On Strongly g^{*}-continuous Maps and Pasting Lemma in Topological Spaces

V.Subramonia Pillai
Research Scholar
Karpagam University,
Coimbatore, Tamil Nadu, India

R.Parimelazhagan
Department of Science and Humanities
Karpagam College of Engineering,
Coimbatore -32. Tamil Nadu, India

Abstract

The objective of the present paper is to introduce new classes of functions called Strongly g^{*}-continuous maps .We obtain some characterizations of these classes and several properties are studied.Also we prove Pasting lemma for Strongly g^{*}-continuous maps.

General Terms:

AMS Classification(2000): 54A05

Keywords:

strongly g^{*}-continuous mapsifx

1. INTRODUCTION

Strong forms of continuous maps have been introduced and investigated by several mathematicians.Strongly continuous maps,perfectly continuous maps,completely continuous maps,super continuous maps were introduced by Levine[6],Noiri[9],Munshi[8] and Tong[15]respectively. Noiri[10] introduced a new concept called strongly θ continuity which is stronger than continuity.Lang[5] studied strongly θ continuous functions.Balachandran et al[2] have introduced and studied generalized semi-continuous maps,semi-locally continuous maps ,semi -generalized locally continuous maps and generalized locally continuous maps.Sundaram[14] introduced and studied g-continuous functions.Maki[7]studied the Pasting Lemma for α - continuous maps.Parimelazhagan[12]introduced and studied strongly g^{*}-closed sets.
In this paper we introduce and study the concepts of a new class of maps,namely Strongly g^{*}-continuous maps which includes the class of continuous maps .Also we prove a pasting lemma for strongly g^{*}-continuous maps.

2. PRELIMINARIES

Before entering into our work, we recall the following definitions which are due to Levine.
Definition 2.1[6]: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be strongly continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is both open and closed in X for each subset V of Y .
Definition 2.2[1]:A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be completely continuous if $f^{-1}(V)$ is regular open in X for each open set V of Y
Definition 2.3[11]:A function $f: X \rightarrow Y$ is said to be perfectly continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is both open and closed in X for each open set V of Y .
Definition 2.4[9]: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be α continuous or strongly semi continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is α open in X for each open set V of Y .

Definition 2.5[3]: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be generalized continuous(g -continuous) if $\mathrm{f}^{-1}(\mathrm{~V})$ is g -open in X for each open set V of Y
Definition 2.6[12]: Let (X, τ) be a topological space and A be its subset, then A is strongly g^{*}-closed set if $c l(\operatorname{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is g -open.
Definition 2.7[13]: A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ from a topological space X into a topological space Y is called strongly g^{*} irresolute($\mathrm{s} g^{*}$ -irresolute) if the inverse image of every $\mathrm{s} g^{*}$ - closed set in Y is $\mathrm{s} g^{*}$-closed in X.

3. STRONGLY G^{*}-CONTINUOUS FUNCTIONS

In this section we have introduce the concept of strongly g^{*} continuous functions in topological space.
Definition 3.1:Let X and Y be topological spaces. A map f: X $\rightarrow \mathrm{Y}$ is said to be strongly g^{*} continuous ($\mathrm{s} g^{*}$ - continuous) if the inverse image of every open set Y is $\mathrm{s} g^{*}$-open in X .
Theorem 3.2: If a map $f: X \rightarrow Y$ from a topological space X in to a topological space Y is continuous then it is $\mathrm{s} g^{*}$ - continuous

