
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.7, February 2013

1

Optimization of Software Testing for Discrete

Testsuite using Genetic Algorithm and

Sampling Technique

Siba Prasada Tripathy

National Institute of Science & Technology
Berhampur, India

Debananda Kanhar
National Institute of Science & Technology

Berhampur, India

ABSTRACT

Though Software Testing plays a vital role to produce better

quality products, but it is time consuming and incurs

expenditure. The more test will be conducted, products will be

finer. Hence, testing is must for software development. Another

side of testing is spending much money on it because people will

work rigorously to generate the test suite and executing it. As we

know that, no software is bug free software; we cannot assure

that the testing which has been done for particular software is

sufficient. To get a cost effective testing strategy, one should go

for optimization of testsuite. This paper uses heuristic algorithm

with sampling techniques used to optimize the test suite. Genetic

algorithm may play a major role to have a sound weight on

optimization of testsuite. If we go for sampling techniques then

it usually gives more optimum result.

Keywords

Genetic Algorithm, selection, crossover, mutation, sampling

1. INTRODUCTION

Software Testing is a method to discover errors by executing the

software [4]. There are two method of testing, that is black box

testing or functional testing and white box testing or structural

testing. A huge amount of money is spent for testing. Hence,

testing is done in sophistical manner. Software testing remains

the primary technique used to gain consumers’ confidence in the

software and categorizing the test cases using stratified

sampling. Genetic Algorithm (GA) provides a general-purpose

search methodology, which uses principles of natural evolution.

In this paper, genetic algorithm is used for generating test suite

from a discrete set of test cases. Hence, this is a major challenge

that implementing a genetic algorithm in software testing

generates an optimized test suite. The development of techniques

that will also support the automation of software testing will

result in significant cost savings.

2. DEFINITIONS

2.1 Test Case:
A test case is a set of inputs, execution preconditions, and

expected outcomes developed for a particular objective, such as

to exercise a particular program path or to verify compliance

with a specific requirement. [IEEE, do178b] [7].

2.2 Test Adequacy Criteria:
To ensure the testing process, an empirical technical

investigation is conducted to provide the adequacy of the test

cases in testing the SUT. This may be statement coverage,

branch coverage, condition coverage, mutation score etc. [12,

10].

2.3 Test Optimization:
 To maximize the profit of finding more bugs (mutation score)

and coverage and to minimize the total number of test cases

needed [9].

2.4 Mutation Testing:
Mutation Testing is done by mutating certain statements in the

source code and checking if the test case is able to find the

errors.

2.5 Stratified Sampling
Stratified sampling[2] and category-partition are the same things

but category-partition is used in categorizing all the functions

according to their cohesiveness. Stratified sampling

demonstrates the samples that populate certain functional

domain. The principle of counting is used to estimate total

number of optimal test suites.

2.6 Testing Categories:
Testing information flow is said to be as a testing technique

which specifies the strategy to select input test cases and analyze

test results [11]. Different testing techniques reveal different

quality aspects of a software system, and there are two major

approaches of testing techniques such as functional testing and

structural testing.

2.6.1 Functional Testing:
The software program or system under test (SUT) is considered

as a "black box". The selection of test cases for functional

testing is based on the requirements or design specifications

generated from the requirements of the software entity which is

under test[15]. There are some examples of expected results

which are collectively called test oracles. These include

requirement or design specifications with hand calculated

values, and simulated results. The main attraction of the software

testing is the external behavior of the software entity.

2.6.2 Structural Testing:
The software program or system under test (SUT) is considered

as a "black box". The selection of test cases is based on the

implementation of the software entity. The main focus of such

test cases is to cause the execution of specific spots in the

program or software entity, which might include specific

statements, program branches or paths. Any one of coverage

criteria like path coverage, branch coverage, statement coverage

or condition coverage may be used to evaluate the expected

result which is the main focus of structural testing.

3. OPTIMIZATION PROBLEM

FORMULATION

3.1 Optimization
Utilizing the available resources as much as possible is called

optimization. Optimization process is an incremental problem.

At each and every evolution the solution leads to the target

function [4].

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.7, February 2013

2

3.2 Test Case Optimization
This means generating test cases that have the ability to reveal as

many errors as possible from the Software Under Test (SUT)

and to cover the SUT within less time and cost by selecting an

effective set of few test cases from the universe of test cases.

