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ABSTRACT 

Though Software Testing plays a vital role to produce better 

quality products, but it is time consuming and incurs 

expenditure. The more test will be conducted, products will be 

finer. Hence, testing is must for software development. Another 

side of testing is spending much money on it because people will 

work rigorously to generate the test suite and executing it. As we 

know that, no software is bug free software; we cannot assure 

that the testing which has been done for particular software is 

sufficient. To get a cost effective testing strategy, one should go 

for optimization of testsuite. This paper uses heuristic algorithm 

with sampling techniques used to optimize the test suite. Genetic 

algorithm may play a major role to have a sound weight on 

optimization of testsuite. If we go for sampling techniques then 

it usually gives more optimum result. 
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1. INTRODUCTION 

Software Testing is a method to discover errors by executing the 

software [4]. There are two method of testing, that is black box 

testing or functional testing and white box testing or structural 

testing. A huge amount of money is spent for testing. Hence, 

testing is done in sophistical manner. Software testing remains 

the primary technique used to gain consumers’ confidence in the 

software and categorizing the test cases using stratified 

sampling. Genetic Algorithm (GA) provides a general-purpose 

search methodology, which uses principles of natural evolution. 

In this paper, genetic algorithm is used for generating test suite 

from a discrete set of test cases.  Hence, this is a major challenge 

that implementing a genetic algorithm in software testing 

generates an optimized test suite. The development of techniques 

that will also support the automation of software testing will 

result in significant cost savings. 

2. DEFINITIONS 

2.1 Test Case:  
A test case is a set of inputs, execution preconditions, and 

expected outcomes developed for a particular objective, such as 

to exercise a particular program path or to verify compliance 

with a specific requirement. [IEEE, do178b] [7]. 

2.2   Test Adequacy Criteria: 
To ensure the testing process, an empirical technical 

investigation is conducted to provide the adequacy of the test 

cases in testing the SUT. This may be statement coverage, 

branch coverage, condition coverage, mutation score etc. [12, 

10]. 

2.3   Test Optimization:  
 To maximize the profit of finding more bugs (mutation score) 

and coverage and to minimize the total number of test cases 

needed [9]. 

2.4   Mutation Testing:  
Mutation Testing is done by mutating certain statements in the 

source code and checking if the test case is able to find the 

errors. 

2.5    Stratified Sampling 
Stratified sampling[2] and category-partition are the same things 

but category-partition is used in categorizing all the functions 

according to their cohesiveness. Stratified sampling 

demonstrates the samples that populate certain functional 

domain. The principle of counting is used to estimate total 

number of optimal test suites. 

2.6   Testing Categories: 
Testing information flow is said to be as a testing technique 

which specifies the strategy to select input test cases and analyze 

test results [11]. Different testing techniques reveal different 

quality aspects of a software system, and there are two major 

approaches of testing techniques such as functional testing and 

structural testing. 

2.6.1 Functional Testing: 
The software program or system under test (SUT) is considered 

as a "black box". The selection of test cases for functional 

testing is based on the requirements or design specifications 

generated from the requirements of the software entity which is 

under test[15]. There are some examples of expected results 

which are collectively called test oracles. These include 

requirement or design specifications with hand calculated 

values, and simulated results. The main attraction of the software 

testing is the external behavior of the software entity. 

2.6.2     Structural Testing: 
The software program or system under test (SUT) is considered 

as a "black box". The selection of test cases is based on the 

implementation of the software entity. The main focus of such 

test cases is to cause the execution of specific spots in the 

program or software entity, which might include specific 

statements, program branches or paths. Any one of coverage 

criteria like path coverage, branch coverage, statement coverage 

or condition coverage may be used to evaluate the expected 

result which is the main focus of structural testing. 

3. OPTIMIZATION PROBLEM 

FORMULATION 
 

3.1 Optimization 
Utilizing the available resources as much as possible is called 

optimization. Optimization process is an incremental problem. 

At each and every evolution the solution leads to the target 

function [4]. 
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3.2 Test Case Optimization 
This means generating test cases that have the ability to reveal as 

many errors as possible from the Software Under Test (SUT) 

and to cover the SUT within less time and cost by selecting an 

effective set of few test cases from the universe of test cases. 

Here both mutation score (total number of seeded errors) and 

fitness function have to be maximized for each test case during 

test case generation. Selection of test cases is then done based on 

mutation score and coverage criterion [12, 10]. 

