On Strongly g^* -continuous Maps and Pasting Lemma in Topological Spaces

V.Subramonia Pillai Research Scholar Karpagam University, Coimbatore,Tamil Nadu, India

ABSTRACT

The objective of the present paper is to introduce new classes of functions called Strongly g^* -continuous maps .We obtain some characterizations of these classes and several properties are studied. Also we prove Pasting lemma for Strongly g^* -continuous maps.

General Terms:

AMS Classification(2000): 54A05.

Keywords:

strongly g^* -continuous mapsifx

1. INTRODUCTION

Strong forms of continuous maps have been introduced and investigated by several mathematicians.Strongly continuous maps, perfectly continuous maps, completely continuous maps, super continuous maps were introduced by Levine[6], Noiri[9], Munshi[8] and Tong[15]respectively. Noiri[10] introduced a new concept called strongly θ continuity which is stronger than continuity.Lang[5] studied strongly θ continuous functions.Balachandran et al[2] have introduced and studied generalized semi-continuous maps, semi-locally continuous maps ,semi -generalized locally continuous maps and generalized locally continuous maps.Sundaram[14] introduced and studied g-continuous functions.Maki[7]studied the Pasting Lemma for α - continuous maps.Parimelazhagan[12]introduced and studied strongly g^* -closed sets.

In this paper we introduce and study the concepts of a new class of maps, namely Strongly g^* -continuous maps which includes the class of continuous maps .Also we prove a pasting lemma for strongly g^* -continuous maps.

2. PRELIMINARIES

Before entering into our work, we recall the following definitions which are due to Levine.

Definition 2.1[6]: A function f: $X \rightarrow Y$ is said to be strongly continuous if $f^{-1}(V)$ is both open and closed in X for each subset V of Y.

Definition 2.2[1]:A function f: $X \to Y$ is said to be completely continuous if $f^{-1}(V)$ is regular open in X for each open set V of Y

Definition 2.3[11]:A function f: $X \rightarrow Y$ is said to be perfectly continuous if $f^{-1}(V)$ is both open and closed in X for each open set V of Y.

Definition 2.4[9]: A function f: X \rightarrow Y is said to be α continuous or strongly semi continuous if $f^{-1}(V)$ is α open in X for each open set V of Y.

R.Parimelazhagan Department of Science and Humanities

Karpagam College of Engineering, Coimbatore -32. Tamil Nadu, India

Definition 2.5[3]: A function f: $X \rightarrow Y$ is said to be generalized continuous(g-continuous) if $f^{-1}(V)$ is g-open in X for each open set V of Y

Definition 2.6[12]: Let (X, τ) be a topological space and A be its subset, then A is strongly g^* -closed set if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is g-open.

Definition 2.7[13]: A map f: $X \to Y$ from a topological space X into a topological space Y is called strongly g^* irresolute(s g^* -irresolute) if the inverse image of every sg^* - closed set in Y is sg^* -closed in X.

3. STRONGLY G*-CONTINUOUS FUNCTIONS

In this section we have introduce the concept of strongly g^* continuous functions in topological space.

Definition 3.1:Let X and Y be topological spaces. A map f: $X \rightarrow Y$ is said to be strongly g^* continuous (sg^* - continuous) if the inverse image of every open set Y is sg^* -open in X.

Theorem 3.2: If a map $f: X \to Y$ from a topological space X in to a topological space Y is continuous then it is sg^* - continuous

Proof: Let V be an open set in Y.Since f is continuous $f^{-1}(v)$ is open is X. As open set is sg^* - open $f^{-1}(v)$ is sg^* -open in X. Therefore f is sg^* -continuous.

Remark 3.3:The converse of the above theorem neednot be true as seen from the following example.

Example 3.4: Let $X=Y= \{a,b,c\}$ with $\tau = \{\phi, X, \{a\}\}$ and $\sigma = \{\phi, Y, \{b\}, \{b,c\}\}$ Let $f: X \to Y$ be defined by f(a)=b, f(b)=c, f(c)=a then f is sg^* -continuous but not continuous as the inverse image of the open set $\{b,c\}$ in Y is $\{a,b\}$ is not open in X.

Theorem 3.5: A map $f: X \rightarrow Y$ is sg^* -continuous if and only if the inverse image of every closed set in Y is sg^* - closed in X.

Proof:Let F be closed in Y.Then F^c is open in Y. Since f is sg*continuous, $f^{-1}(F)$ is sg^* -open in X. But $f^{-1}(F^c) = X - f^{-1}(F)$ and so $f^{-1}(F)$ is sg^* -closed in X.

