and function of 

genomic sequences. BLAST performs comparisons between a 

pair of sequences in order to find regions of local similarity 

[1]. The popular BLAST derivatives are NCBI-BLAST (web 

based and standalone versions are available), WU-BLAST, 

Paracel BLAST and fast search algorithm (FSA)-BLAST [2, 

3, 4, 5, 6, 7]. Among them, NCBI-BLAST (standalone) and 

FSA-BLAST are open source programs and any one can 

download 

(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/Latest, 

http://www.fsa-blast.org ) and experiment with the program 

code and algorithms.  

 

Because of its widespread usage (used over 120,000 times 

each day) and exponential growth in genomic databases, 

BLAST is becoming slower [8, 9]. In view of the above 

reasons, any improvement to the BLAST algorithm that can 

reduce runtime space and time without effecting sensitivity 

and selectivity would be very much desirable [10].  

 

Over the years several modifications to the fundamental 

algorithms and new heuristics in BLAST were proposed to 

improve speed and minimize runtime space [3-7], [11-18]. 

Basically, BLAST program was designed to analyze both 

protein and DNA sequences. It has mainly four algorithmic 

steps namely finding hits, performing un-gapped alignments, 

performing gapped alignments and computing trace back and 

outputting the results [2, 3, 6, 7]. The main functional 

differences between NCBI BLAST and FSA BLAST are, one 

is the structure used for finding hits between a query sequence 

and database sequence during the hit detection process and the 

other is using semi-gapped and restricted insertion alignments 

during alignment stage of the algorithm [6,7]. A modified 

DFA proposed in the earlier work, reduced the runtime space 

significantly during the hit detection stage of the FSA protein 

BLAST algorithm [19]. But reduction in hit detection time is 

not significant. This paper proposes a method that eliminates 

the process of computing neighborhood words during hit 

detection process. It resulted in significant reduction in hit 

detection time of FSA protein BLAST algorithm.  

   Hits are short, fixed length high scoring matches between 

query sequence and database sequence. For protein search, hit 

is a match of word length 3 and inexact matches are permitted 

whereas for nucleotide search, hit is an exact match of word 

length 11. For finding hits, FSA-BLAST used an optimized 

deterministic finite automaton (DFA) which reduced the total 

BLAST search time by 6 to 30% compared with table look-up 

used in NCBI BLAST[3,7]. But study on this implementation  

revealed that,  the number of query pointers used by the 

structure is fixed and dependent on alphabet size (a) and word 

length (w), and is equal to ‘aw ‘(for protein sequence, a=24 

and w=3), i.e., 243=13,824, not on the length of the query. In 

the modified structure, it is made dependent on length of 

query sequence and the number of neighborhood words to 

each query word. This reduces the run time space of algorithm 

by a considerable amount, by initializing only the necessary 

query pointers [19]. 

   This paper is organized into seven sections. The hit 

detection process used in FSA protein BLAST is described in 

section 2 using a small sample query as an example. 

Description of DFA with hashed prefix word structures and 

trie used in this study are given in section 3. In Section 4, 

implementation details and testing of code are explained. 
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Results are analyzed and discussed in Section 5. Conclusions 

are given in section 6 and acknowledgements in section 7. 

2. HIT DETECTION PROCESS 
In this stage, BLAST compares query sequence with each 

sequence of the database using Wilbur and Lipmann 

algorithm [20]. This process is done in two steps; one is 

structure construction which is unique for a query, and second 

is processing the database sequence to find word matches 

between query sequence and database sequence. 

During the structure construction, fixed length overlapping 

words of length ‘w’ are extracted from the query sequence. 

For example, let ‘BABBC’ be the query sequence made up of 

an alphabet: {A, B, C} and w=3, then the fixed length 

overlapped words extracted from the query are: BAB, ABB, 

and BBC. For each query word, neighborhood words of 

length ‘w’ are generated. A neighborhood word is a word 

obtaining a score greater than or equal to some threshold 

value ‘T’ (default values used by NCBI-BLAST for protein 

search are T=11 and w=3) [21-24], using a selected scoring 

matrix. For example for query word BAB, BAC is 

neighborhood word. When B is matched with B, score is 6, 

when A is matched with A, score is 5 and when C is matched 

with B, score is 0. Then the word score is sum of the 

individual scores and given below. 

B A B 

 |   |   | 

B A C     6+5+0=11 which is equal to T.                      