4. APPROACH USED FOR GENETIC 

ALGORITHMS 
 

GA is a search technique used to find exact or approximate 

solutions to optimization and search problem [3]. Genetic 

Algorithm gives more number of options for selection of most 

appropriate gene which justifies Darwin’s theory of survival of 

the fittest. It is seen that randomized exchange of structured 

information is there in GA among an artificial chromosome 

population. Using GA, surprising results have been found. A 

problem is defined as maximization of a function of the kind 

f(x1, x2, ... xm) where (x1, x2, ...,xm) are variables which have 

to be adjusted towards a global optimum. Three basic operators 

responsible for GA are  

(a)  Selection (b) crossover (c) mutation 

Crossover performs A chromosome can be a binary string or a 

more elaborate data structure. Firstly, there will be a pool of 

chromosomes which can be randomly produced or manually 

created. The suitability of a chromosome depends on fitness 

function measured to meet a specified objective: for coverage 

based testing, a chromosome is fitter in case of greater coverage. 

Participant chromosomes which can be taken part in the 

evolution stage of the genetic algorithm made up by the 

crossover and mutation operators. Exchanging genes from two 

chromosomes are done by crossover operator and creates two 

new chromosomes. Changing of genes in a chromosome is done 

by the mutation operator and creates one new chromosome. [13] 

A basic algorithm for a GA is as follows:  

The pseudo code for GA is: 

Initialize (population) 

Evaluate (population) 

While (stopping condition not satisfied) do 

{ 

Selection (population) 

Crossover (population) 

Mutate (population) 

Evaluate (population) 

} 

The algorithm has some iteration which will be performed until 

getting a solution to the problem, or it will reach to maximum 

number of iterations.  

4.1 Encoding 
Direct value encoding can be used in problems where some 

more complicated values such as real numbers are used. In the 

value encoding, every chromosome is a sequence of some 

values. Values can be anything connected to the problem, such 

as (real) numbers, chars or any objects.  

4.2 Selection 
In selection process filter chromosomes are taken for better 

chance to survive to the next generation. The selection of better 

individuals is done by having a trade off and the unfit 

chromosomes become recessive. Rank selection criteria are used 

to select the individuals. Population ranking is done and then 

every chromosome is assigned a fitness value determined by this 

ranking. The worst individual will get the least fitness value and 

the best individual gets the best fitness value [2]. 

 

4.3 Crossover 
Two crossover points are selected in two-point crossover, binary 

string from the beginning of the chromosome to the first  

crossover  point is copied from the first parent, the part from the 

first to the second crossover point is copied from the other parent 

and the rest is copied from the first parent again[1]. 

4.4 Mutation 
Randomly change one or more digits in the string representing 

an individual. 

 

(Figure-1: Information flow for the Genetic Algorithm 

process) 

 

5. PROPOSED APPROACH 

In this paper, quadratic equation is taken as the Unit Under Test 

(UUT). The equation defines the testsuite ranges from 0 to 100. 

A fitness function is generated to handle the test suite and to 

refine the test suite as it is known that there are four major 

conditions are supposed to be checked during testing. Hence, the 

fitness function is very important here to solve the problem. We 

can generate the test suite by taking 101*101*101 number of test 

cases. 

6. PROCEDURE 

Input: Quadratic equation:  ax2+bx+c = 0 

The theme behind the quadratic equation is to get the discrete 

testsuite which will help for comparing the expected output with 

the generated optimal output. Hence quadratic equation with 

four conditions is considered. 

 

We have three variables, a, b and c 

ax2+bx+c = 0 

Roots are real if (b2-4ac) > 0 

Roots are imaginary if (b2 – 4ac) < 0 

Roots are equal if (b2 – 4ac) = 0 

Roots are not equal if a = 0 

Using three variables a, b, and c, an initial pool of individuals 

are generated which ranges from 0 to 100. 

The table (see Table-1) indicates the test suite for the above 

problem. By taking all kind of possibilities, the testsuite is 

generated where each variable ranges from 0 to 100. Like this 

the total number of test cases is 100 × 100 ×100. 
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(Table - 1: Testsuite for quadratic equation ranges 0-100) 
 

