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ABSTRACT 

A novel hybrid sensor informatics architecture based on 

Discrete Wavelet Transform (DWT), Fuzzy logic based 

clustering (FCM) and Fuzzy Rule based Inference system 

(FIS) has been investigated and proposed to estimate dynamic 

generic sensor drift during physical sampling. DWT has been 

used for sensor pre-processing; data dimension reduction and 

feature extraction from sensor time series, where as DWT-

FCM based approach has been used to estimate the 

cumulative drift in our sensory system. An intelligent 

generalized algorithm using multiple FCM maps (m-FCM) 

has been proposed to implement the drift correction on any 

future unknown data sets. In the next stage a newly proposed 

DWT-FCM-FIS architecture has been tested on multisensory 

environmental data sets covering three consecutive years 

(2009 – 11) to predict probable month (environmental time of 

the year) with up to 93% accuracy. This novel hybrid data 

processing architecture have been implemented and tested 

upon a real time estuary sensory platform of temperature, 

conductivity and salinity sensors that have been deployed to 

monitor the Derwent Estuary in Hobart, Australia. This newly 

proposed approach could be an adaptive solution to tackle 

drifts in the sensor networks and improve overall monitoring 

quality.   

General Terms 

Sensor Drift Correction, Oceanic Data Analysis, Pattern 

Recognition. 

Keywords 

Sensor Drift, Drift Area, Discrete Wavelet Transform, Fuzzy 

C means, Fuzzy Inference system. 

1. INTRODUCTION 
Environmental drift of ocean sensors is a dynamic process 

caused by physical changes in the sensors and the chemical 

background, which gives an unstable signal over the time. 

Sensory data are usually affected by variations which are 

partly due to the non-ideal of sensor response and partly due 

to the effects of the environment on the chemical sensory 

component. It is widely acknowledged that the sensor 

networks are expensive and there are significant risks 

associated with the deployment and maintenance. The main 

monitoring area for this study was a coastal region that 

covered an approximate area of 100x50km, so a very practical 

approach was taken in the CSIRO’s Tasmanian Marine 

Analysis Network project (Tas-MAN) to the implementation 

of a marine sensor network. A low-cost sensors network 

platform was deployed. The low-cost sensors and platform do 

not provide the high quality observations and diversity of 

phenomena, but by sacrificing accuracy at one geographic 

point improved representation was achieved for a larger area. 

But greater uncertainty, low resolution in sensor data quality 

and significant chances of sensor drift created a unique 

opportunity to develop an adaptive sensor drift estimation 

framework for the ocean sensor network. Successful 

development of this type of framework could potentially 

enhance the drift correction capabilities which in turn will 

enhance the reliability of the sensor network and reduce the 

maintenance worries. In this paper novel hybrid sensor 

informatics architecture based on Discrete Wavelet Transform 

(DWT) and multiple Fuzzy C Means clustering (m-FCM) has 

been investigated and proposed to estimate dynamic sensor 

drift and potential drift correction [1-4]. 

In this paper novel hybrid sensor informatics architecture 

based on Discrete Wavelet Transform (DWT), Fuzzy logic 

based clustering (FCM) and Fuzzy Inference system (FIS) has 

been investigated and proposed to estimate dynamic sensor 

drift and potential drift correction. DWT has been used for 

sensor pre-processing, data dimension reduction and 

unsupervised feature extraction from sensor time series, where 

as FCM and FIS has been used to develop the hybrid drift 

estimation incorporated predictive model [5-8].  

2. DATA AND SYSTEM 
This particular study is based on six Tyco Greenspan EC250 

sensors [9] which are being used for measuring temperature, 

conductivity and salinity of the sea water. Figure 1 depicts a 

typical sensor node deployed into ocean water for 

measurements.  

 

 

 

 

 

 

 

 

Two sensors are dedicated for contentious measurement of 

each of the parameters. Data were gathered using web servers. 