Conversely assume that the inverse image of every closed set in Y is sg^* -closed in X.Let V be an open set in Y.Then V^c is closed in Y. By hypothesis $f^{-1}(V^c) = X - f^{-1}(V)$ is sg^* - closed in X and so $f^{-1}(V)$ is sg^* - open in X. Thus f is sg^* - continuous.

Theorem 3.6: Let X and Y be topological spaces. If a map f: $X \rightarrow Y$ is sg^* -continuous then it is g continuous .

Proof: Assume that a map $f: X \to Y$ is sg*-continuous. Let V be an open set in Y.Since f is continuous $f^{-1}(V)$ is sg* -open and hence g- open in X.Therefore f is g-continuous.

Remark 3.7: The converse of the above theorem need not be true as seen from the following example.

Example 3.8: Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a, c\}\}$ and f be identity map. Then f is g-continuous but not sg^{*}-continuous as the inverse image of the openset $\{a, c\}$ in Y is $\{a, c\}$ in X is not sg^{*}-open.

Theorem 3.9: Let $f: (X, \tau) \to (Y, \sigma)$ be a map from a topological space (X, τ) into a topological space (Y, σ)

(i)The following statements are equivalent. a)f is sg^* - continuous. b).The inverse image of each open set in Y is sg^* -open in X.

(ii).If $f : (X, \tau) \to (Y, \sigma)$ is sg^* -continuous then $f(cl^*(A)) \subset \overline{f(A)}$ for every subset A of X.(Here $cl^*(A)$ is the closure of A as defined by Dunham[4]).

iii).(a)For each point $x \in X$ and each open set V containing f(x), there exist a sg^* -open set U containing x such that $f(V) \subset V$ (b)For every subset A of X, $f(cl^*(A)) \subset \overline{f(A)}$ holds (c)The map $f: (X, \tau^*) \to (Y, \sigma)$ from a topological space (X, τ^*) defined by Dunham[6] into topological space (Y, σ) is continuous.

Proof: (i) Assume that $f: X \to Y$ is sg^* continuous. Let G be open in Y. Then G^c is closed in Y. Since f is sg^* continuous $f^{-1}(G^c)$ is sg^* -closed in X. But $f^{-1}(G^c)=X - f^{-1}(G)$. Thus $X - f^{-1}(G)$ is sg^* closed in X and so $f^{-1}(G)$ is sg^* -open in X. Therefore (a) implies (b). Conversely assume that the inverse image of each open set in Y is sg^* -open in X. Let F be any closed set in Y. Then F^c is open in Y. By assumption, $f^{-1}(F^c)$ is sg^* open in X. But $f^{-1}(F^c) = X$ - $f^{-1}(F)$). Thus X - $f^{-1}(F)$ is sg^* -open in X and so $f^{-1}(F)$ is sg^* closed in X. Therefore f is sg^* -continuous. Hence(b) implies (a). Thus (a) and (b) are equivalent.

(ii). Assume that f is sg^* continuous. Let A be any subset of X. Then $\overline{f(A)}$ is closed set in Y. Since f is sg^* continuous, $f^{-1}\overline{f(A)}$ is sg^* closed in X and it contains A. But $cl^*(A)$ is the intersection of all sg^* -closed sets containing A. Therefore $cl^*(A) \subset f^{-1}(\overline{f(A)})$ and so $f(cl^*(A)) \subset \overline{f(A)}$ (iii). (a) \Rightarrow (b) Let $Y \in f(cl^*(A))$ and let V be any open neighbourhood of Y. Then there exist a point $x \in$ and a sg^* -openset V suchthat f(x)=y, $x \in V, x \in cl^*(A)$ and $f(v) \subset V$. Since $x \in cl^*(A), V \cap A \neq \phi$ holds and hence $f(A) \cap V \neq \phi$. Therefore we have $y = f(x) \in \overline{f(A)}$