Test case A B c output Expected output 

1 0 0 0 0 Not quadratic 

-- -- -- -- -- -- 

100 99 0 0 0 Equal roots 

101 100 0 0 0 Equal roots 

102 0 1 0 1 Not quadratic 

103 1 1 0 1 real 

-- -- -- -- -- -- 

201 99 1 0 1 real 

202 100 1 0 1 Real 

203 0 50 0 2500 Not quadratic 

302 99 50 0 2500 Real 

303 100 50 0 2500 Real 

304 0 0 0 0 Not quadratic 

305 1 1 0 1 Real 

404 100 100 0 10000 Real 

405 0 0 0 0 Not quadratic 

406 1 1 1 -3 Imaginary roots 

505 100 100 100 -30000 Imaginary roots 

506 1 1 0 1 Real 

507 1 1 1 -3 Imaginary roots 

606 1 1 100 -399 Imaginary roots 

707 50 0 50 -10000 Imaginary roots 

708 50 50 0 2500 real 

709 50 50 1 2300 real 

808 50 50 100 -17500 Imaginary roots 

809 50 50 0 2500 real 

810 50 50 1 2300 real 

811 50 50 2 2100 real 

808 50 50 100 -17500 Imaginary roots 

-- -- -- -- -- -- 

6.1 Reproduction (crossover): 

One point cross over or single point cross over discusses two 

input data are selected as potential parents by selection process 

exchange substring information at a random position in the data 

to produce two new data. According to a crossover probability 

pc crossover happens, with an adjustable parameter. Generate a 

random real number r in the range [0, 1]; for each parent. If 

number of fit gene is less than four then select the parent for 

crossover. Each pair of parents generates two new paths, called 

offspring. The crossover technique used is one point crossover 

done at the midpoint of the input bit string. In this technique, 

right half of the bits of one parent are swapped with the 

corresponding right half of the other parent. 

6.2  Mutation 

Bit by bit mutation is performed where every bit of chromosome 

has an equal chance to mutate  which later changes from ‘0’ to 

‘1’ or from ‘1’ to ‘0’. According to mutation probability, the 

mutation occurs which can be used as an adjustment parameter. 

To perform mutation, for each chromosome in the offspring and 

for each bit within the chromosome, alter the last bit of the gene, 

if number of fit gene is less than four. 

6.3 Postmortem of GA in the problem : 
Before sending the test suite to genetic algorithm, we applied the 

stratified sampling [2] which filtered the integer type testsuite 

from all positive and negative testsuite. This sampling technique 

helped a lot and reduced the half of the time of testing. When 

each combination of test case has been considered for checking 

the fitness, it was sent through a program which represents the 

fitness function. Then, it checks the fitness value and dumps into 

the appropriate category, either selected or rejected. After 

generation of testsuite, we stored these test suite in an excel 

sheet and then fetched to cross through GA. The testsuite 

becomes filtered by checking the fitness function and applying 

crossover and mutation if necessary. When the number of fit 

gene becomes four then there we stop the iteration where as the 

default maximum iteration is 100 in our approach. If there will 

be no fit gene found it will stop generating after 100th iteration. 

After implementation of genetic algorithm, we found in one 

experiment we got the fit genes in six iterations, the output is 

given below: 

------------Optimization Starts-------- 

Iteration number :::0 

The fit testcase is a = 2  b = 1  c = 1 

The roots are imaginary 

The fit gene is 000010,000001,000001 

2 , 1 , 1 is an unfit gene due to redundancy 

Iteration number :::1 

2 , 0 , 2 is an unfit gene due to redundancy 

2 , 3 , 2 is an unfit gene due to redundancy 

Iteration number :::2 

The fit testcase is a = 2  b = 3  c = 0 

The roots are real 

The fit gene is 000010,000011,000000 

2 , 0 , 3 is an unfit gene due to redundancy 

2 , 3 , 0 is an unfit gene due to redundancy 

2 , 0 , 3 is an unfit gene due to redundancy 

Iteration number :::3 

3 , 3 , 2 is an unfit gene due to redundancy 

The fit testcase is a = 0b = 3c = 2 

The roots are Not Quadratic 

The fit gene is 000000,000011,000010 

3 , 3 , 2 is an unfit gene due to redundancy 

0 , 3 , 2 is an unfit gene due to redundancy 

 

Iteration number :::4 

3 , 2 , 3 is an unfit gene due to redundancy 

2 , 3 , 0 is an unfit gene due to redundancy 

3 , 2 , 3 is an unfit gene due to redundancy 

2 , 3 , 0 is an unfit gene due to redundancy 

Iteration number :::5 

3 , 2 , 0 is an unfit gene due to redundancy 

2 , 3 , 3 is an unfit gene due to redundancy 

3 , 2 , 0 is an unfit gene due to redundancy 

2 , 3 , 3 is an unfit gene due to redundancy 

Iteration number :::6 

The fit testcase is a = 3  b = 0  c = 0 

The roots are equal 

The fit gene is 000011,000000,000000 

Finished executing 
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 In the above experiment, it was found that the selection of fit 

genes got evolved after six iterations and there were a number of 

genes got rejected due to redundancy. As the testing is functional 

testing, we have a discrete set of outputs and that are : real roots, 

equal roots, imaginary roots and not quadratic. 

