
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.6, February 2013

39

FPGA Implementation of the CORDIC Algorithm for

Fingerprints Recognition Systems

Nihel Neji, Anis Boudabous, Wajdi Kharrat, Nouri Masmoudi

University of Sfax, Electronics and Information Technology Laboratory,

National School of Engineering, BP W 3038, Sfax, TUNISIA

ABSTRACT
In this paper, we propose a low-cost sequential architecture for

the implementation of CORDIC algorithm in two computation

modes. It suited for serial operation that performs conversion

between polar and rectangular coordinate systems, essentially

sin/cos, sinh/cosh and arctan computation. The design targets

real time application of fingerprint recognition. We present a

VHDL description of CORDIC algorithm. To reduce iteration

delay, we used some combinatory blocks. Fixed point

arithmetic was considered. To valid our conception and its

CORDIC accuracy, we present relative error calculated in

convergence range for some trigonometric and hyperbolic

functions. All measurements show an enhancement compared

with our previous work. The architecture was implemented and

tested. The contribution of the paper includes the CORDIC

design flow.

Keywords

CORDIC algorithm, fingerprint, VHDL, hardware, FPGA

1. INTRODUCTION
Fingerprint recognition systems are the focus of research and

development. They allow new types of services universally

available to consumers and for industrial applications. This

paper is based on a project which aims to develop a fingerprint

recognition system. The most difficult to implement functional

blocks is Fast Fourier Transform (FFT) processor. A

Coordinate Rotation Digital Computer offers an elegant way of

its implementation[1]. It can be applied to FPGA applications,

in which the rotation angles are usually known, the twiddle

factor in FFT and kernel components in other sinusoidal

transforms [2],[3]. The CORDIC scheme has been applied to

the FFT processor design and found to result in significant

hardware reduction in the implementation of twiddle-factor

multiplications.

In this work, we exploit the FPGA circuit capacity to design a

reconfigurable architecture for computation of elementary

functions such as sine, cosines, exponential and arctangent

using this algorithm. We focus on polynomial approximations

with fixed coefficients and powers of x to search errors over a

bounded interval. Then, we deal with CORDIC evaluation to

calculate outputs in fixed-point-format. The obtained average

of error is close to the error of polynomial approximations. This

makes our method an attractive solution for signal processing

applications. The remaining paper is organized as follows.

Section 2 represents the previous work which proposed

different types of CORDIC architectures. The CORDIC

algorithm is described in Section 3. Section 4 presents the

proposed architecture for rotation and mode derived

from the algorithm specification.

Finally, in section 5 the results of the implementation are

reported and the performance comparison of proposed

architecture with the other architectures available in the

literature is explained. The conclusion is drawn in section 6.

2. RELATED WORK
Large numbers of architectures have been proposed in the

literature for CORDIC algorithm, which vary from bit-serial

implementations to word parallel pipelined architectures. The

choice depends on the requirements for computing throughput

and constraints that hold for area usage, latency and power

dissipation. Traditionally [4], [5], implementations of the

CORDIC algorithm have been carried out on word serial

architectures using conventional non-redundant arithmetic with

radix-2 micro-rotations and fixed point internal format.

Lang and Ercegovac [6] have proposed redundant arithmetic to

the implementation of conventional radix-2 CORDIC [3], [4].

However this resulted in increasing the iteration delay and

additional cost due to variable scale factor. Double rotation and

correcting rotation methods [7] were proposed to implement

constant scale factor CORDIC which resulted in 50% increase

in number of iterations. This increase in latency is reduced by

proposing branching algorithm [8], which requires additional

CORDIC module to perform rotations in both directions, if the

direction cannot be determined using intermediate results. The

main disadvantage of branching method is the necessity of

performing two conventional CORDIC iterations in parallel,

which consumes more silicon area than the conventional

methods. However, this method gives a faster implementation

than [7]. Low latency CORDIC algorithm is proposed in [9] to

achieve latency reduction by 25% compared to the method in

[7].

In contrast to these methods, new algorithms are proposed in

[10] and [11], which avoids the determination of direction of

rotation using intermediate results of steering variable.

