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ABSTRACT

The objective of the present paper is to introduce new classes of
functions called Strongly g*-continuous maps .We obtain some
characterizations of these classes and several properties are stud-
ied.Also we prove Pasting lemma for Strongly g*-continuous maps.
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1. INTRODUCTION

Strong forms of continuous maps have been introduced
and investigated by several mathematicians.Strongly con-
tinuous maps,perfectly continuous maps,completely con-
tinuous maps,super continuous maps were introduced by
Levine[6],Noiri[9],Munshi[8] and Tong[15]respectively.
Noiri[10] introduced a new concept called strongly € continuity
which is stronger than continuity.Lang[5] studied strongly 6
continuous functions.Balachandran et al[2] have introduced and
studied generalized semi-continuous maps,semi-locally con-
tinuous maps ,semi -generalized locally continuous maps and
generalized locally continuous maps.Sundaram[14] introduced
and studied g-continuous functions.Maki[7]studied the Pasting
Lemma for a- continuous maps.Parimelazhagan[12]introduced
and studied strongly g*-closed sets.

In this paper we introduce and study the concepts of a new class
of maps,namely Strongly g*-continuous maps which includes
the class of continuous maps .Also we prove a pasting lemma
for strongly g*-continuous maps.

2. PRELIMINARIES

Before entering into our work, we recall the following definitions
which are due to Levine.

Definition 2.1[6]: A function f: X —Y is said to be strongly
continuous if f~1(V) is both open and closed in X for each subset
VofY.

Definition 2.2[1]:A function f: X — Y is said to be completely
continuous if f~*(V)is regular open in X for each open set V of
Y

Definition 2.3[11]:A function f: X —Y is said to be perfectly
continuous if f~1(V) is both open and closed in X for each open
set Vof Y.

Definition 2.4[9]: A function f: X —Y is said to be a continuous
or strongly semi continuous if f~1(V)is « open in X for each
open set V of Y.
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Definition 2.5[3]: A function f: X —Y is said to be generalized
continuous(g-continuous) if f~1(V) is g-open in X for each open
setVof Y

Definition 2.6[12]: Let (X, 7) be a topological space and A be
its subset , then A is strongly g*-closed set if cl(int(A)) C U
whenever A C U and U is g-open.

Definition 2.7[13]: A map f: X — Y from a topological space
X into a topological space Y is called strongly g* irresolute( sg*
-irresolute) if the inverse image of every sg*- closed setin Y is
sg* -closed in X.

3. STRONGLY G*-CONTINUOUS FUNCTIONS

In this section we have introduce the concept of strongly g*-
continuous functions in topological space.

Definition 3.1:Let X and Y be topological spaces. A map f: X
— Y is said to be strongly g* continuous ( sg* - continuous) if
the inverse image of every open set Y is sg*-open in X.
Theorem 3.2: If a map f: X —Y from a topological space X in
to a topological space Y is continuous then it is sg*- continuous

Proof: Let V be an open set in Y.Since f is continuous f~1(v)
is open is X .As open set is sg*- open ,f~1(v) is sg*-open in X.
Therefore f is sg* -continuous.

Remark 3.3:The converse of the above theorem neednot be true
as seen from the following example.

Example 3.4: Let X=Y= {ab,c} with 7 = {¢, X, {a}}
and 0 = {¢,Y,{b},{b,c}} Let f :X— Y be defined by
f(a)=b,f(b)=c,f(c)=a then f is sg*-continuous but not continuous
as the inverse image of the open set {b,c} in Y is {a,b} is not
open in X.

Theorem 3.5: A map f:X—Y is sg* -continuous if and only if
the inverse image of every closed set in Y is sg*- closed in X.
Proof:Let F be closed in Y.Then F¢ is open in Y. Since f is sg*-
continuous,f~!(F)is sg*-open in X. But f~}(F°) =X - f~1(F) and
so f~1(F) is sg*-closed in X.

Conversely assume that the inverse image of every closed set in
Y is sg*-closed in X.Let V be an open set in Y.Then V¢ is closed
in Y. By hypothesis f~1(V¢)= X - f~1(V) is sg*- closed in X and
so f~1(V) is sg*- open in X. Thus f is sg*- continuous.
Theorem 3.6: Let X and Y be topological spaces.If a map f: X
— Y is sg*-continuous then it is g continuous .

Proof: Assume thata map f : X — Y is sg*-continuous. Let V
be an open set in Y.Since fis continuous f~1(V) is sg* -open and
hence g- open in X.Therefore f is g-continuous.

Remark 3.7: The converse of the above theorem need not be
true as seen from the following example.

Example 3.8: Let X = Y = {a,b,c} with 7 =
{¢,X,{a},{a,b}} and 0 = {#,Y,{a,c}} and f be identity
map. Then f is g-continuous but not sg*-continuous as the inverse
image of the openset{a, c} in Y is {a, ¢} in X is not sg*-open.
Theorem 3.9: Let f : (X,7) — (Y, 0) be a map from a topo-
logical space (X, 7) into a topological space (Y, o)
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()The following statements are equivalent. a)f is sg*- continu-
ous. b).The inverse image of each open set in Y is sg*-open in
X.