In the Figure 2 typical sensor responses are shown which were 

captured during May 2009. The TasMAN system’s integrated 

design avoids the range limitation and brittleness of mesh 

networking by making cellular communications affordable on 

every sensor node, and significantly improving data 

throughput.  

 

 

 

Fig 1: Tyco Greenspan EC250 sensors 
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Fig 2: Typical monthly Sensor observations during May 

2009. 

The whole study was based on real sensory observations 

during three separate time periods namely {Set 1 = Jan 2009 – 

July 2009}, {Set 2 = Jan 2010 – July 2010}, and {Set 3 = Jan 

2011 – July 2011}. So effectively each set had six months of 

data representing same time of the year with same length 

period. In this paper, data modelling was done on a monthly 

basis using Wavelet – FCM – FIS approach for the final FIS 

to predict the probable month from the multi-dimensional 

sensor data. On the other hand Wavelet – FCM approach was 

taken to measure sensory drift over the years. Chronological 

sections of this paper are written in a way that they would 

follow the exact flow of our data analysis and predictions. 

Firstly data sets were pre-processed, normalized, and the 

representative features were calculated using wavelet analysis. 

Then the pre-processed features were used to model the 

relationship between the input variables (six sensory 

responses) and the output variable (actual month) initially by 

clustering the data. The cluster centers were used as a basis to 

define a FIS which was subsequently used to explore and 

understand environmental patterns over the years. Set 1 data is 

used in the Wavelet – FCM – FIS based initial water data 

understanding and modelling where as Set 2 and Set 3 are 

used to measure the sensory drift over the years and to test 

prediction performance of the system [10-13].  

2.1 Data Normalisation 
In this study, normalisation model in the Equation 2 have 

been used to make the responses linear, to increase the 

relative contribution of sensors and the overall dynamic range. 

Sensors were normalised individually based on the maximum 

and minimum values for that particular time period.                      

   minmaxmin

iiiijij xxxxR                                 (2) 

2.2 Discrete Wavelet Transform: Feature 

Extraction 
In this paper Discrete Wavelet Transform (DWT) is proposed 

as a time-series feature extraction algorithm for automatically 

choosing feature and reducing dimensionality for clustering. 

DWT transforms the time series from time domain into time-

frequency domain. It has been identified that DWT could be 

an ideal feature extraction technique with the ability to 

efficiently reduce the data into a lower dimensional model, 

while preserving the properties of the original data. In 

practice, however, information is lost as the dimensionality is 

reduced. It is therefore desirable to formulate a method that 

reduces the dimensionality efficiently, while preserving as 

much information from the original data as possible. 

Due to difficult oceanic physical scenario for data gathering it 

is evident that total number of sensor observations recorded 

each month vary from month to month. So for this study total 

number of representative sensory observations for each month 

has been selected based on number of stages of wavelet 

analysis.  

So final target time series length n for individual sensor i was 

selected in a way where n is divisible by 2
j
, and 

 12*,  jHpFLpFoflengthn  where j is 

number of stages of wavelet analysis.  

  

Fig 3: Single stage schematic representation of Wavelet 

Analysis. 

The low pass filter is denoted by LpF and the high pass filter 

by HpF. This is the first step towards overall dimension 

reduction process for further feature based data clustering. 

In each stages the analysis filter bank decomposes the input 

signal x(n) into two sub band signals, a(n) and b(n). The 

signal a(n) represents the low frequency part and the signal 

b(n) represents the high frequency part of x(n). As shown in 

the figure, the output of each filter is then been down-sampled 

by 2 to obtain the two sub band signals, a(n) and b(n). n 
length signal from individual sensor was decomposed into 

coarser resolutions using a simple hierarchical scheme and the 

schematic diagram of wavelet composition is shown in Figure 

3. In this paper four-level wavelet transform was used for 

dimension reduction and feature extraction. In order to find 

the optimum number of wavelet level required for best 

possible representation of features from the data a feedback 

optimization was applied based on feature based component 

data clustering (Figure 4). 