However, there is an area cost for registers because of

pipelining at the full adder level and n initial register rows for

performing skew of input data. This redundant radix-2

CORDIC algorithm has been extended to radix-4 to halve the

number of iterations [12]. However, the computation time per

iteration increases, since it takes more time to decide amongst

the five micro-rotation direction values and to select an

appropriate one out of five elementary angles. Both redundant

and higher radix based CORDIC algorithms are still iterative in

nature and greatly restrict the speed of implementation of the

algorithm. The delay of every iteration can be decomposed into

two different delays, the delay to predict, the new rotation

direction and the delay involved in the application of computed

rotation. Improvements have been especially made in the

reduction of delay to predict the new micro-rotation direction.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.6, February 2013

40

3. OVERVIEW OF ITERATIVE

CORDIC ALGORITHM
The CORDIC computing technique was developed by J. E.

Volder in the late 1959’s [4] for the computation of

trigonometric functions, multiplication and division operations.

Walther, in 1971, has generalized this algorithm to implement

hyperbolic, logarithm and exponential functions. This

algorithm is iterative with an ability to decimate elementary

operations with simple shift and addition operations. The

number of iterations is determined by the word length of the

inputs.

3.1. CORDIC modes
The CORDIC method can be employed in two different modes,

namely, the rotation mode and the vectoring mode.

In the rotation mode, the coordinate components of a vector and

an angle of rotation are given, and the coordinate components

of the original vector, after rotation through a given angle, are

computed.

In the vectoring mode, the coordinate components of a vector

are given, and the magnitude and angular argument of the

original vector are computed.

(xi+1, yi+1)

(xi, yi)

Y

X

(xi+1, yi+1)

(xi, yi)

Y

X

Figure 1. Graphical representation of circular and linear CORDIC

The CORDIC algorithm performs the rotation of a vector in

both modes as a sequence of micro-rotations by elementary

angles [4] recalled from ROM. The number of micro-rotations

for a given precision is decided by radix being used for the

implementation of CORDIC algorithm. The CORDIC’s

graphical representation is shown in Figure 2.

Here, the circular CORDIC architecture computes

trigonometric function and magnitude of a vector whereas the

linear mode of CORDIC architecture computes linear functions

such as multiplication and division in different mode of

operation i.e rotational and vectoring mode respectively.

3.2. Generalized CORDIC
The generalized iteration equations of the CORDIC algorithm

[5] at the (i + 1)th step are as follows:

 (1)

 (2)

 (3)

Where represents the choice of direction of rotation in each

iteration, represents the radix of the number system, m steers

the choice of linear (m = 0), circular

(m = 1), or hyperbolic (m = -1) coordinate systems

 is the nondecreasing integer shift sequence, and the

rotation angle.

The latter directly depends on according to

 (4)

The value of is determined by the following equation:

 (5)

where z is a steering variable in rotation mode, x and y are

steering variables in vectoring mode. The required micro-

rotations are not perfect rotations as they increase the length of

the vector.

In order to maintain a constant vector length, the obtained

results have to be scaled by the scale factor K as given by

 (6)

 (7)

where ki denotes the vector amplification factor for the ith

iteration, and K is the resultant vector amplification factor after

n iterations.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.6, February 2013

41

3.3. Outputs of the CORDIC algorithm

Table 1. Outputs of the CORDIC algorithm

Coordinate Rotation Vectoring

Circular

(m=1)

Linear

(m=0)

Hyperbolic

(m= -1)

In order to better understand how CORDIC processor works,

we explain the simplest form of the CORDIC algorithm with

 (0, 1, 2, 3, 4 …) and

 .

4. CORDIC DESIGN
As the CORDIC is an iterative method, it requires many clock

cycles to achieve the required accuracy. For a given precision,

the increase of radix reduces the number of micro-rotations

compared to radix-2.

Stage 1
CLK

CLK

CLK

Global-CLK

Validation

Register

14 14 21

14 14 21

X0 Y0 Z0

Yn ZnXn

Stage 2

Stage 14

Figure 2. CORDIC schema

The CORDIC module performs 14 iterations for 14 bits

precision using radix-2 number representation (Figure 3),

with the constraint that the (i+1)th iteration may begin only

after the ith rotation has been completed.

4.1. Sinus/cosines and exponential

function implementation
For sinus/cosines functions, we use m=1 and

 in the rotation mode.

If we affect to , we get cos(θ) and sin(θ)

values in

Using m = -1 and

 , the same

algorithm can calculate exponential function (cosh(θ) and

sinh(θ)) affecting . Some iteration is

repeated to ensure algorithm convergence. For the

implementation,

we use [14]:

 (8)

where z =

 p an integer equal to Fix(z/ln2).