7. Results  and Analysis 
Total Four experiments are taken while implementation GA for a 

comparison and evaluating benefits of mutation. 

In experiment 1, it is seen that the number of iteration is 30. The 

detail of implementation is given below. (See table-2) 

 

(Table-2: GA implementation with 30 iterations) 

 

There are 12 number of iterations generated all four fit genes in 

the second experiment (see Table-3). After applying more 

mutation the number of iteration got reduced from 30 to 12. 

 

(Table-3: GA implementation with 12 iterations) 

 
. 

The comparison between experiment 1 and 2, it is found that 

after applying mutation it reduces the number iterations. The fit 

genes were found in iteration number 1,17,28,30 in experiment 

number-1 where as the fit genes we found in next experiment 

iteration number 1,2,3,12. 

The table (see table-4) contains the fit genes after 10 numbers of 

iterations. Iteration number 5 to iteration number 9 generated the 

unfit genes. 

The table (see table-5) contains the fit genes after 5 numbers of 

iterations. Iteration number 4 generated the unfit gene. 

The comparison among experiment 3 and experiment 4 indicates 

that after applying more mutation it reduces the number of 

iterations. The fit genes were found in iteration number 1,2,3,12 

in experiment number-3 where as the fit genes we found in next 

experiment are iteration number 1,2,4,10. 

 

In this way the implementation of GA is done to get the discrete 

set of testcases for the above case study and to reduce the 

redundant testcases. 
 

 
(Table-4: GA implementation with 10 iterations) 

 

(Table-5: GA implementation with 5 iterations) 

 
Figure (See figure-2) indicated the number of iteration with 

fitness value in one experiment where iteration number 1, 6,7 

and 15 are having the  fitness value 10 as there are two fitness 

value have been considered that are 0 for unfit and 10 for fit. 

 

 

(Figure - 2:  iterations with fitness value of the testcases used 

for selection of fit gene) 

-5 

0 

5 

10 

15 

20 

0 10 20 

Iteration 

Fitness value 

Iteration no Fit gene Test Category 

1 000001,000010,000011 
(1,2,3) 

Imaginary 

2 unfit -- 

3 unfit -- 

4 Unfit -- 

5 Unfit -- 

--- -- -- 

17 000000,000001,000011 
(0,1,3) 

Not Equal 

-- unfit -- 

28 000001,000000,000000 
(1,0,0) 

Equal 

29 Unfit  

30 000001,000011,000001 
(1,3,1) 

Real 

Iteration 

No. 

Fit gene Test Category 

1 000001,000010,000001 

(1,2,1) 

Equal  

2 000001,000011,000011 

(1,3,3) 

Imaginary  

3 000011,000010,000000 

(3,2,0) 

Real 

4 000010,000010,000000 

(2,2,0) 

Redundant due 

to Real 

5 000000,000010,000001 

(0,2,1) 

Not Equal 

Iteration no Fit gene Test Category 

1 000001,000010,000010 
(1,2,2) 

Imaginary 

2 000001,000011,000010 
(1,3,2) 

Real 

3 000000,000000,000011 
(0,0,3) 

Not Equal 

4 Unfit -- 

5 Unfit -- 

6 Unfit -- 

7 Unfit -- 

8 Unfit -- 

9 Unfit -- 

10 Unfit -- 

11 Unfit -- 

12 000010,000000,000000 
(2,0,0) 

Equal 

Iteration 

No. 

Fit gene Test Category 

1 000001,000001,000011 

(1,1,3) 

Imaginary 

2 000010,000010,000000 

(2,3,1) 

Real 

3 unfit -- 

4 000010,000000,000000 

(2,0,0) 

Equal 

5 unfit -- 

6 unfit -- 

7 unfit -- 

8 unfit -- 

9 unfit -- 

10 000000,000001,000010 

(0,1,2) 

Not Equal 
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Figure (See Figure-3) denotes the number of experiments with 

number of iterations which has been decreased by applying more 

mutation probability. 

 
 

(Figure - 3: Experiment number with the iteration number 

that generated the fit genes) 
 

8. CONCLUSION  

Though, Genetic algorithm is an effective optimization 

technique that looks for global optimal value where as the other 

optimization technique focuses on local optimal values, this 

algorithm alone is not sufficient for software testing. In some 

specific cases sampling techniques must be used for filtration of 

testcases. It is found that Genetic algorithm can generate an 

optimal testsuite and it is proved by taking the discrete testsuite 

where the optimal test suite is known to the tester. So, as GA can 

be used in any field, it has a vast scope to draw optimum result. 
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