Different levels of wavelet were applied to reduce dimension 

and extract features until the first three components (in 

principal component analysis (PCA)) were covering 99.99% 

of information variance among the data sets. It was found that 

four-level wavelet transform was best suited for this study 

where first two PC covered more than 99% of information 

variation [14].  Individual stage of decomposition process 

provided detailed j+1 coefficients where as j
th

 coefficient 

after the final stage of wavelet was eventually used as 

representative feature of that class or month in this case [14-

17]. 
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Fig 4: Clustering using PC-FCM algorithm to identify six separable monthly data 

3. FUZZY C MEANS 
Fuzzy C means (FCM) is an unsupervised method. Clustering 

essentially deals with the task of splitting a set of patterns into 

a number of more-or-less homogeneous classes (clusters) with 

respect to a suitable similarity measure such that the patterns 

belonging to any one of the clusters are similar and the 

patterns of different clusters are as dissimilar as possible. The 

similarity measure used has an important effect on the 

clustering results since it indicates which mathematical 

properties of the data set should be used and in what way they 

should be used in order to identify the clusters [18-22]. FCM 

clustering provides partitioning results with additional 

information supplied by the cluster membership values 

indicating the degrees of belongingness, where C is the total 

number of clusters.  

The objective function of the FCM algorithm takes the form 

of  

2

1 1

( , ) ,
c n

m

ij k ij j i

i j

J u v u x v
 

  
 m>1,               (3)                                  

where m is called the exponential weight which influences the 

degree of fuzziness of the membership (partition) matrix. The 

FCM algorithm provides an iterative approach to 

approximating the minimum of the objective function starting 

from a given position. This iterative procedure minimizes the 

objective function in Equation 3 [14, 20, 23]. It was tested and 

observed that pre-processed and extracted feature base did not 

have local convergence, so it won't impact drift estimation and 

drift correction results. 

3.1 FCM Clustering: Drift estimation 
FCM clustering provides a probable center of the clusters 

along with the additional information supplied by the cluster 

membership values indicating different degrees of 

belongingness. These cluster centers are the direct feature 

representation of a cluster which is representing a particular 

class of data. In an unsupervised fashion, these cluster centers 

could be estimated among the whole data set and particular 

classes or groups inside the data could be classified.  

In Figure 4 example results from the FCM clustering on Set 1 

are presented. Cluster centers are marked with red dots where 

as six different clusters are marked with different colours. 

FCM algorithm has predicted the positions of six most 

important clusters from the whole data set containing 

interesting knowledge about the data which could be used to 

estimate amount of sensor drift from year to year. Ideally if 

the sensors have no drift over the years and operate 

consistently then shift of movement of the cluster centers 

would be very limited.  In reality that is not the case and the 

response from sensors contain significant amount of drift.  It 

is evident from this figure that clusters which are representing 

‘Jan-Feb’, ‘Mar-Apr’ and ‘Jun-July’ are very clearly 

separable. The other three clusters representing intermediate 

transition months have overlapping boundaries with clusters. 

In order to estimate sensor drift more accurately it is 

important to distinguish noticeable differences in cluster 

centers due to natural variation in temp and conductivity 

phenomena between the years from the actual year to year 

sensor drift. After studying the three yearly data 

independently it was evident that if we re-cluster the feature 

sets into three more consistent clusters we can represent the 

actual aspects of sensor drift more, which minimized the 

effect of sensory natural variations. So if we model the whole 

data set into three major cluster regions, the problem could be 

easily represented and the amount of drift could be calculated 

more consistently with high accuracy, as weather wise it is 

quite practical to divide the period from January to July into 

three different classes.  

 

 

 

 

 

 

 

 

 

 

 

Fig 5: FCM based re-clustering and development of drift 

calculation algorithm. 
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So with that plan in place the whole data Set 1 was re-

clustered into three clusters.  Figure 5 shows the three new 

cluster centers and distances between two clusters are marked 

as {d1+ d2+ d3}. One of the most important aspect of this 

paper is that we wanted to define a new way to estimate drift 

in the sensory system numerically, so in order to parameterize 

the amount of drift, the area of the triangle formed by three 

cluster centers has been calculated as 
iAreaDrift using 

Heron's formula (Equation 4). 