Proof: Let V be an open set in Y.Since f is continuous $f^{-1}(\mathrm{v})$ is open is X .As open set is $\mathrm{s} g^{*}$ - open , $\mathrm{f}^{-1}(\mathrm{v})$ is $\mathrm{s} g^{*}$-open in X . Therefore f is $\mathrm{s} g^{*}$-continuous.
Remark 3.3:The converse of the above theorem neednot be true as seen from the following example.
Example 3.4: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{\phi, X,\{a\}\}$ and $\sigma=\{\phi, Y,\{b\},\{b, c\}\}$ Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$ then f is $\mathrm{s} g^{*}$-continuous but not continuous as the inverse image of the open set $\{b, c\}$ in Y is $\{a, b\}$ is not open in X.
Theorem 3.5: A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\mathrm{s} g^{*}$-continuous if and only if the inverse image of every closed set in Y is $\mathrm{s} g^{*}$ - closed in X .
Proof:Let F be closed in Y.Then F^{c} is open in Y . Since f is sg^{*} continuous, $\mathrm{f}^{-1}(\mathrm{~F})$ is $\mathrm{s} g^{*}$-open in X . But $\mathrm{f}^{-1}\left(\mathrm{~F}^{c}\right)=\mathrm{X}-\mathrm{f}^{-1}(\mathrm{~F})$ and so $\mathrm{f}^{-1}(\mathrm{~F})$ is $\mathrm{s} g^{*}$-closed in X .
Conversely assume that the inverse image of every closed set in Y is $\mathrm{s} g^{*}$-closed in X.Let V be an open set in Y .Then V^{c} is closed in Y . By hypothesis $\mathrm{f}^{-1}\left(\mathrm{~V}^{c}\right)=\mathrm{X}-\mathrm{f}^{-1}(\mathrm{~V})$ is $\mathrm{s} g^{*}$ - closed in X and so $\mathrm{f}^{-1}(\mathrm{~V})$ is $s g^{*}$ - open in X . Thus f is $\mathrm{s} g^{*}$ - continuous.
Theorem 3.6: Let X and Y be topological spaces.If a map $f: X$ $\rightarrow \mathrm{Y}$ is $\mathrm{s} g^{*}$-continuous then it is g continuous .
Proof: Assume that a map $f: X \rightarrow \mathrm{Y}$ is sg^{*}-continuous. Let V be an open set in Y.Since f is continuous $f^{-1}(\mathrm{~V})$ is sg* -open and hence g - open in X.Therefore f is g-continuous.
Remark 3.7: The converse of the above theorem need not be true as seen from the following example.
Example 3.8: Let $X=Y=\{a, b, c\}$ with $\tau=$ $\{\phi, X,\{a\},\{a, b\}\}$ and $\sigma=\{\phi, Y,\{a, c\}\}$ and f be identity map. Then f is g -continuous but not $\mathrm{s} g^{*}$-continuous as the inverse image of the openset $\{a, c\}$ in Y is $\{a, c\}$ in X is not $\mathrm{s} g^{*}$-open.
Theorem 3.9: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a map from a topological space (X, τ) into a topological space (Y, σ)
(i)The following statements are equivalent. a)f is $s g^{*}$ - continuous. b).The inverse image of each open set in Y is $\mathrm{s} g^{*}$-open in X.
(ii).If $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\mathrm{s} g^{*}$-continuous then $\mathrm{f}\left(c l^{*}(A)\right) \subset$ $\overline{f(A)}$ for every subset A of X .(Here $c l^{*}(\mathrm{~A})$ is the closure of A as defined by Dunham[4]).
iii).(a)For each point $x \in X$ and each open set V containing $\mathrm{f}(\mathrm{x})$, there exist a $\mathrm{s} g^{*}$-open set U containing x suchthat $f(V) \subset V$ (b)For every subset A of $\mathrm{X}, f\left(c l^{*}(A)\right) \subset \overline{f(A)}$ holds (c)The map $f:\left(X, \tau^{*}\right) \rightarrow(Y, \sigma)$ from a topological space $\left(X, \tau^{*}\right)$ defined by Dunham[6] into topological space (Y, σ) is continuous.
Proof: (i) Assume that $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\mathrm{s} g^{*}$ continuous. Let G be open in Y. Then G^{c} is closed in Y. Since f is $s g^{*}$ continuous $f^{-1}\left(G^{c}\right)$ is $\mathrm{s} g^{*}$-closed in X. But $\mathrm{f}^{-1}\left(\mathrm{G}^{c}\right)=\mathrm{X}-\mathrm{f}^{-1}(\mathrm{G})$.Thus X $-\mathrm{f}^{-1}(\mathrm{G})$ is $\mathrm{s} g^{*}-$ closed in X and so $f^{-1}(G)$ is $s g^{*}$-open in X. Therefore (a) implies (b). Conversely assume that the inverse image of each open set in Y is $\mathrm{s} g^{*}$-open in X. Let F be any closed set in Y . Then F^{c} is open in Y. By assumption, $\mathrm{f}^{-1}\left(\mathrm{~F}^{c}\right)$ is $\mathrm{s} g^{*}$ open in X. But $\mathrm{f}^{-1}\left(\mathrm{~F}^{c}\right)=\mathrm{X}$ $-f^{-1}(F)$). Thus $X-f^{-1}(F)$ is $s g^{*}$-open in X and so $f^{-1}(F)$ is $s g^{*}$ closed in X. Therefore f is $\mathrm{s} g^{*}$-continuous. Hence(b) implies (a). Thus (a) and (b) are equivalent.