Here both mutation score (total number of seeded errors) and

fitness function have to be maximized for each test case during

test case generation. Selection of test cases is then done based on

mutation score and coverage criterion [12, 10].

4. APPROACH USED FOR GENETIC

ALGORITHMS

GA is a search technique used to find exact or approximate

solutions to optimization and search problem [3]. Genetic

Algorithm gives more number of options for selection of most

appropriate gene which justifies Darwin’s theory of survival of

the fittest. It is seen that randomized exchange of structured

information is there in GA among an artificial chromosome

population. Using GA, surprising results have been found. A

problem is defined as maximization of a function of the kind

f(x1, x2, ... xm) where (x1, x2, ...,xm) are variables which have

to be adjusted towards a global optimum. Three basic operators

responsible for GA are

(a) Selection (b) crossover (c) mutation

Crossover performs A chromosome can be a binary string or a

more elaborate data structure. Firstly, there will be a pool of

chromosomes which can be randomly produced or manually

created. The suitability of a chromosome depends on fitness

function measured to meet a specified objective: for coverage

based testing, a chromosome is fitter in case of greater coverage.

Participant chromosomes which can be taken part in the

evolution stage of the genetic algorithm made up by the

crossover and mutation operators. Exchanging genes from two

chromosomes are done by crossover operator and creates two

new chromosomes. Changing of genes in a chromosome is done

by the mutation operator and creates one new chromosome. [13]

A basic algorithm for a GA is as follows:

The pseudo code for GA is:

Initialize (population)

Evaluate (population)

While (stopping condition not satisfied) do

{

Selection (population)

Crossover (population)

Mutate (population)

Evaluate (population)

}

The algorithm has some iteration which will be performed until

getting a solution to the problem, or it will reach to maximum

number of iterations.

4.1 Encoding
Direct value encoding can be used in problems where some

more complicated values such as real numbers are used. In the

value encoding, every chromosome is a sequence of some

values. Values can be anything connected to the problem, such

as (real) numbers, chars or any objects.

4.2 Selection
In selection process filter chromosomes are taken for better

chance to survive to the next generation. The selection of better

individuals is done by having a trade off and the unfit

chromosomes become recessive. Rank selection criteria are used

to select the individuals. Population ranking is done and then

every chromosome is assigned a fitness value determined by this

ranking. The worst individual will get the least fitness value and

the best individual gets the best fitness value [2].

4.3 Crossover
Two crossover points are selected in two-point crossover, binary

string from the beginning of the chromosome to the first

crossover point is copied from the first parent, the part from the

first to the second crossover point is copied from the other parent

and the rest is copied from the first parent again[1].

4.4 Mutation
Randomly change one or more digits in the string representing

an individual.

(Figure-1: Information flow for the Genetic Algorithm

process)

5. PROPOSED APPROACH

In this paper, quadratic equation is taken as the Unit Under Test

(UUT). The equation defines the testsuite ranges from 0 to 100.

A fitness function is generated to handle the test suite and to

refine the test suite as it is known that there are four major

conditions are supposed to be checked during testing. Hence, the

fitness function is very important here to solve the problem. We

can generate the test suite by taking 101*101*101 number of test

cases.

6. PROCEDURE

Input: Quadratic equation: ax2+bx+c = 0

The theme behind the quadratic equation is to get the discrete

testsuite which will help for comparing the expected output with

the generated optimal output. Hence quadratic equation with

four conditions is considered.

We have three variables, a, b and c

ax2+bx+c = 0

Roots are real if (b2-4ac) > 0

Roots are imaginary if (b2 – 4ac) < 0

Roots are equal if (b2 – 4ac) = 0

Roots are not equal if a = 0

Using three variables a, b, and c, an initial pool of individuals

are generated which ranges from 0 to 100.