      321 *** dsdsdssAreaDrift i       (4) 

where, 
2

321 ddd
s


 ,  i= 2009, 2010…                                          

Next both Set 2 and Set 3 representing same time period from 

2010 and 2011 were analysed in the same way as Set 1. These 

individual year wise clustering enabled us to estimate 

2010AreaDrift = 0.1831 and 
2011AreaDrift = 0.1169 

and compare those against 
2009AreaDrift = 0.2938 to 

measure cumulative drift in our sensory system over last three 

years. Difference between two drift areas is the estimation of 

amount of drift for that particular one year period. The drift 

areas from 2010 and 2011 were compared with the drift area 

from 2009 as sensors were deployed in 2008, so it was 

expected that sensor performance and sensibility were much 

higher in 2009 than in 2010-11. From the clustering and drift 

estimation it is evident that these three clusters are always 

separable from each other on the basis of individual analysis 

of Set 1, Set 2 and Set 3 data, but over the years 

iAreaDrift  is getting smaller which means separability 

among the clusters are getting narrower, or in other words the 

clusters are becoming more closer to each other over the 

years. So indirectly this analysis is giving us an exact 

numerical estimation of gradual reduction of sensibility 

among the sensors responses. 

3.2 m-FCM based Drift Correction 
Once we have a FCM based clustering map from an unknown 

data set, then the labeling phase follows the unsupervised one, 

in order to classify data based on the Euclidean distance. 

However, in the context of the oceanic sensors the use of a 

single map often becomes useless due to drift. If a sensor is 

not behaving in the expected manner, it would not map the 

latest probability distribution of the new physical 

environmental scenario. In other words, if a cluster moves to a 

new position, it is not obvious that all the feature points 

belonging to that cluster will be updated. This behaviour 

could give rise to confusion, since in the middle of a cluster 

there could be a feature point that belongs to another cluster 

and it has not been represented correctly for a very long time 

[4, 14].  

For this reason a novel approach has been proposed to 

incorporate the drift correction based on the drift estimation in 

previous section 3.1 and combining that with multiple FCM 

architecture (m-FCM). Figure 6 shows the m-FCM 

architecture that has been developed for drift correction. A 

multi FCM map has been developed that assures the self-

adjustment process to all the feature points in the local map, 

and autonomous adaptation to new situations. This approach 

preserves the self-organization paradigm by considering as 

many maps as the number of monthly environmental 

scenarios, in order to accomplish the classification task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6: m-FCM based drift correction factor estimator 

algorithm 

In the unsupervised analysis stage multiple data sets have 

been created based on all combinations of three sensors out of 

possible six sensors. That was done using permutation as 

shown in the Equation 5. 

n

kP n * (n-1) * (n-2) … (n-k+1)                                      (5) 

n

kP 0 when k > n, else  )!(! knnPn

k                                                                          

Each sensory data combination representing same data set was 

clustered separately using FCM algorithm to produce 
n

kP  

independent maps with independent sets of three possible 

cluster centers. All three data sets were pre-processed and 

clustered into three clusters to estimate the probable relative 

cluster positions representing the same period of the year. 

Although the whole process is completely unsupervised but in 

order to track the movements of the clusters this independent 

and unbiased way, this type of supervision of the data was 

used. In the next stage all relatively calculated cluster centers 

(which are effectively representing same data cluster for the 

same period of the year) were combined to calculate an 

average position of that particular cluster center. These newly 

positioned cluster center was then compared with previous 

year’s cluster center representing same data period to estimate 

difference in physical cluster position. This is done based on 

Euclidean distance measurement and is called in this paper as 

FCM . Three different cluster centers were then associated 

with three different values of FCM . In Figure 6 different 

stages of this algorithm has been illustrated. Main steps of the 

proposed algorithm are as follows: 