(ii). Assume that f is $\mathrm{s} g^{*}$ continuous. Let A be any subset of X . Then $\overline{f(A)}$ is closed set in Y. Since f is $\mathrm{s} g^{*}$ continuous, $\mathrm{f}^{-1} \overline{f(A)}$ is $\mathrm{s} g^{*}$ closed in X and it contains A. But $c l^{*}(\mathrm{~A})$ is the intersection of all $\mathrm{s} g^{*}$-closed sets containing A. Therefore $c l^{*}(A) \subset$ $f^{-1}\left(\overline{f(A)}\right.$ and so $\mathrm{f}\left(\mathrm{cl}^{*}(\mathrm{~A})\right) \subset \overline{f(A)}$ (iii). $(a) \Rightarrow(b)$ Let $Y \in$ $f\left(c l^{*}(A)\right)$ and let V be any open neighbourhood of Y . Then there exist a point $x \in$ and a $\mathrm{s} g^{*}$-openset V suchthat $\mathrm{f}(\mathrm{x})=\mathrm{y}$, $x \in V, x \in c l^{*}(\mathrm{~A})$ and $f(v) \subset V$. Since $x \in c l^{*}(\mathrm{~A}), V \cap A \neq \phi$ holds and hence $f(A) \cap V \neq \phi$. Therefore we have $y=f(x) \in$ $\overline{f(A)}$
$(b) \Rightarrow(a)$. Let $x \in X$ and V be any openset containing $\mathrm{f}(\mathrm{x})$. Let $\mathrm{A}=\mathrm{f}^{-1}\left(V^{c}\right)$, then $x \notin A$. Now $c l^{*}(A) \subset f^{-1}\left(f\left(c l^{*}(A)\right)\right) \subset$ $f^{-1}\left(V^{c}\right)=$ A. i.e. $c l^{*}(A) \subset A$. But $A \subset c l^{*}(\mathrm{~A})$ Therefore $\mathrm{A}=c l^{*}(\mathrm{~A})$,then since $x \notin c l^{*}(\mathrm{~A})$ there exist a $\mathrm{s} g^{*}$-openset U containing x suchthat $U \cap A=\phi$ and hence $f(U) \subset f\left(A^{c}\right) \subset V$. (b) $\Rightarrow(c)$. By assumption $f\left(c l^{*}(A)\right) \subset \overline{f(A)}$. Therefore f is $\mathrm{s} g^{*}$ continuous. (c) \Rightarrow (b)Let A be any subset of X . Then $\overline{f(A)}$ is a closed set in Y. Since f is continuous $f^{-1}(\overline{f(A)}$ is closed in X. Now $A \subset f^{-1}\left(\overline{f(A)} \Rightarrow c l^{*}(A) \subset c l^{*} f^{-1}(\overline{f(A)}=\right.$ $f^{-1}\left(\overline{f(A)}\right.$. Since $f^{-1}\left(\overline{f(A)}\right.$ is closed in $\mathrm{X} . \Rightarrow f\left(c l^{*}(A)\right) \subset \overline{f(A)}$ Remark 3.10: The converse of the theorem 3.9(ii) need not be true as seen from the following example
Example 3.11: Let $X=Y=\{a, b, c\}, \tau=\{\phi,\{a\}, X\}$ and $\sigma=\{\phi, Y,\{a, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a map defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}$ and $\mathrm{f}(\mathrm{c})=\mathrm{c}$. Then for every subset $\mathrm{A}, \mathrm{f}\left(c l^{*}(\mathrm{~A})\right)$
Theorem 3.12: If a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ from a topological space X into a topological space Y is continuous then it is $\mathrm{s} g^{*}$ - continuous.
Proof:Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be continuous . Let F be any closed set in Y . Then the inverse image $\mathrm{f}^{-1}(\mathrm{~F})$ is closed in Y. Since every closed set is $s g^{*}$-closed $\mathrm{f}^{-1}(\mathrm{~F})$ is $\mathrm{s} g^{*}$-closed in X . Therefore f is $\mathrm{s} g^{*}$ -continuous.
Remark 3.13: The converse need not be true as seen from the following example.
Example 3.14: $\operatorname{Let} X=\{a, b, c\} \tau=\{\phi, X,\{a\}\}, Y=\{p, q\}$ and $\sigma=\{\phi,\{p\}, Y\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{c})=\mathrm{q}, \mathrm{f}(\mathrm{b})=\mathrm{p}$. Then f is $\mathrm{s} g^{*}$ - continuous. But f is not continuous since for the openset $G=\{p\}$ in $\mathrm{Y}, \mathrm{f}^{-1}(\mathrm{G})=\{b\}$ is not open in X .
Theorem 3.15: Let X and Y be any topological spaces and Y be a $T_{1 / 2}$ spaces. Then the composition $g o f: X \rightarrow Z$ of the $\mathrm{s} g^{*}$-continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ is also $\mathrm{s} g^{*}$ continuous.
proof: Let F be a closed in Z . Since g is $\mathrm{s} g^{*}$-continuous. $\mathrm{g}^{-1}(\mathrm{~F})$ is $\mathrm{s} g^{*}$ - closed in Y. But Y is $T_{1 / 2}$ space and so $\mathrm{g}^{-1}(\mathrm{~F})$ is closed. Since f is $\mathrm{s} g^{*}$-continuous. $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~F})\right)$ is $\mathrm{s} g^{*}$ - closed in X. But $\mathrm{f}^{-1}\left(g^{-1}(F)\right)=(g \circ f)^{-1}(\mathrm{~F})$. Therefore gof is $\mathrm{s} g^{*}$-continuous.