The table (see Table-1) indicates the test suite for the above

problem. By taking all kind of possibilities, the testsuite is

generated where each variable ranges from 0 to 100. Like this

the total number of test cases is 100 × 100 ×100.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.7, February 2013

3

(Table - 1: Testsuite for quadratic equation ranges 0-100)

Test case A B c output Expected output

1 0 0 0 0 Not quadratic

-- -- -- -- -- --

100 99 0 0 0 Equal roots

101 100 0 0 0 Equal roots

102 0 1 0 1 Not quadratic

103 1 1 0 1 real

-- -- -- -- -- --

201 99 1 0 1 real

202 100 1 0 1 Real

203 0 50 0 2500 Not quadratic

302 99 50 0 2500 Real

303 100 50 0 2500 Real

304 0 0 0 0 Not quadratic

305 1 1 0 1 Real

404 100 100 0 10000 Real

405 0 0 0 0 Not quadratic

406 1 1 1 -3 Imaginary roots

505 100 100 100 -30000 Imaginary roots

506 1 1 0 1 Real

507 1 1 1 -3 Imaginary roots

606 1 1 100 -399 Imaginary roots

707 50 0 50 -10000 Imaginary roots

708 50 50 0 2500 real

709 50 50 1 2300 real

808 50 50 100 -17500 Imaginary roots

809 50 50 0 2500 real

810 50 50 1 2300 real

811 50 50 2 2100 real

808 50 50 100 -17500 Imaginary roots

-- -- -- -- -- --

6.1 Reproduction (crossover):

One point cross over or single point cross over discusses two

input data are selected as potential parents by selection process

exchange substring information at a random position in the data

to produce two new data. According to a crossover probability

pc crossover happens, with an adjustable parameter. Generate a

random real number r in the range [0, 1]; for each parent. If

number of fit gene is less than four then select the parent for

crossover. Each pair of parents generates two new paths, called

offspring. The crossover technique used is one point crossover

done at the midpoint of the input bit string. In this technique,

right half of the bits of one parent are swapped with the

corresponding right half of the other parent.

6.2 Mutation

Bit by bit mutation is performed where every bit of chromosome

has an equal chance to mutate which later changes from ‘0’ to

‘1’ or from ‘1’ to ‘0’. According to mutation probability, the

mutation occurs which can be used as an adjustment parameter.

To perform mutation, for each chromosome in the offspring and

for each bit within the chromosome, alter the last bit of the gene,

if number of fit gene is less than four.

6.3 Postmortem of GA in the problem :
Before sending the test suite to genetic algorithm, we applied the

stratified sampling [2] which filtered the integer type testsuite

from all positive and negative testsuite. This sampling technique

helped a lot and reduced the half of the time of testing. When

each combination of test case has been considered for checking

the fitness, it was sent through a program which represents the

fitness function. Then, it checks the fitness value and dumps into

the appropriate category, either selected or rejected. After

generation of testsuite, we stored these test suite in an excel

sheet and then fetched to cross through GA. The testsuite

becomes filtered by checking the fitness function and applying

crossover and mutation if necessary. When the number of fit

gene becomes four then there we stop the iteration where as the

default maximum iteration is 100 in our approach. If there will

be no fit gene found it will stop generating after 100th iteration.

After implementation of genetic algorithm, we found in one

experiment we got the fit genes in six iterations, the output is

given below:

------------Optimization Starts--------

Iteration number :::0

The fit testcase is a = 2 b = 1 c = 1

The roots are imaginary

The fit gene is 000010,000001,000001

2 , 1 , 1 is an unfit gene due to redundancy

Iteration number :::1

2 , 0 , 2 is an unfit gene due to redundancy

2 , 3 , 2 is an unfit gene due to redundancy

Iteration number :::2

The fit testcase is a = 2 b = 3 c = 0

The roots are real

The fit gene is 000010,000011,000000

2 , 0 , 3 is an unfit gene due to redundancy

2 , 3 , 0 is an unfit gene due to redundancy

2 , 0 , 3 is an unfit gene due to redundancy

Iteration number :::3

3 , 3 , 2 is an unfit gene due to redundancy

The fit testcase is a = 0b = 3c = 2

The roots are Not Quadratic

The fit gene is 000000,000011,000010

3 , 3 , 2 is an unfit gene due to redundancy

0 , 3 , 2 is an unfit gene due to redundancy

Iteration number :::4

3 , 2 , 3 is an unfit gene due to redundancy

2 , 3 , 0 is an unfit gene due to redundancy

3 , 2 , 3 is an unfit gene due to redundancy

2 , 3 , 0 is an unfit gene due to redundancy

Iteration number :::5

3 , 2 , 0 is an unfit gene due to redundancy

2 , 3 , 3 is an unfit gene due to redundancy

3 , 2 , 0 is an unfit gene due to redundancy

2 , 3 , 3 is an unfit gene due to redundancy

Iteration number :::6

The fit testcase is a = 3 b = 0 c = 0

The roots are equal

The fit gene is 000011,000000,000000

Finished executing

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.7, February 2013

4

 In the above experiment, it was found that the selection of fit

genes got evolved after six iterations and there were a number of

genes got rejected due to redundancy. As the testing is functional

testing, we have a discrete set of outputs and that are : real roots,

equal roots, imaginary roots and not quadratic.

7. Results and Analysis
Total Four experiments are taken while implementation GA for a

comparison and evaluating benefits of mutation.

In experiment 1, it is seen that the number of iteration is 30. The

detail of implementation is given below. (See table-2)

(Table-2: GA implementation with 30 iterations)

There are 12 number of iterations generated all four fit genes in

the second experiment (see Table-3). After applying more

mutation the number of iteration got reduced from 30 to 12.

(Table-3: GA implementation with 12 iterations)

.

The comparison between experiment 1 and 2, it is found that

after applying mutation it reduces the number iterations. The fit

genes were found in iteration number 1,17,28,30 in experiment

number-1 where as the fit genes we found in next experiment

iteration number 1,2,3,12.

The table (see table-4) contains the fit genes after 10 numbers of

iterations. Iteration number 5 to iteration number 9 generated the

unfit genes.

The table (see table-5) contains the fit genes after 5 numbers of

iterations. Iteration number 4 generated the unfit gene.

The comparison among experiment 3 and experiment 4 indicates

that after applying more mutation it reduces the number of

iterations. The fit genes were found in iteration number 1,2,3,12

in experiment number-3 where as the fit genes we found in next

experiment are iteration number 1,2,4,10.

In this way the implementation of GA is done to get the discrete

set of testcases for the above case study and to reduce the

redundant testcases.

(Table-4: GA implementation with 10 iterations)

(Table-5: GA implementation with 5 iterations)

Figure (See figure-2) indicated the number of iteration with

fitness value in one experiment where iteration number 1, 6,7

and 15 are having the fitness value 10 as there are two fitness

value have been considered that are 0 for unfit and 10 for fit.

(Figure - 2: iterations with fitness value of the testcases used

for selection of fit gene)

-5

0

5

10

15

20

0 10 20

Iteration

Fitness value

Iteration no Fit gene Test Category

1 000001,000010,000011
(1,2,3)

Imaginary

2 unfit --

3 unfit --

4 Unfit --

5 Unfit --

--- -- --

17 000000,000001,000011
(0,1,3)

Not Equal

-- unfit --

28 000001,000000,000000
(1,0,0)

Equal

29 Unfit

30 000001,000011,000001
(1,3,1)

Real

Iteration

No.

Fit gene Test Category

1 000001,000010,000001

(1,2,1)

Equal

2 000001,000011,000011

(1,3,3)

Imaginary

3 000011,000010,000000

(3,2,0)

Real

4 000010,000010,000000

(2,2,0)

Redundant due

to Real

5 000000,000010,000001

(0,2,1)

Not Equal

Iteration no Fit gene Test Category

1 000001,000010,000010
(1,2,2)

Imaginary

2 000001,000011,000010
(1,3,2)

Real

3 000000,000000,000011
(0,0,3)

Not Equal

4 Unfit --

5 Unfit --

6 Unfit --

7 Unfit --

8 Unfit --

9 Unfit --

10 Unfit --

11 Unfit --

12 000010,000000,000000
(2,0,0)

Equal

Iteration

No.

Fit gene Test Category

1 000001,000001,000011

(1,1,3)

Imaginary

2 000010,000010,000000

(2,3,1)

Real

3 unfit --

4 000010,000000,000000

(2,0,0)

Equal

5 unfit --

6 unfit --

7 unfit --

8 unfit --

9 unfit --

10 000000,000001,000010

(0,1,2)

Not Equal

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.7, February 2013

5

Figure (See Figure-3) denotes the number of experiments with

number of iterations which has been decreased by applying more

mutation probability.