Step 1:   
n

kP  cluster centers from 
n

kP  independent FCM for  

                  k
th 

cluster 

 Step 2:     Average cluster center for k
th 

cluster                               

 Step 3:    FCM for k
th 

cluster  

  Step 4: Drift corrected feature point for k
th 

cluster =   

                      feature point for k
th 

cluster  
F C M(   

                      ))(* 1 ii AreaDriftAreaDrift              
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Fig 7: Representation for Sugeno-type FIS modelling based on FCM clustering 

To develop this estimation algorithm it was considered that if 

in reality all the associated sensors might have different drift 

factors, but as we have used a pre-processed projection study 

based on “least correlated sensor combination” for feature 

extraction and FCM clustering, the effect of individual sensor 

drift was estimated as a part of overall drift estimation 

between two years. Finally a separate clustering was 

performed on the three least correlated sensors for that year to 

capture the maximum variance among the feature data points; 

and then all data points in an individual cluster were corrected 

with the corresponding 

FCM( ))(* 1 ii AreaDriftAreaDrift  

product value associated with that cluster’s center.  This 

newly defined product was introduced to generalize, estimate 

and correct overall sensory drift. With this correction, new 

feature data points were achieved for that particular year. In 

the section 5 a comparative study on FIS based prediction has 

been performed between ‘original feature data points’ and 

‘corrected feature data points’ in order to evaluate this 

physical drift correction mechanism. 

4. FCM-FIS DEVELOPMENT: DATA 

BEHAVIOURAL MODELLING  
In this section we attempt to understand the relationship 

between the responses generated from the sea water sensory 

system (consists of six sensors) and the month predictability 

of the system. Hereon, the sensor responses will be addressed 

as inputs and the month predicted or labeled will be addressed 

as output. Hence our problem has six input variables (six 

water quality monitoring sensors) and one output variable 

(predicted month). In order to model the relationship between 

the input variables and the output variable, clustering of the 

data was the first step using FCM based subtractive clustering. 

The cluster centers will form a basis to define a FIS which can 

then be used to explore and understand monthly 

environmental patterns [19, 22]. Clustering can be a very 

effective technique to identify natural groupings in data from 

a large data set, thereby allowing concise representation of 

relationships embedded in the data. In this example, clustering 

allows us to group monthly sensory patterns into broad 

categories hence allowing for easier data understanding. 

Cluster representations from the Set 1 (based on 2009 data) in 

Figure 5 were the foundation to model the FIS. 

Fuzzy logic is an effective paradigm to handle imprecision. It 

can be used to take fuzzy or approximate observations for 

inputs and yet arrive at crisp and precise values for outputs. 

Also, the FIS is a simple and rational way to build systems 

without using complex analytical equations. In our example, 

fuzzy logic will be employed to capture the broad categories 

identified during clustering into a FIS. The FIS will then act 

as a model that will reflect the relationship between sensor 

observations and predicted month of the year. Clustering and 

fuzzy logic together provide a simple yet powerful means to 

model the relationship between sensor and physical oceanic 

parameters that we want to study. Figure 7 represents the 

schematic diagram of the whole Sugeno-type FCM-FIS 

system that has been used in this study. FCM based 

subtractive clustering estimates the cluster centers in a set of 

data by using the subtractive clustering method. The 

subtractive clustering method assumes each data point is a 

potential cluster center and calculates a measure of the 

likelihood that each data point would define the cluster center, 

based on the density of surrounding data points. The cluster's 

radius of influence in the input space was set to 3.5 for 

justification against significant amount of overlapping among 

the clusters. 

The variable C in Figure 7 holds all the centers of the clusters 

that have been identified by FCM based subtractive 

clustering. Each row of C contains the position of a cluster. In 

this case, C has 6 rows representing 6 clusters with 6 columns 

representing the positions of the clusters in each dimension. 

The variable S in Figure 7 contains the sigma values that 
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specify the range of influence of a cluster center in each of the 

data dimensions. All cluster centers share the same set of 

sigma values. S in this case has 6 columns representing the 

influence of the cluster centers on each of the 6 dimensions. 