 $(b) \Rightarrow (a).$ Let $x \in X$ and V be any openset containing f(x). Let $A=f^{-1}(V^c)$, then $x \notin A$. Now $cl^*(A) \subset f^{-1}(f(cl^*(A))) \subset f^{-1}(V^c) = A$. i.e. $cl^*(A) \subset A$. But $A \subset cl^*(A)$ Therefore $A=cl^*(A)$, then since $x \notin cl^*(A)$ there exist a sg^* -openset U containing x suchthat $U \cap A = \phi$ and hence $f(U) \subset f(A^c) \subset V$. (b) \Rightarrow (c). By assumption $f(cl^*(A)) \subset \overline{f(A)}$. Therefore f is sg^* continuous. (c) \Rightarrow (b)Let A be any subset of X. Then $\overline{f(A)}$ is a closed set in Y. Since f is continuous $f^{-1}(\overline{f(A)}$ is closed in X. Now $A \subset f^{-1}(\overline{f(A)}) \Rightarrow cl^*(A) \subset cl^*f^{-1}(\overline{f(A)}) = f^{-1}(\overline{f(A)}.$ Since $f^{-1}(\overline{f(A)})$ is closed in X. $\Rightarrow f(cl^*(A)) \subset \overline{f(A)}$ **Remark 3.10:** The converse of the theorem 3.9(ii) need not be true as seen from the following example

Example 3.11: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, Y, \{a, c\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a)=b, f(b)=a and f(c)=c. Then for every subset $A, f(cl^*(A))$

Theorem 3.12: If a map f:X \rightarrow Y from a topological space X into a topological space Y is continuous then it is sg^* - continuous.

Proof:Let f: $X \to Y$ be continuous. Let F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is closed in Y. Since every closed set is sg^* -closed $f^{-1}(F)$ is sg^* -closed in X. Therefore f is sg^* continuous.

Remark 3.13: The converse need not be true as seen from the following example.

Example 3.14: Let $X = \{a, b, c\}\tau = \{\phi, X, \{a\}\}, Y = \{p, q\}$ and $\sigma = \{\phi, \{p\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a)=f(c)=q, f(b)=p. Then f is sg^* - continuous. But f is not continuous since for the openset $G = \{p\}$ in Y, $f^{-1}(G)=\{b\}$ is not open in X.

Theorem 3.15: Let X and Y be any topological spaces and Y be a $T_{1/2}$ spaces. Then the composition $gof : X \to Z$ of the sg^* -continuous maps $f : X \to Y$ and $g : Y \to Z$ is also sg^* -continuous.

proof: Let F be a closed in Z. Since g is sg^* -continuous. $g^{-1}(F)$ is sg^* - closed in Y. But Y is $T_{1/2}$ space and so $g^{-1}(F)$ is closed. Since f is sg^* -continuous. $f^{-1}(g^{-1}(F))$ is sg^* - closed in X. But $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$. Therefore gof is sg^* -continuous. **Remark 3.16:** The following example shows that the above theorem neednot be true if Y is not $T_{1/2}$

Example 3.17:Let $X = Y = Z = \{a, b, c\}$, $\tau = \{\phi, X, \{a, b\}\}$, $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$, $\eta = \{\phi, \{a, c\}, Z\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a)=c, f(b)=b, f(c)=c. Let $g : (Y, \sigma) \to (Z, \eta)$ be the identity map. Then f and g are sg^* - continuous. But gof is not a g continuous. Since $F = \{b\}$ is closed in Z. $g^{-1}(F)=F$ and $f^{-1}(g^{-1}(F))=F$ is not g closed in X. Therefore gof is non sg^* - continuous.

Theorem 3.18: Let f: X \rightarrow Y be a sg^{*}- continuous maps from a topological space X into a topological space Y and let H be a closed subset of X. Then the restriction $f/_H : H \rightarrow$ Y is sg^{*} continuous where H is endowed with the relative topology

Proof: Let F be any closed subset in Y. Since f is sg^* - continuous. $f^{-1}(F)$ is sg^* -closed in X.Levine[13]) has proved that intersection of a closed set is closed.Pari[25] has proved that intersection of two sg^* -closed set is sg^* -closed set. Thus if $f^{-1}(F) \cap H = H_1$ then H_1 is a sg^* -closed set in X.Since $(f/_H)^{-1}(F) = H_1$, it is sufficient to show that H_1 is sg^* -closed in H. Let G_1 be any open set of H such that $G_1 \supset H_1$. Let $G_1 = G \cap H$ where G is open in X.Now $H_1 \subset G \cap H \subset G$.Since H_1 is sg^* -closed in X. $\overline{H_1} \subset G$. Now $cl_H(H_1) = \overline{H_1} \cap H \subset G \cap H = G1$ where $cl_H(A)$ is the closure of a subset $A \subset H$ in a subspace H of X. Therefore f/H is sg^* - continuous.

Remark 3.19:In the above theorem the assumption of closedness of H cannot be removed as seen from the following example.