Remark 3.16:The following example shows that the above theorem neednot be true if Y is not $T_{1 / 2}$
Example 3.17:Let $X=Y=Z=\{a, b, c\}, \tau=$ $\{\phi, X,\{a, b\}\}, \sigma=\{\phi,\{a\},\{b, c\}, Y\}, \eta=\{\phi,\{a, c\}, Z\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$ Let $g:(Y, \sigma) \rightarrow(Z, \eta)$ be the identity map.Then f and g are $\mathrm{s} g^{*}$ - continuous. But gof is not a g continuous. Since $F=\{b\}$ is closed in Z. $\mathrm{g}^{-1}(\mathrm{~F})=\mathrm{F}$ and $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~F})\right)=\mathrm{F}$ is not g closed in X. Therefore gof is non $\mathrm{s} g^{*}$ - continuous.
Theorem 3.18: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a $\mathrm{s} g^{*}$ - continuous maps from a topological space X into a topological space Y and let H be a closed subset of X . Then the restriction $f /_{H}: H \rightarrow \mathrm{Y}$ is $\mathrm{s} g^{*}$ continuous where H is endowed with the relative topology
Proof: Let F be any closed subset in Y. Since f is $\mathrm{s} g^{*}$ - continuous. $\mathrm{f}^{-1}(\mathrm{~F})$ is $\mathrm{s} g^{*}$-closed in X.Levine[13]) has proved that intersection of a closed set is closed.Pari[25] has proved that intersection of two $\mathrm{s} g^{*}$-closed set is $\mathrm{s} g^{*}$ - closed set. Thus if $\mathrm{f}^{-1}(F) \cap H=$ H_{1} then H_{1} is a s g^{*}-closed set in X. Since $\left(f /{ }_{H}\right)^{-1}(F)=H_{1}$, it is sufficient to show that H_{1} is $\mathrm{s} g^{*}$-closed in H . Let G_{1} be any open set of H suchthat $G_{1} \supset H_{1}$. Let $G_{1}=G \cap H$ where G is open in X. Now $H_{1} \subset G \cap H \subset \mathrm{G}$.Since H_{1} is $\mathrm{s} g^{*}$ - closed in X. $\overline{H_{1}} \subset G$. Now $c l_{H}\left(H_{1}\right)=\bar{H}_{1} \cap H \subset G \cap H=G 1$ where $c l_{H}(A)$ is the closure of a subset $A \subset H$ in a subspace H of X . Therefore f / H is $s g^{*}$ - continuous.
Remark 3.19:In the above theorem the assumption of closedness of H cannot be removed as seen from the following example.
Example 3.20:Let $X=\{a, b, c\}, \tau=\{\phi,\{a\}, X\}, Y=$ $\{p, q\}$ and $\sigma=\{\phi,\{p\}, Y\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{c})=\mathrm{q}, \mathrm{f}(\mathrm{b})=\mathrm{p}$. Then f is $\mathrm{s} g^{*}$ - continuous. Now $H=\{a, b\}$ is not closed in X . Then f is $\mathrm{s} g^{*}$-continuous but the restriction $f /_{H}$ is not $\mathrm{s} g^{*}$ - continuous.Since for the closed set $F=\{q\}$ in Y. $\mathrm{f}^{-1}(F)=\{a, c\}$ and $f^{-1}(F) \cap H=\{a\}$ is not $\mathrm{s} g^{*}$ - closed in H .