For the implementation, a state machine generates signals

initialization and loading of the register for each block (Figure

3).

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.6, February 2013

42

Counter

Barel shifter

Array

Barel shifter

Array

Sub/Add Sub/Add Sub/Add

Register-X Register-Y Register-Z

Atan

X(n-1)

X(n)

Y(n-1)

Y(n)

cosines sinus

Init

Clk

Load

Init

Clk

Load

00.60725935

countcount

In
it

C
lk

L
o

a
d

FSM

C
lk

R
e
se

t

S
ta

r
t

In
it

L
o

a
d

E
n

dZ(n-1)

Z(n)

Init

Clk

Load

Angle

Angle

Register-Z(width-1)

Figure 3. CORDIC iterative structure SIN/COS function

4.2. Arctangent function implementation
To obtain this function, we use the vectoring mode and

circular coordinates as described in Table 1.

The implementation (Figure 4) was done using the same

architecture as for the first design. But, the adder/subtracter is

commanded by signed numbers of register-Y.

CounterBarel shifter

Array

Barel shifter

Array

Sub/Add Sub/Add Sub/Add

Register-X Register-Y Register-Z

Atan

X(n-1)

X(n)

Y(n-1)

Y(n)

(Y0+X0)
1/2 o

Init

Clk

Load

Init

Clk

Load

Y0X0

countcount

In
it

C
lk

L
o

a
d

FSM

C
lk

R
e
se

t

S
ta

r
t

In
it

L
o

a
d

E
n

d

Z(n-1)

Z(n)

Init

Clk

Load

0

Register-Y(width-1)

Y0X0

arctan(Y0/X0)

Figure 4. CORDIC iterative structure for ATAN function

5. RESULTS OF FPGA

IMPLEMENTATION
The concept was implemented in VHDL with ModelSim SE

6.0 simulator from Mentor Graphics, verified and synthesized

with Quartus II version 8.0 (32 bits) of ALTERA.

We use Stratix III : EP3SL150F1152C3 component. The

implementation results are given in Table 2.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.6, February 2013

43

Table 2. The synthesis results of chosen functions

Function Sinus & Cosines Arctangent Exponential

Combinational ALUT 153 /113600(<1%) 216(<1%) 178(<1%)

Logic registers 61/113600(<1%) 90(<1%) 71(<1%)

Pins 53/733(7%) 76(9%) 68(9%)

Latency 78 ns 108 ns 168 ns

Max frequency is 250 Mhz and we obtain 1% area occupation

of FPGA. Latency is different for such function because it’s

not the same mode and not the same number of iteration. It

depends on the clock frequency.

6. PRECISION WITH CORDIC

METHOD AND ERROR ANALYSIS
In this section, we will conduct simulations to show the

effectiveness of the proposed architecture. To analyze the

error performance, we define the error as the distance between

the ideal rotated point and the feasible rotated point divided by

the ideal rotated point. The error is thus determined by:

 (9)

In the design flow, one important step is the fixed-point

simulation on which we assist to determine the required word-

length. If the word-length is over-determined, we will suffer

from higher cost and slower computational speed.

So, we will explore the 14-point format for the data and we

will fix the scaling factors. The following relative error curves

present the CORDIC precision after the extraction of the

values from ModelSim simulation, which are generated from

the test bench.

Figure 5. Relative error of CORDIC sinus/cosines functions

For , the error for sinus /cosines ranges within

0.001 % to 1 % and the mean relative error is 0.013 %.
We notice that we have peaks in

 where K is an integer.

Figure 6. Relative error of CORDIC exponential function

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.6, February 2013

44

Affecting the scale factor in the input () and zero in the

input () and using the rotation mode, we can calculate the

cosh and sinh functions with hyperbolic coordinate. We can

get the exponential value:

 = cosh(x) + sinh(x) (10)

The mean error for exponential is about 0.005 %, an

acceptable error in the specified convergence range.

Figure 7. Relative error of CORDIC arctangent function

For the arctangent function, the mean error does not exceed

0.01%.

7. CONCLUSION
This paper proposes CORDIC architecture as an approach to

implement some operators in a fingerprint recognification

application. The CORDIC architecture leads to fast and small

operators up to 14 bits of precision.