Example 3.20:Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}$, $Y = \{p, q\}$ and $\sigma = \{\phi, \{p\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a)=f(c)=q, f(b)=p. Then f is sg^* - continuous. Now $H = \{a, b\}$ is not closed in X. Then f is sg^* - continuous but the restriction $f/_H$ is not sg^* - continuous.Since for the closed set $F = \{q\}$ in Y. $f^{-1}(F) = \{a, c\}$ and $f^{-1}(F) \cap H = \{a\}$ is not sg^* - closed in H.

4. PASTING LEMMA FOR SG* - CLOSED SETS

In this section we have introduce the concept of Pasting Lemma for sg^* - continuous maps in topological space.

Theorem 4.1: Let $X = A \cup B$ be a topological space with topology τ and Y be a topological space with topology σ . Let $f : (A, \tau/_A \to (Y, \sigma) \text{ and } g : (B, \tau/_B \to (Y, \sigma) \text{ be } sg^* \text{ continuous maps such that } f(x)=g(x) \text{ for every } x \in A \cap B$. Suppose that A and B are sg^* closed in X. Then the combination $\alpha : (X, \tau) \to (Y, \sigma)$ is sg^* continuous.

Proof: Let F be any closed set in Y. Clearly $\alpha^{-1}(F) = f^{-1}(F) \cup g^{-1}(F) = C \cup D$ where $C = f^{-1}(F)$ and $D=g^{-1}(F)$. But C is sg^* closed in A and A is sg^* closed in X and so C is sg^* closed in X. Since previous paper proved that if $B \subset A \subset X$. B is sg^* closed in A and A is sg^* closed in X then B is sg^* closed in X. Simillary D is sg^* closed in X. Also $C \cup D$ is sg^* closed in X. Therefore $\alpha^{-1}(F)$ is sg^* closed in X. Hence α is sg^* - continuous.

5. FURTHER STUDY ON STRONGLY G*IRRESOLUTE MAPS

In this section we have introduce the continuation study on strongly g^* -irresolute maps in topological space.

Theorem 5.1:A map $f: X \to Y$ is sg^* - irresolute if and only if the inverse image of every sg^* - open set in sg^* is open in X. **Proof:**Assume that f is sg^* - irresolute. Let A be any sg^* -open set in Y. Then A^c is sg^* - closed in Y. Since f is sg^* - irresolute $f^{-1}(A^c)$ is sg^* -closed in X.But $f^{-1}(A^c) = X - f^{-1}(A)$ and so $f^{-1}(A)$ is sg^* -open in X. Hence the inverse image of every sg^* -open set in Y is sg^* - open in X. Conversely assume that the inverse image of every sg^* - open in Y is sg^* - open X. Let A be any sg^* -closed set in Y. Then A^c is sg^* - open in Y. By assumption $f^{-1}(A^c)$ is sg^* - open in X.But $f^{-1}(A^c) = X - f^{-1}(A)$ and so $f^{-1}(A)$ is sg^* -closed in X. Therefore f is sg^* -irresolute. **Theorem 5.2:** A map f: $X \rightarrow Y$ is sg^* -irresolute then it is sg^* -continuous .

Proof: Assume that f is sg^* - irresolute . Let F be any closed set in Y. Since every closed set is sg^* - closed . F is sg^* - closed in Y. Since f is sg^* -irresolute , $f^{-1}(F)$ is sg^* - closed in X. Therefore f is sg^* - continuous.

Remark 5.3: The converse neednot be true as seen from the following example

Example 5.4:Let $X = Y = \{a, b, c\} \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be defined by f(a)=f(c)=a, and f(b)=b. Then f is sg^* - continuous. However $\{a, c\}$ is sg^* - closed in Y but f^{-1} $\{a, c\} = \{a, c\}$ is not sg^* closed in X. Therefore f is not sg^* -irresolute.

Theorem 5.5: Let X,Y and Z be any topological spaces. For any sg^* - irresolute map f:X \rightarrow Y and any sg^* - continuous map g:Y \rightarrow Z the composition gof:X \rightarrow Z is sg^* - continuous

proof: Let \vec{F} be any closed set in \vec{Z} .Since g is sg^* - continuous $g^{-1}(F)$ is sg^* -closed in Y. Since f is sg^* -irresolute . $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$.Therefore gof is sg^* -continuous

Theorem 5.6: If $f: X \to Y$ from a topological space X into a topological space Y is bijective, open and sg^* -continuous then f is sg^* -irresolute

Proof: Let A be a sg^{*} -closed set in Y. Let $f^{-1}(A) \subset O$ where O is open in X. Therefore $A \subset f(0)$ holds. Since f(0) is open and A is sg^{*}- closed in Y. $\overline{A} \subset f(0)$ holds and hence $f^{-1}(\overline{A}) \subset O$. Since f is sg^{*} -continuous and \overline{A} is closed in Y. $\overline{f^{-1}(A)} \subset O$ and so $\overline{f^{-1}(A)} \subset O$. Therefore $f^{-1}(A)$ is sg^{*} -closed in X. Hence f is sg^{*}-irresolute.