   The default scoring matrix used for protein BLAST is 

BLOSUM62 [25]. Each query word along with its 

neighborhood words will be associated with a query position 

and are stored in a structure. In the above example, query 

positions of query words BAB, ABB, and BBC are 1, 2, and 3 

respectively. 

   While processing the database sequences, each sequence is 

processed sequentially, that is each sequence is read from the 

database, parsed into words of length ‘w’ and searched for  

 

query word match in the structure. If a match is found,  

corresponding query word position ‘i’ and database sequence 

word position ‘j’ are recorded as hit, which will be the input 

to the alignment stage of the BLAST algorithm. 

3. STRUCTURES USED FOR FINDING 

HITS  

3.1 Existing FSA-DFA Structure 
FSA-DFA consists of states, and transitions between the 

states. A state is a prefix word of length (w-2). The total 

number of states is equal to a(w-2)  (24 for a protein sequence). 

FSA-DFA shown in Figure.2 for an input given in Figure.1 is 

constructed as follows. 

 

Position: 1 2 3 4 5 

Query: B A B B C 

Subject: C B A B B 

Threshold: 11     

(a) 

 A B C 

A 5 -1 2 

B -1 6 0 

C 2 0 4 

 

(b) 

QP QW NHWs 

1 BAB BAC, BBB, BCB, CAB 

2 ABB ABC, ACB,BBB, CBB 

3 BBC BBA, BBB 

 

(c) 

 

Figure 1: (a) Example Query and Database sequences 

constructed with an alphabet:{A,B,C};word length(w)=3 

(b) Scoring Matrix (c) List of query words(QW) and their 

neighborhood words (NHWs) along with their query 

positions (QP) for the given query 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Existing FSA-DFA constructed for the input given in Figure 1(a) and (b) 
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 a(w-2)  states are initialized in such a way that each 

state consists of ‘a’ transitions and each transition is 

associated with two pointers, one to the next state 

and other to a collection of words that share 

common prefix of length ‘(w-1)’. Each word in the 

prefix table is associated with a query pointer 

pointing to a list of query positions which is initially 

initialized to NULL. 

 For each query word, neighborhood words given in 

Figure 1(c) are computed based on the given 

threshold T using alignment scoring matrix, and 

their query positions are stored in the structure. 

For the given example, structure consists of 3 states A, B and 

C. Each state consists of 3 transitions A, B and C, and each 

transition is associated with corresponding prefix table. For a 

given query, we start with word BAB. Transition A of state B 

has pointer to next state A and pointer to prefix word table 

BA. In the prefix word table, for the word BAB, the query 

position is marked as 1 because it is available in query 

sequence at position 1. The neighborhood words to BAB, 

listed in fig 1(c), are now computed and their positions are 

also stored in the structure. This process repeats for every 

query word. 

While processing the database sequence ‘CBABB’, the first 

character ‘C’ is read. That is we are starting with the state C. 

Then the next character ‘B’ is read, transition ‘B’ from state C 

is followed. Here transition B of state C has, one pointer to 

next state B and other pointer to prefix table of word CB. 

Since the next character read is A, and for the word CBA 

there is no match in the query sequence the search advances to 

next state B. Now we are at state B, and next character read is 

A, then transition A from state B is followed which has 

pointers to next state A and prefix word table BA. When the 

next character B is read, transition ‘B’ from prefix table ‘BA’ 

is followed. Here the transition has a query position 1, hence 

outputs the hit as (1, 2), i.e., match occurs at query position 

‘1’ and database sequence position ‘2’ and search advances to 

next state ‘A’. This process continues until the data base 

sequence is exhausted. 

3.2 FSA-DFA with hashed prefix word 

structures 
The limitation of currently being used FSA-DFA is, whatever 

may be the query length, size of the DFA and the number of 

query pointers initialized during the structure construction 

stage is fixed (aw). For a protein sequence, it is equal to 

243=13,824. Indeed, for a given query we may not be using 

these many pointers. Whether we use or not, 4 bytes of 

memory is allocated to each pointer which will be a 

considerable overhead on run-time space utilization.  It can be 

overcome by using an array of states and prefix word hash 

table which makes the number of query pointers to be 

initialized dependent on the size of query and the number of 

neighborhood words each query word is associated with, 

instead of initializing fixed number of pointers. This section 

presents construction of such structure with an example and is 

explained below. 

  It consists of array of states, where each state is a word block 

of (w-2) length. The size of the array is equal to a(w-2) (24 for a 

protein sequence). Each state is associated with a hashed 

prefix word table with query or neighborhood word as key 

and pointer to list of query positions as value. Initially the size 

of each hash table is zero and it grows by one key and one 

value for each query word and its neighborhood words, while 

constructing FSA-DFA. 