4. PASTING LEMMA FOR SG* - CLOSED SETS

In this section we have introduce the concept of Pasting Lemma for $\mathrm{s} g^{*}$ - continuous maps in topological space.
Theorem 4.1: Let $X=A \cup B$ be a topological space with topology τ and Y be a topological space with topology σ. Let $f:\left(A, \tau /{ }_{A} \rightarrow(Y, \sigma)\right.$ and $g:\left(B, \tau /{ }_{B} \rightarrow(Y, \sigma)\right.$ be $s g^{*}$ continuous maps suchthat $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ for every $x \in A \cap B$. Suppose that A and B are $\mathrm{s} g^{*}$ closed in X . Then the combination $\alpha:(X, \tau) \rightarrow(Y, \sigma)$ is $\mathrm{s} g^{*}$ continuous.
Proof:Let F be any closed set in Y. Clearly $\alpha^{-1}(F)=f^{-1}(F) \cup$ $g^{-1}(F)=C \cup D$ where $C=f^{-1}(F)$ and $\mathrm{D}=\mathrm{g}^{-1}(\mathrm{~F})$. But C is $\mathrm{s} g^{*}$ closed in A and A is $\mathrm{s} g^{*}$ closed in X and so C is $\mathrm{s} g^{*}$ closed in X.Since previous paper proved that if $B \subset A \subset X$. B is $\mathrm{s} g^{*}$ closed in A and A is $\mathrm{s} g^{*}$ closed in X then B is $\mathrm{s} g^{*}$ closed in X . Simillary D is $\mathrm{s} g^{*}$ closed in X . Also $C \cup D$ is $\mathrm{s} g^{*}$ closed in X . Therefore $\alpha^{-1}(\mathrm{~F})$ is $\mathrm{s} g^{*}$ closed in X . Hence α is $\mathrm{s} g^{*}$ - continuous.

5. FURTHER STUDY ON STRONGLY G^{*} IRRESOLUTE MAPS

In this section we have introduce the continuation study on strongly g^{*}-irresolute maps in topological space.
Theorem 5.1:A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\mathrm{s} g^{*}$ - irresolute if and only if the inverse image of every $\mathrm{s} g^{*}$ - open set in $\mathrm{s} g^{*}$ is open in X . Proof:Assume that f is $\mathrm{s} g^{*}$-irresolute. Let A be any $\mathrm{s} g^{*}$-open set in Y. Then A^{c} is $\mathrm{s} g^{*}$ - closed in Y. Since f is $\mathrm{s} g^{*}$-irresolute , $\mathrm{f}^{-1}\left(A^{c}\right)$ is $\mathrm{s} g^{*}$-closed in X.But $\mathrm{f}^{-1}\left(A^{c}\right)=\mathrm{X}-\mathrm{f}^{-1}(A)$ and so $\mathrm{f}^{-1}(A)$ is $\mathrm{s} g^{*}$-open in X . Hence the inverse image of every $\mathrm{s} g^{*}$-open set in Y is $\mathrm{s} g^{*}$ - open in X . Conversely assume that the inverse image of every $\mathrm{s} g^{*}$ - open in Y is $\mathrm{s} g^{*}$ - open X . Let A be any $\mathrm{s} g^{*}$-closed set in Y. Then A^{c} is $\mathrm{s} g^{*}$ - open in Y. By assumption $\mathrm{f}^{-1}\left(A^{c}\right)$ is $\mathrm{s} g^{*}$ - open in X.But $\mathrm{f}^{-1}\left(A^{c}\right)=\mathrm{X}-\mathrm{f}^{-1}(\mathrm{~A})$ and so $\mathrm{f}^{-1}(\mathrm{~A})$ is $\mathrm{s} g^{*}$-closed in X . Therefore f is $\mathrm{s} g^{*}$-irresolute.