The principal drawbacks of this algorithm are the requirement

of a scale factor and the slow rate of convergence. The

convergence range can be extended over the entire coordinate

space by repeating certain iteration steps and by exploiting the

symmetry of the coordinate axes. To cover the whole

coordinate space, we compute the angle on the interval [0,

90°]. The result of CORDIC rotations for any angle between

90° and 360° can be extrapolated for the result of a rotation

corresponding to [0, 90°].Our basic CORDIC processor has

been designed in VHDL implementation. The implemented

architecture is dedicated to the computation of trigonometric,

exponential and arctangent functions with internal wordlength

of 14 bits. Nevertheless, it can be adapted to all functions by

reprogramming the FPGA.

The module uses radix-2 number representation, this leads to

small circuits by replacing the costly multiplications by a

small number of additions. The obtained operators provide

very small average error with reasonable maximum error

what’s makes our algorithm suitable for many applications.

8. REFERENCES
[1] Ray and Andraka, “ A Survey of CORDIC Algorithms

for FPGA based Computers”, Andraka Consulting

Group, Inc, North Kingstown, RI02852, 2011.

[2] Gualberto Aguilar, Gabriel Sánchez, Karina Toscano,

Mariko Nakano-Miyatake, Héctor Pérez-Meana.

“Automatic Fingerprint Recognition System Using Fast

Fourier Transform and Gabor Filters”, Cient’fica Vol. 12

Nœm. 1 pp. 9-16, ESIME-IPN. ISSN 1665-0654 , 2008

[3] P.K. Meher, J. Valls, T.B. Juan, K. Sridharan and K.

Maharatna, “50 Years of CORDIC: Algorithms,

Architectures, and Applications”, IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS—I:

REGULAR PAPERS, vol. 56, no. 10, pp. 9, Sept. 2009

 [4] J. E. Volder, “The CORDIC trigonometric computing

technique”, IRE Trans. Electronic Computers, vol. 8, no.

3, pp. 330{334, Sept. 1959

[5] J. S. Walther, “A unified algorithm for elementary

functions”, Proc. AFIPS spring Joint Comput. Conf., pp.

379{385, 1971

 [6] M. D. Ercegovac, and T. Lang, “Redundant and On-Line

CORDIC: Application to Matrix Triangularization and

SVD”, IEEE Trans. Comput., vol. 39, no. 6, pp. 725{740,

June 1990

[7] N. Takagi, T. Asada, and S. Yajima, “Redundant

CORDIC methods with a constant scale factor for sine

and cosine computation”, IEEE Trans. Comput., vol. 40,

no. 9, pp. 989-995,Sept., 1991

[8] J. Duprat, and J. M. Muller, “The CORDIC algorithm:

new results for fast VLSI implementation”, IEEE Trans.

Comput.vol. 42, no. 2, pp. 168-178, Feb. 1993

[9] D. Timmermann, H. Hahn, and B. J. Hosticka, “Low

latency time CORDIC algorithms”, IEEE Trans. Comput.

vol. 41, no.8, pp. 1010-1015, Aug. 1992

[10] H. Dawid, and H. Meyr, “The differential CORDIC

algorithm:constant scale factor redundant implementation

without correcting iterations”, IEEE Trans. Comput. vol.

45, no. 3, pp.307-318, Mar. 1996

[11] Pongyupinpanich Surapong, Faizal Arya Samman and

Manfred Glesner, “Design and Analysis of Extension-

Rotation CORDIC Algorithms based on Non-Redundant

Method”, International Journal of Signal Processing,

Image Processing and Pattern Recognition Vol. 5, No. 1,

March, 2012

[12] E. Antelo, J. Villalba, J. D. Bruguera, and E. L. Zapata,

“High performance rotation architectures based on the

radix-4 CORDIC algorithm”, IEEE Trans. Comput., vol.

46, no. 8, pp. 855-870, Aug. 1997

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.6, February 2013

45

 [13] Stefan Lachowicz and Hans-Jorg Pfleiderer, “Fast

evaluation of the square root and other nonlinear

functions in FPGA”, 4th IEEE international symposium

on electronic design, 2008

[14] Anis BOUDABOUS, Fahmi GHOZZI, M. Wajdi

KHARRAT, Nouri MASMOUDI, “Function Generator

Based CORDIC Algorithm”, Third international

conference on systems, signals & devices, vol. 4, March

2005