A portion of the modified FSA-DFA shown in Figure.3, for 

the given query sequence ‘BABBC’ is constructed as follows. 

Let the query word be ‘w1w2w3’. For each query word, w1 is 

the current state, w2 is the next state and w3 is the transition 

that maps query word w1w2w3 from current state into 

corresponding query position in prefix word hash table w1w2. 

In this example, for query word ‘BAB’, B is the current state, 

A is next state and B is the transition that maps query word 

BAB into query position 1 in prefix word hash table BA. 

Similarly neighborhood words to word BAB are also mapped 

into query position 1. Similarly the remaining query words, 

ABB and BBC, and their neighborhood words are also 

mapped into their corresponding query positions in 

corresponding prefix word hash tables. So whenever a query 

word or neighborhood word is mapped into corresponding 

query position, two pointers are initialized. One maps into the 

hash table of that state and other to the next state. Hence the 

number of query pointers initialized is less than or equal to the 

sum of the number of query words and their neighborhood 

words.  

 

The database sequence ‘CBABB’ is processed as follows. 

When the first character ‘C’ is read, we are starting with state 

C. Then the next character ‘B’ is read, a pointer to next state 

B is followed. When next character ‘A’ is read, since there is 

no match for the word CBA in the query, search advances to 

next state B. At state B, a pointer to next state A and other to 

the prefix word hash table BA of state B is followed. When 

the next character B is read, word BAB will be hashed into 

slot B of prefix word hash table ‘BA’ of state B and outputs a 

hit (1, 2). Now we are at state A. when character B is read a 

pointer to next state B and other to the prefix word hash table 

AB of state A is followed. When the next Character B is read, 

word ABB  is hashed into slot B of prefix word hash table AB 

of state A (where match is found for the word ABB in the 

query sequence at position 2, that outputs a hit (2, 3)). The 

process continues until the data base sequence is exhausted. 

3.3 BLOSUM trie structure 
Finding neighborhood words to each query word during the 

structure initialization stage is most time consuming because 

each word needs to be compared with aw words where each 

 

                            HASHED PREFIX WORD STRUCTURES  

Figure 3: FSA-DFA with hashed prefix word 

structures constructed for the input given in 

Figure 1 (a) and (b) 
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query word will be having very few neighborhood words out 

of aw words and the process repeats for every query. Cost of 

finding neighborhood words can be reduced by using a 

BLOSUM trie structure consisting of pre-computed lists of 

neighborhood words to each possible word of length ‘w’ for a 

given alphabet and scoring matrix. This section presents 

construction of such structures with an example.  

Let ‘Q’ be set of query words where qi is query word available 

at ith position of query sequence, ‘Qi’ be the set of 

neighborhood words to query word qi  and ‘S’ be the set of all 

possible words of fixed length w with the given alphabet of 

size ‘a’. Let n(Qi) and n(S) are number of elements in the sets 

Qi and S respectively where n(S)=aw. For any query, Q is a 

proper subset of S and n(Qi) is very small when compared 

with n(S). For a specific scoring matrix if we compute the set 

of neighborhood words to each word in S once, they can be 

reused for all query words and any number of queries. By 

taking the above facts into consideration a BLOSUM trie is 

constructed as follows. 

• For the scoring matrix given in Figure 1(b), alphabet: {A, B, 

C} and word length w=2, the word matrix ‘W’ of size (aw x 

aw) (9x9 in this example) is computed in such a way that the 

element wij of W is the score when the word in ith row is 

matched with the word in jth column.  

• The lists of neighborhood words (words with wij ≥ T) to each 

word in S are extracted from W and are arranged in 

descending order as shown in the Figure 4(a) and (b). 

Figure 4: (a) Pre-computed word matrix consisting of 

scores of all possible words of size w=2, obtained using 

alphabet: {A, B, C} and the scoring matrix given in Fig. 1 

(b) Lists of neighborhood words to each possible word of 

size w=2 and word score ≥7 obtained from pre-computed 

word matrix 

The lists of neighborhood words to each word in S are stored 

as a trie structure because trie is more space efficient, 

particularly when there is large number of known short length 

keys. Another advantage of trie structure is, searching and 

data retrieval is faster (of order of O(w)). Trie structure for the 

lists given in Figure 3(b) is shown in Figure 4. It is 

implemented as non-binary search tree, where each node 

contains at most ‘a’ pointers, corresponding to ‘a’ possible 

characters in each position of the word except leaf nodes. The 

root node corresponds to an empty string whereas the other 

nodes correspond to prefixes of words in S. Each path from 

root to a leaf corresponds to one word in S.   