Theorem 5.2: A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\mathrm{s} g^{*}$-irresolute then it is $\mathrm{s} g^{*}$ -continuous .
Proof:Assume that f is $\mathrm{s} g^{*}$ - irresolute. Let F be any closed set in Y. Since every closed set is $\mathrm{s} g^{*}$ - closed. F is $\mathrm{s} g^{*}$ - closed in Y. Since f is $\mathrm{s} g^{*}$-irresolute, $f^{-1}(\mathrm{~F})$ is $\mathrm{s} g^{*}$ - closed in X. Therefore f is $\mathrm{s} g^{*}$ - continuous.
Remark 5.3: The converse neednot be true as seen from the following example
Example 5.4:Let $X=Y=\{a, b, c\} \tau=$ $\{\phi,\{a\},\{c\},\{a, c\}, X\}$ and $\sigma=\{\phi,\{a\}, Y\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{c})=\mathrm{a}$, and $\mathrm{f}(\mathrm{b})=\mathrm{b}$. Then f is $\mathrm{s} g^{*}$ - continuous. However $\{a, c\}$ is $\mathrm{s} g^{*}$ - closed in Y but f^{-1} $\{a, c\}=\{a, c\}$ is not $\mathrm{s} g^{*}$ closed in X . Therefore f is not $\mathrm{s} g^{*}$ -irresolute.
Theorem 5.5: Let X, Y and Z be any topological spaces. For any $\mathrm{s} g^{*}$ - irresolute map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and any $\mathrm{s} g^{*}$ - continuous map $\mathrm{g}: \mathrm{Y}$ $\rightarrow \mathrm{Z}$ the composition gof: $\mathrm{X} \rightarrow \mathrm{Z}$ is $\mathrm{s} g^{*}$ - continuous
proof: Let F be any closed set in Z.Since g is $\mathrm{s} g^{*}$ - continuous $g^{-1}(\mathrm{~F})$ is $\mathrm{s} g^{*}$-closed in Y. Since f is $\mathrm{s} g^{*}$-irresolute. $f^{-1}\left(g^{-1}(\mathrm{~F})\right)$ $=(g \circ f)^{-1}(\mathrm{~F})$.Therefore gof is $\mathrm{s} g^{*}$-continuous
Theorem 5.6: If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ from a topological space X into a topological space Y is bijective,open and $\mathrm{s} g^{*}$-continuous then f is $\mathrm{s} g^{*}$ irresolute
Proof: Let A be a $\mathrm{s} g^{*}$-closed set in Y. Let $f^{-1}(A) \subset O$ where O is open in X . Therefore $\mathrm{A} \subset f(0)$ holds. Since $\mathrm{f}(0)$ is open and A is s g^{*} - closed in Y. $\bar{A} \subset f(0)$ holds and hence $f^{-1}(\bar{A}) \subset O$.
Since f is $\mathrm{s} g^{*}$-continuous and \bar{A} is closed in Y. $\overline{f^{-1}(\bar{A})} \subset O$ and so $\overline{f^{-1}(A)} \subset O$.Therefore $f^{-1}(\mathrm{~A})$ is $\mathrm{s} g^{*}$-closed in X .Hence f is $\mathrm{s} g^{*}$-irresolute.
Remark 5.7: The following examples show that no assumption of above theorem can be removed
Example 5.8: Let $X=Y=\{a, b, c\}, \tau=$ $\{\phi,\{a\},\{c\},\{a, c\}, X\}$ and $\sigma=\{\phi,\{a\},\{a, b\}, Y\}$. Let $f:$ $(X, \tau) \rightarrow(Y, \sigma)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{c})=\mathrm{a}$ and $\mathrm{f}(\mathrm{b})=\mathrm{b}$. Then f is $\mathrm{s} g^{*}$ - continuous and open but it is not bijective and f is not $\mathrm{s} g^{*}$-irresolute since for the $\mathrm{s} g^{*}$-closed set $G=\{a, c\}$ in Y. $f^{-1}(F)=\{a, c\}$ is not $\mathrm{s} g^{*}$ - closed in X.