Given separate sets of input and output data, Sugeno-type FIS 

structure was generated using results from fuzzy clustering by 

extracting a set of rules that models the data behaviour. The 

rule extraction method first uses the FCM algorithms to 

determine the number of rules and membership functions for 

the antecedents and consequents. The number of clusters 

determines the number of rules and membership functions in 

the generated FIS. As can be seen in Figure 7, the FIS has 6 

inputs and 1 output with the inputs mapped to the outputs 

through a rule base (white box in the figure). 

It is important to understand how the cluster centers (C) are 

related with the rule base generated in the FIS. Figure 8(a)-

8(f) represent the individual rule base scenarios related to 

individual sensor inputs. Notice that all the inputs and outputs 

have exactly 6 membership functions. The 6 membership 

functions represent the 6 clusters that were identified by FCM 

clustering. Membership functions are called as {in1cluster1, 

in1cluster2, in1cluster3, in1cluster4, in1cluster5, in1cluster6}. 

The membership function type used in this study is a Gaussian 

type membership function (MATLAB based function 

described in Equation 6)  
22 2)(),;(  cxecxf                                           (6) 

and the parameters of the membership function are defined by 

the results (C and R) from the clustering exercise; where 

corresponding sigma values represents the spread coefficient 

of the Gaussian curve and cluster centers represent the center 

of the Gaussian curves. Cluster1 captures the position and 

influence of the first cluster for the input variable sensor 1 and 

so on. Similarly, the position and influence of the other 5 

clusters for the input variable sensor 1 are captured by the 

other five membership functions in cluster2, in1cluster3, 

in1cluster4, in1cluster5 and in1cluster6. The rest of the 5 

inputs follow the exact pattern mimicking the position and 

influence of the 6 clusters along their respective dimensions in 

the dataset. As seen, there are exactly six rules. Each rule 

attempts to map a cluster in the input space to a cluster in the 

output space. There are exactly six rules of which each rule 

attempts to map a cluster in the input space to a cluster in the 

output space. The first rule can be explained simply as 

follows. 

If an unknown data point closer to the first cluster, or in other 

words having strong membership to the first cluster, is fed as 

input to FIS then rule1 will fire with more strength than the 

other two rules. Similarly, an input with strong membership to 

the second cluster will fire the second rule will with more 

strength than the other two rules and so on. If the inputs to the 

FIS, Sensor 1, Sensor 2, Sensor 3, Sensor 4, Sensor 5 and 

Sensor 6, strongly belong to their respective cluster1 

membership functions then the output, estimated or predicted 

month, must strongly belong to its cluster1 membership 

function. The (1) at the end of the rule is to indicate that the 

rule has a weight or an importance of "1". Weights can take 

any value between 0 and 1. Rules with lesser weights will 

count for less in the final output. The significance of the rule 

is that it clearly maps cluster 1 in the input space to cluster 1in 

the output space. Similarly this same rule structure applies to 

other 5 rules. 

Finally a MATLAB GUI based FIS system were developed to 

visualize and test the performance of FIS system which is 

shown in Figure 9. Now, having built the FCM-FIS system, if 

we want to understand the weather wise time of the year or 

month for a particular six sensor based demographic setup, 

this tool will help to simulate the FIS response for the input 

combination of the choice. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig 8: Example shape of the Membership Function Plots 

for Rule base in Sugeno-type FIS, (a) Sensor 1, (b) Sensor 

2, (c) Sensor 3, (d) Sensor 4, (e) Sensor 5, and (f) Sensor 6. 

In the next section we will summarize the predictability 

performance of the newly designed FIS system. As described 

previously, the whole FIS system was modelled using 2009 

data Set 1, whereas all performance evaluations were done 

using Set 2 (2010) and Set 3 (2011) to make the overall study 

a more accurate and reliable one [20, 22]. Table 1 includes 

values of the estimated cluster centers from the data Set 1.  
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Table 1: The estimated cluster centers from the data Set 1. 

 

Table 2: The estimated cluster centers from the data Set 1. 