• The neighborhood words to each word in S are extracted 

from the trie by traversing from root node with the prefix of 

word, to a node where the word ends. All the leaf nodes under 

that node are nothing but the set of neighborhood words 

including the word itself. 

4. TESTING 
Proposed hit detection algorithm has been developed using 

C++ in visual studio 2010 environment. To evaluate the 

efficiency of proposed algorithm, hit detection process from 

FSA-BLAST has been taken as reference. To test the code, 

input and output files were created. The input file consisted of 

twenty five protein sequences, randomly extracted from the 

non-redundant protein database (a collection of sequences 

from several sources, including translations from annotated 

coding regions in GenBank, RefSeq and TPA, as well as 

records from SwissProt, PIR, PRF, and PDB) using Entrez, 

listed in Appendex A; BLOSUM 45, 62 and 80 scoring 

matrices and their corresponding pre-computed word 

matrices. The size of the proteins so selected varied from 110 

to 6907 amino acids in order to study the effect of query 

length on the performance of hit detection algorithm. Here, 

the set of 25 protein sequences extracted are considered as 

database and each one of the 25, taken one at a time as a 

query to be searched against the database. Threshold value 

needed to find neighborhood words for each query word is 

taken as 9, 11 and 13. Trie is constructed from the pre-

computed word matrix during structure initialization stage as 

explained in section 3.3. When each query is run on the 

database, the program outputs, pairs (i, j), that identify 

matches between the query and database sequences. The 

number of hits and the number of query pointers initialized for 

the structure are stored into the output file. This process is 

repeated for both the algorithms, existing FSA DFA and 

hashed FSA DFA with BLOSUM 45, BLOSUM 62 and 

BLOSUM 80 scoring matrices and with trie structure with 

threshold values 9, 11 and 13. Time taken to initialize the 

FSA DFA structure and processing the database sequence has 

been measured separately using a utility program known as 

performance counter. Quantitative and qualitative analysis on  

 

Figure 5: A Trie structure consisting of lists of neighborhood 

words represented in Figure 4(b) 
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Table 1. Comparison of hit detection time and number of query pointers used in FSA-DFA using trie and hashed FSA-DFA 

using trie with  FSA-DFA for BLOSUM 62 scoring matrix and T=11

the results is done and discussed in the next section. 
5. RESULT ANALYSIS 

5.1 Quantitative Analysis 

5.1.1 Space complexity 
The number of query pointers initialized during structure 

construction is taken as measuring factor for space 

complexity. For a small set of query sequences, the results are 

tabulated in Table 1 given above. 

From the results we can see that, the number of query pointers 

initialized in the existing FSA DFA structure is fixed and is 

maximum possible. It is dependent on alphabet size ‘a’ (24 for 

proteins) and word size ‘w’ (3 for proteins), i.e., 243=13,824 

whereas for the proposed structures it is made dependent on 

size of the query sequence and the number of neighborhood 

words, each query word has. It is found that the reduction in 

space is significant and varied based on threshold, BLOSUM 

and query length. For larger threshold, higher BLOSUM and 

shorter query, the reduction in space is more.  Test results are  

 

tabulated in Table 2 and graphically represented in Figure 6 

given below. 

Table 2. Space efficiency of hashed FSA-DFA as a 

function of T and BLOSUM scoring matrix 

Threshold 

(T) 

Average Reduction in Memory Space (bytes) 

BLOSUM 45 BLOSUM 62 BLOSUM 80 

9 2027 5925 4523 

11 6136 15226 12051 

13 13920 29662 24851 

 

 

S.No

. 
Query protein sequence Gene – id 

Sequenc

e 

Length 

(aa) 

Hit Detection Time (ms) 
Number of Query 

Pointers used 

FSA-

DFA 

FSA-

DFA 

with 

Trie 

Hashed  

FSA-DFA 

with Trie 

without 

hash 

with 

hash 

1. 