Example 5.9: Let (X, τ) and (Y, σ) be the topological spaces in Example 2.2 the identity map $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\mathrm{s} g^{*}$ continuous ,bijective and not open. And f is not $\mathrm{s} g^{*}$-irresolute. Since for the $\mathrm{s} g^{*}$ - closed set $G=\{a, c\}$ in $\mathrm{Y}, f^{-1}(\mathrm{G})=\mathrm{G}$ is not $\mathrm{s} g^{*}$-closed in X.
Example 5.10: Let $X=Y=\{a, b, c\}, \tau=\{\phi,\{a\}, X\}$ and σ be the discrete topology of Y.Then the identity map $f:(X, \tau) \rightarrow(Y, \sigma)$ is bijective open and not $\mathrm{s} g^{*}$ - continuous and f is not $\mathrm{s} g^{*}$-irresolute since for the $\mathrm{s} g^{*}$ - closed set $G=\{a\}$ in $\mathrm{Y}, f^{-1}(\mathrm{G})=\mathrm{G}$ is not $\mathrm{s} g^{*}$-closed in X.The following two examples shows that the concept of irresolute maps and $s g^{*}$ - irresolute maps are independent of each other.

Example 5.11:Let $X=Y=\{a, b, c\}, \tau=$ $\{\phi,\{a\},\{b\},\{a, b\}, X\}$ and $\sigma=\{\phi,\{a\},\{b, c\}, Y\}$ Then the identityu map $f:(X, \tau) \rightarrow(Y, \sigma)$ is irresolute since for the $\mathrm{s} g^{*}$ closed set $\mathrm{G}=\{\mathrm{a}\}$ in $\mathrm{Y} f^{-1}(\mathrm{G})$ is not $\mathrm{s} g^{*}$-closed in X .
Example 5.12: Let (X, τ) and (Y, σ) be the spaces defined in above. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a map defined by $\mathrm{f}(\mathrm{a})=\mathrm{c}$, $\mathrm{f}(\mathrm{b})=\mathrm{b}$ and $\mathrm{f}(\mathrm{c})=\mathrm{a}$. Then f is $\mathrm{s} g^{*}$ - irresolute, but it is not irresolute. Since for the $s g^{*}$-closed set. $\mathrm{G}=\{\mathrm{b}\}$ in $Y, f^{-1}(\mathrm{G})=\mathrm{G}$ is not $\mathrm{s} g^{*}$ -closed in X.

6. REFERENCES

[1] Arya S.P and Gupta R On Strongly Continuous mappings Kyungpook Math.J.14(1974),131-143.
[2] Balachandran . K, Sundaram .P and Maki. H Generalized locally closed sets and GLC -continuous functions, Indian J.Pure.Appl. Math.27(1996),235-244.
[3] Balachandran .K,Sundaram P and Maki.H On Generalized continuous maps in Topological Spaces,Mem.Fac.Sci.Kochi.Univ.Math.12(1991),5-13.
[4] Dunham.W,New closure operator for Non T_{1} Topologies,Kyungpook Math.J.22(1982),55-60.
[5] Lang P.E and Herington L.L.Strongly θ continuous functions ,J.Korean.Math.Soc.,18(1981)21-28.
[6] Levine N. Strong continuity in topological spaces,Amer.Math.Monthly,67(1960), 269
[7] Maki H Munakata and T.Noiri ,The Pasting Lemma for α continuous maps,GLasnik Mathematical Vol 23(43)(1988),157-163.
[8] Munshi,B.M. and Bassan,D.S.Super continuous mappings,Indian J.Pure Appl.Math.13(1982),229-236.
[9] Noiri,T.,Between continuity and Weak Continuity Bull.Un.Mat.Ital.9(1974)647-654.
[10] Noiri,T.Super continuity and some strong forms of continuity.Indian J.Pure Appl.Mat.15(1984)240-250.
[11] Noiri ,T .Strong form of continuity in topological spaces Rend.Circ.Math.Palermo,(1986)107-113.
[12] Parimelazhagan.R and Subramonia Pillai.V,Strongly g^{*} - closed sets in topological spaces Int.Journal of Math.Analysis,Vol.6,2012,No.30,1481-1489.
[13] Subramonia Pillai.V and Parimelazhagan.R,'Strongly g*irresolute and homeomorphism in Topological spaces' - International Journal of Recent Scientific Research Vol.4, Issue 1,pp.005-007,January,2013
[14] Sundaram P Studies on Generalizaations of Continuous maps in topological spaces,Ph.D Thesis,Bharathiar University ,CBE(1991).
[15] Tong ,J.A Decomposition of continuity in topological spaces.Acta. Math.Hungar,54(1989)51-55.