(Figure - 3: Experiment number with the iteration number

that generated the fit genes)

8. CONCLUSION

Though, Genetic algorithm is an effective optimization

technique that looks for global optimal value where as the other

optimization technique focuses on local optimal values, this

algorithm alone is not sufficient for software testing. In some

specific cases sampling techniques must be used for filtration of

testcases. It is found that Genetic algorithm can generate an

optimal testsuite and it is proved by taking the discrete testsuite

where the optimal test suite is known to the tester. So, as GA can

be used in any field, it has a vast scope to draw optimum result.

9. ACKNOWLEDGEMENT
My hearty gratitude to my guide Asst Prof. Mr. Devanand

Kanhar, of NIST Brahmapur for his continuous guidance. My

sincere thanks to the management of NIST, Berhampur for

their support. A major literature review is done at Roland

Institute of Technology, hence my sincere thanks to principal

and management of Roland Institute of Technology,

Berhampur. Finally I wish to pay my profound thanks to my

parents who supported me during writing the paper.

10. REFERENCES

[1] Kulvinder Singh and Rakesh Kumar “Optimization of

Functional Testing using Genetic Algorithms”,

International Journal of Innovation, Management and

Technology, Vol. 1, No. 1, April 2010 ISSN: 2010-0248.

[2] Debasis Mohapatra, Prachet Bhuyan, Durga P. Mohapatra

“Automated Test Case Generation and Its Optimization for

Path Testing Using Genetic Algorithm and Sampling “2009

WASE International Conference on Information

Engineering.

[3] K. Deb, A. Pratap, S. Agarwal, and T.Meyarivan, “A fast

and elitist multiobjective genetic algorithm: NSGA-II,”

IEEE Transaction of Evolutionary Computation., vol. 6,

pp. 182–197, Apr. 2002

[4] R.Pressman “Software Engineering” TMG sixth Edition

page 386p-460p

[5] Venkatraman,S. Yen,G.G. “A Generic Framework for

Constrained Optimization Using Genetic Algorithms”

IEEE Transactions on Evolutionary Computation.

[6] Christoph C. Michael, Gary E. McGraw, Michael A.

Schatz, Curtis C. Walton in their paper titled “Genetic

Algorithms for Dynamic Test Data Generation” in National

Science Foundation under award number DMI-9661393

[7]. Kamde, P.M.—Nandavadekar, V.D.—Pawar, R.G.: Value

of Test Cases in Software Testing. IEEE International

Conference on Management of Innovation and Technology,

2006, pp. 668–672

[8] Pargas, R.P.—Harrold, M. J.—Perk, R.R.: Test Data

Generation Using Genetic Algorithm. Journal of Software

Testing, Verification And Reliability, 1999, pp. 1–19.

[9] Desikan, S.—Ramesh, G.: Software Testing Principles and

Practices. Pearson, 2002.

[10] Mathur, A.P.: Foundations of Software Testing. Pearson

Education, 2008.

[11] L. Luo, “Software testing techniques technology maturation

and research strategy,” Institute for Software Research

International, Carnegie Mellon University, Pittsburgh,

PA15232, USA, Tech. Rep. 17939, 2001.

[12] K.K. Aggarwal, and Y. Singh, “A book on software

engineering”, New Age International (P) Ltd.; Publishers,

4835/24, Ansari Road, Daryaganj, New Delhi, 2001

.[13] Praveen Ranjan Srivastava and Tai-hoon Kim, “Application

of Genetic Algorithm in Software Testing”, International

Journal of Software Engineering and Its Applications Vol.

3, No.4, October 2009.

[14] Sangameswar Venkatraman and Gary G. Yen,“A Generic

Framework for Constrained Optimization Using

Genetic Algorithms” IEEE Transaction of Evolutionary

Computation, vol. 9, no Aug2005 pp.424-434.

[15] Baikuntha Narayan Biswal, Soubhagya Sankar Barpanda

and Durga Prasad Mohapatra, “A Novel Approach for

Optimized Test Case Generation Using Activity and

Collaboration Diagram", International Journal of Computer

Application (IJCA), vol. 1, no. 14, pp. 67 – 71, 2010.

0

10

20

30

1 2
3

4
experimen

t no.

No of
iteration Iteration Vs. Experiment

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Venkatraman,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Venkatraman,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235