 
B Chain B, Structure Of P. Citrinum  gi|20151022|pdb|1KRF| 511 49.89 4.75 16.78 13824 7338 

2. 2-oxoglutarate dehydrogenase-like, 

mitochondrial isoform a [Homo sapiens] 

gi|221316661|ref|NP_0

60715.2| 
1010 101.64 9.54 27.21 13824 10393 

3. 
myosin [Arabidopsis thaliana] 

gi|433663|emb|CAA82

234.1| 
1520 149.96 11.4 36.51 13824 11436 

4. chromodomain-helicase-DNA-binding 

protein 3 isoform 1 [Homo sapiens] 

gi|52630326|ref|NP_00

1005273.1| 
2000 192.21 19.89 47.9 13824 11557 

5. 

 

NOTC2_MOUSE RecName: 

Full=Neurogenic locus notch homolog 

protein 2;  

gi|20138876|sp|O35516

.1| 
2470 254.64 30.93 73.84 13824 11076 

6. novel protein similar to vertebrate low density 

lipoprotein-related protein 2 (LRP2) [Danio 

rerio] 

gi|169158323|emb|CA

Q13433.1| 
3091 309.36 37.18 93.42 13824 11865 

7. CUB and sushi domain-containing protein 3 

isoform 1 [Homo sapiens] 

gi|38045888|ref|NP_93

7756.1| 
3707 365.9 42.67 96.22 13824 11861 

8. novel gene similar to vertebrate polycystic 

kidney and hepatic disease 1 (autosomal 

recessive)-like 1 (PKHD1L1) [Danio rerio] 

gi|157886135|emb|CAP

09460.1| 
4191 409.01 37.92 91.63 13824 12314 

9. dynein heavy chain 64C, isoform C 

[Drosophila melanogaster] 

gi|221330856|ref|NP_7

29034.2| 
4638 450.12 44.38 93.38 13824 12512 

10. 
novel hemicentin protein [Danio rerio] 

gi|55962332|emb|CAI1

1663.1| 
5533 551.04 60.97 130.53 13824 12410 

11. 
nesprin-2 isoform 5 [Homo sapiens] 

gi|118918407|ref|NP_8

78918.2| 
6907 689.29 66.37 153.82 13824 12571 
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5.1.2 Time complexity 
Time complexity of modified structure with the currently 

being used structure is compared as follows. Performance 

counter has been set separately to measure the structure 

construction time for the given query and time for processing 

the database sequence for finding hits. The least time unit that 

can be measured by the performance counter is millisecond. 

For better accuracy, processing of database sequences has 

been set to run 10 times. It is observed that there is slight 

increase in processing database sequence time due to hashing 

function used to map the database sequence word into 

corresponding query position during the processing stage. But 

there is drastic improvement in structure initialization time 

due to modified structure and usage of trie to find the 

neighborhood words. Percentage reduction in overall time for 

finding hits using modified structure is calculated for a set of 

query sequences. The results are graphically represented in 

Figure 7 given below. 

5.2 Qualitative Analysis 
BLAST performs similarity search which can be improved 

either by increasing sensitivity or selectivity. Sensitivity of 

BLAST is defined as ability to recognize distantly related data 

base sequences to that of a query sequence. Selectivity is 

defined as ability to reject unrelated database sequences to  

 

(a) 

 

(b) 

 

(c) 

Figure 7: Graphical representation of (a) performance (time) of 

FSA-DFA and Hashed FSA-DFA with and without Trie using 

BLOSUM 62 and T=11 (b) Average percentage reduction in hit 

detection time of FSA-DFA using Trie (c) Average percentage 

reduction in hit detection time of Hashed FSA-DFA using Trie. 

that of a query sequence. The number of alignments being 

considered in the second stage of the BLAST is dependent on 

the number of hits generated in the first stage of the BLAST. 

For example, for a query of length 110 amino acids, the 

number of hits recorded for both existing structures and 

proposed structures is 984, when run on the database sequence 

of length 48748 amino acids. In the alignment stage, the 

scores of all 984 alignments are computed and best scored 

alignments will be taken into account for final output of 

BLAST. The experimental results tabulated in Table 3 given 

below reveals that the number of hits recorded for FSA-DFA 

and modified structures are similar. Hence we can say that, 

space and time complexity of the algorithm is reduced without 

effecting sensitivity and selectivity.  
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(b) 

Figure 6: Graphical representation of (a) Hashed FSA-DFA 

performance (space) with BLOSUM 62 and T=11 in terms of 

query pointers (b) Average reduction in memory space in terms 

of bytes when Hashed FSA-DFA is used 
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Table 3: Number of hits recorded when each query sequence is searched against the database using FSA-DFA and hashed 

FSA-DFA  with and without trie for BLOSUM 62 scoring  matrix and T=11

 

6. CONCLUSIONS 
An alternative data structure for FSA DFA and a trie structure 

in place of BLOSUM62 matrix, during the structure 

construction stage have been successfully implemented and 

tested. It is concluded that: 

• Use of the new data structure resulted in significant 

reduction in runtime space. For smaller query lengths (110 aa) 

the reduction in run time space was found to be up to 78.7%, 

for very large query length (6907 aa) it is about 9.1% using a 

threshold of 11 and BLOSUM 62 scoring matrix.  