 

 

Fig 9: Graphical Representation of FIS System and prediction capabilities against a particular set of input from all six sensors. 

5. FIS SYSTEM PERFORMANCE   
To evaluate the FIS system a separate data pre-processing and 

data feeding mechanism were developed which was 

independent from the original FIS system. FIS performance 

evaluation was done on the basis of data Set 2 and Set 3. First 

of all data were pre-processed and then wavelet analysis was 

used to extract key features from the data base. In the next 

stage those features were treated as input to our FIS system. 

Typical combination of an input was a combined processed 

observation from the six oceanic sensors. Effectively the 

individual observation values from six sensors were moving 

the sliding bars on the FIS system. Each time a new output 

was recorded as a probable month against a sensor input 

combination. Final month outputs were rounded to figure out 

exact predictions. Results were quite encouraging as overall 

prediction performance for Set 2 was 79.92% whereas for Set 

3 it was 81.63% accurate. These were achieved using 

uncorrected feature data points as input to the FIS system. In 

the next stage of testing drift corrected feature data points 

were used as input to the FIS system and the overall 

prediction performance for Set 2 was 89.7% whereas for Set 3 

it was 92.89% accurate. It was easily evident that m-FCM 

based drift correction mechanism heavily impacted on the FIS 

system performance in a positive direction (Table 2). 

6. CONCLUSION  
In this paper novel hybrid sensor informatics architecture 

based on Discrete Wavelet Transform (DWT), Fuzzy logic 

based clustering (FCM) and Adaptive Fuzzy Rule based 

Inference system (FIS) has been investigated and proposed to 

estimate dynamic sensor drift. DWT has been used for sensor 

pre-processing; data dimension reduction and feature 

extraction from sensor time series, where as DWT-FCM 

based approach has been used to estimate the cumulative drift 

in our sensory system. A novel algorithm using multiple FCM 

map (m-FCM) has been proposed to implement the drift 

correction on any future data. In the next stage a newly 

proposed DWT-FCM-FIS architecture has been tested on 

multisensory environmental data sets covering three 

consecutive years (2009 – 2011) to predict probable month 

(environmental time of the year) with up to 93% accuracy.  

The TasMAN project’s holistic approach to low-cost marine 

monitoring is producing innovations in many areas of coastal 

     Dimension 1     Dimension 2    Dimension 3     Dimension 4 Dimension 5 Dimension 6 

Cluster 1 3.0518 3.8064 3.8029 3.3448 3.6604 3.5677 

Cluster 2 3.4564 3.7948 2.6493 3.6288 3.7088 1.8559 

Cluster 3 3.1771 3.8688 3.8365 3.7559 3.7720 3.6249 

Cluster 4 3.3735 3.6496 3.6350 3.6670 3.3011 2.9111 

Cluster 5 3.5776 3.7695 2.5723 3.2556 3.6354 1.7839 

Cluster 6 3.7207 3.6149 3.6273 3.0923 3.2149 2.8920 

Sigma 

Values (S) 
1.1765 0.3117 1.6555 6.6139 2.8931 1.9395 

 Results from FIS System without Drift Correction     

(% Accuracy) 

Results from FIS System with Drift Correction     

(% Accuracy) 

DATA SET 2 79.92% 89.7% 

DATA SET 3 81.63% 92.89% 
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observing. It is evident from the results of this study that 

combination of proposed algorithms along with the TasMAN 

project technology will improve the feasibility of coastal 

monitoring on a much larger scale, particularly tackling the 

long term sensor drifts. This paper presents a hybrid 

unsupervised system which could enable government, 

community and industrial organizations with small budgets to 

conduct their own monitoring programs. 

This study has produced a strong foundation of an 

unsupervised approach to minimize drift in the estuary sensor 

network. This work was mainly focused to motivate low cost 

maintenance approach by keeping in line with our "low cost 

sensing" theme where this novel approach could potentially 

reduce voyage/maintenance costs. Further research on 

different data sets using these novel approaches and 

knowledge regarding effects on the health of our waterways 

will encourage informed positive changes. 
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