Remark 5.7: The following examples show that no assumption of above theorem can be removed

Example 5.8: Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$.Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a)=f(c)=a and f(b)=b. Then f is sg^* - continuous and open but it is not bijective and f is not sg^* -irresolute since for the sg^* -closed set $G = \{a, c\}$ in Y. $f^{-1}(F) = \{a, c\}$ is not sg^* - closed in X.

Example 5.9: Let (X, τ) and (Y, σ) be the topological spaces in Example 2.2 the identity map $f : (X, \tau) \to (Y, \sigma)$ is sg^* continuous ,bijective and not open. And f is not sg^* -irresolute. Since for the sg^* - closed set $G = \{a, c\}$ in Y, $f^{-1}(G)$ =G is not sg^* -closed in X.

Example 5.10: Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}$ and σ be the discrete topology of Y.Then the identity map $f: (X, \tau) \rightarrow (Y, \sigma)$ is bijective open and not sg^* - continuous and f is not sg^* -irresolute since for the sg^* - closed set $G = \{a\}$ in Y, $f^{-1}(G)$ =G is not sg^* -closed in X.The following two examples shows that the concept of irresolute maps and sg^* - irresolute maps are independent of each other. **Example 5.11:**Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$ Then the identity map $f : (X, \tau) \to (Y, \sigma)$ is irresolute since for the sg^* -closed set $G=\{a\}$ in $Y f^{-1}(G)$ is not sg^* -closed in X.

Example 5.12: Let (X, τ) and (Y, σ) be the spaces defined in above. Let $f : (X, \tau) \to (Y, \sigma)$ be a map defined by f(a)=c, f(b)=b and f(c)=a. Then f is sg^* - irresolute, but it is not irresolute. Since for the sg^* -closed set. G={b} in Y, $f^{-1}(G)=G$ is not sg^* -closed in X.

6. REFERENCES

- Arya S.P and Gupta R On Strongly Continuous mappings Kyungpook Math.J.14(1974),131-143.
- [2] Balachandran . K, Sundaram .P and Maki. H Generalized locally closed sets and GLC -continuous functions, Indian J.Pure. Appl. Math. 27(1996), 235-244.
- [3] Balachandran .K,Sundaram P and Maki.H On Generalized continuous maps in Topological Spaces,Mem.Fac.Sci.Kochi.Univ.Math.12(1991),5-13.
- [4] Dunham.W,New closure operator for Non T_1 Topologies,Kyungpook Math.J.22(1982),55-60.
- [5] Lang P.E and Herington L.L.Strongly θ continuous functions, J.Korean.Math.Soc., 18(1981)21-28.
- [6] Levine N. Strong continuity in topological spaces, Amer. Math. Monthly, 67(1960), 269
- [7] Maki H Munakata and T.Noiri ,The Pasting Lemma for α continuous maps,GLasnik Mathematical Vol 23(43)(1988),157-163.
- [8] Munshi,B.M. and Bassan,D.S.Super continuous mappings,Indian J.Pure Appl.Math.13(1982),229-236.
- [9] Noiri,T.,Between continuity and Weak Continuity Bull.Un.Mat.Ital.9(1974)647-654.
- [10] Noiri,T.Super continuity and some strong forms of continuity.Indian J.Pure Appl.Mat.15(1984)240-250.
- [11] Noiri ,T .Strong form of continuity in topological spaces Rend.Circ.Math.Palermo,(1986)107-113.
- [12] Parimelazhagan.R and Subramonia Pillai.V,Strongly g*- closed sets in topological spaces Int.Journal of Math.Analysis,Vol.6,2012,No.30,1481-1489.
- [13] Subramonia Pillai.V and Parimelazhagan.R,'Strongly g*irresolute and homeomorphism in Topological spaces'- International Journal of Recent Scientific Research Vol.4, Issue 1,pp.005-007,January,2013
- [14] Sundaram P Studies on Generalizations of Continuous maps in topological spaces, Ph.D Thesis, Bharathiar University, CBE(1991).
- [15] Tong ,J.A Decomposition of continuity in topological spaces.Acta. Math.Hungar,54(1989)51-55.