• Use of trie in place of BLOSUM62 reduced the hit 

detection time very significantly. Percentage reduction in hit 

detection time was found to be directly proportional to the 

query length, i.e., as the query length increases the percentage 

reduction in hit detection time also increases. 

• Use of trie also improves the accuracy of BLAST output. 

In the existing implementation, the number of neighborhood  

words to each query word to be taken into account is 

limited to ~50 on the first come first serve basis (if it 

exceeds50), whereas trie structure consists of the best 50 

words 

 

words (since trie is constructed from pre-computed lists of 

neighborhood words arranged in descending order according 

to word score when compared with T).  

• The number of hits detected remained the same for both 

FSA DFA and hashed FSA DFA, with and without trie for a 

specific BLOSUM matrix and threshold. It indicates that the 

use of hashed FSA DFA and trie did not alter the sensitivity 

and selectivity of the BLAST tool.  

• The data structures proposed in this work can be of use 

for stand-alone BLAST as well as web based one.  

      

The above said improvements can be incorporated into FSA 

BLAST and the overall reduction in run time space utilization 

as well as time can be tested on real time databases. 

This work focuses only on improving run time space and 

reducing hit detection time of the structure construction stage. 

While scanning the database, the number of hits is known 

when a specific query is compared with each sequence of the 

database. This information can be used to filter some of the 

database sequences that have negligible number of hits from 

being used in alignment stage. 

Database 

sequence 

Query

1 

Query

2 

Query

3 

Query

4 

Query

5 

Query

6 

Query

7 

Query

8 

Query

9 

Query

10 

Query

11 

1. 99 230 257 466 835 995 1031 960 984 1299 1454 

2. 26 485 714 881 2277 2268 241 2217 2012 2993 2920 

3. 364 654 959 1338 1461 1949 2551 2853 3003 3326 4223 

4. 481 990 1309 1977 2957 3522 4140 4135 3941 5630 5477 

5. 1237 1138 1418 2247 2947 3840 5002 4861 4591 6182 6194 

6. 819 1262 1632 2496 3672 4695 6109 5999 5048 7604 6806 

7. 962 1814 2388 401 4728 6136 7806 7223 7421 9072 10597 

8. 1047 1932 2807 4625 4829 6865 7662 8191 8696 10868 13166 

9. 1138 3152 2970 465 5928 7258 9066 8846 9584 11996 13475 

10. 1187 2488 3216 5333 8158 9762 11183 10238 10311 14800 14455 

11. 1184 2226 3394 4891 6886 7978 9447 9950 10325 13440 16842 

12. 1336 2735 3749 5922 6903 8628 9919 10003 12077 14232 18940 

13. 1446 2875 4142 5781 6522 8785 10771 11694 12788 14831 18760 

14. 1418 2970 5874 6252 7613 9654 11424 11457 13436 15532 20642 

15. 1867 3474 4872 8938 9373 12716 13397 13634 15662 19093 24937 

16. 1952 3809 5288 8504 10204 12449 15017 15020 16494 20876 24898 

17. 2247 4658 6252 14760 12981 15711 19217 17616 19693 28200 30829 

18. 2947 5928 7613 12981 45804 36870 36106 28078 22690 49048 33906 

19. 3840 7258 9654 15711 36870 48317 39363 33411 30611 53490 41796 

20. 3579 7208 9609 14742 16003 22216 25958 27616 34976 36971 47964 

21. 5002 9066 11424 19217 36106 39363 59007 43725 34445 62938 46425 

22. 4861 8846 11457 17616 28078 33411 43725 48883 36491 56969 47771 

23. 4591 9584 13436 19693 22690 30611 34445 36491 48748 50307 66640 

24. 6182 11996 15532 28200 49048 53490 62938 56969 50307 115243 69181 

25. 6194 13475 20642 30829 33906 41796 46425 47771 66640 69181 127841 

(b) 
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Pre-computed word matrices require more memory than the 

BLOSUM matrices. This can be overcome by creating a 

database of tries for all BLOSUM matrices and giving it as 

one of the input to the BLAST tool. 
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