@{).If f : (X,7) — (Y, 0) is sg*-continuous then f(cl*(A)) C
f(A) for every subset A of X.(Here cl*(A) is the closure of A as
defined by Dunham[4]).

iii).(a)For each point z € X and each open set V containing
f(x),there exist a sg*-open set U containing x suchthat (V) C V/

(b)For every subset A of X, f(cl*(A)) C f(A) holds (c)The map
f (X, 7) — (Y, o) from a topological space( X, 7*)defined by
Dunham[6] into topological space (Y, o) is continuous.

Proof: (i) Assume that f: X —Y is sg* continuous. Let G be open
in Y. Then G¢ is closed in Y. Since f is sg* continuous f~1(G¢) is
sg*-closed in X. But f~1(G¢)=X - {1(G).Thus X - f"1(G) is sg*-
closed in X and so f~1(G) is sg*-open in X. Therefore (a) implies
(b). Conversely assume that the inverse image of each open set in
Y is sg*-open in X. Let F be any closed set in Y. Then F€ is open
in Y. By assumption, f~1(F¢) is sg* open in X. But f~1(F¢) = X
- f~1(F)). Thus X - f~1(F) is sg*-open in X and so f~1(F) is sg* -
closed in X. Therefore f is sg*-continuous. Hence(b) implies (a).
Thus (a) and (b) are equivalent.

(i1). Assume that f is sg* continuous. Let A be any subset of X.

Then f(A) is closed set in Y. Since f is sg* continuous,f~! f(A)
is sg* closed in X and it contains A. But cl*(A) is the intersec-
tion of all sg* -closed sets containing A. Therefore cl*(A) C
F71(f(A) and so f(clI*(A)C f(A) Gii). (a) = (b) Let Y €
f(cl*(A)) and let V be any open neighbourhood of Y. Then
there exist a point € and a sg* -openset V suchthat f(x)=y,
z€V,zecl*(A)and f(v) C V.Sincez € cl*(A),VNA#¢
holds and hence f(A) NV # ¢. Therefore we have y = f(z) €
(4)

(b) = (a). Let z € X and V be any openset containing f(x).
Let A=f~1(V¢),then z ¢ A. Now cl*(A) C f~1(f(cl*(A))) C
FHVe) =A. iec(A) € A But A C cl*(A) Therefore
A=cl*(A),then since = ¢ cl*(A) there exist a sg*-openset U con-
taining x suchthat U N A = ¢ and hence f(U) C f(A°) C V.
(b) = (c). By assumption f(cl*(A)) C f(A). Therefore f is
sg* continuous. (c)=-(b)Let A be any subset of X. Then f(A)
is a closed set in Y. Since f is continuous f~!(f(A)is closed
in X. Now A C f1(f(4) = cd*(A) C c*f1(f(4) =
FL(f(A).Since f1(f(A)isclosedin X.= f(cl*(A)) C f(A)
Remark 3.10: The converse of the theorem 3.9(ii) need not be
true as seen from the following example

Example 3.11: Let X =Y = {a,b,c},7 = {¢,{a}, X} and
oc={¢,Y,{a,c}}. Let f : (X,7) — (Y,0) be a map defined
by f(a)=b.f(b)=a and f(c)=c.Then for every subset A.f(cl*(A))
Theorem 3.12:If a map f:X —Y from a topological space X into
a topological space Y is continuous then it is sg*- continuous.
Proof:Let f: X —Y be continuous . Let F be any closed set in Y.
Then the inverse image f~1(F) is closed in Y. Since every closed
set is sg* -closed f~1(F) is sg*-closed in X. Therefore f is sg*
-continuous.

Remark 3.13: The converse need not be true as seen from the
following example.

Example 3.14: LetX = {a,b,c}7 = {6, X, {a}},Y = {p,q}
and o = {¢,{p},Y}. Let f : (X,7) — (Y, 0) be defined by
f(a)=f(c)=q.f(b)=p. Then f is sg*- continuous. But f is not con-
tinuous since for the openset G = {p} in Y,{~1(G)= {b} is not
open in X.

Theorem 3.15: Let X and Y be any topological spaces and Y
be a Ty /5 spaces.Then the composition gof : X — Z of the
sg* -continnous maps f : X — Y andg : Y — Z is also sg*-
continuous.

proof: Let F be a closed in Z. Since g is sg* -continuous. g~*(F)
is sg*- closed in Y. But Y is T} /> space and so gfl(F) is closed.
Since f is sg* -continuous. f~*(g~1(F)) is sg*- closed in X. But
f=1(g71(F)) = (gof) 1(F). Therefore gof is sg* -continuous.
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Remark 3.16:The following example shows that the above the-
orem neednot be true if Y is not 77y /5

Example 3.17:Let X = Y = Z = {a,b,c} , =
16,5, (0,01} 0 = {6, {a}, 1b.c},Y} .0 = (6, 0.}, 7}
Let f : (X,7) — (Y, 0) be defined by f(a)=c, f(b)=b ,f(c)=c
Let g : (Y,0) — (Z,n) be the identity map.Then f and g are
sg*- continuous . But gof is not a g continuous. Since F' = {b}
is closed in Z. g~1(F)=F and f~!(g~!(F))=F is not g closed in X.
Therefore gof is non sg*- continuous.

Theorem 3.18: Let f: X —Y be a sg*- continuous maps from
a topological space X into a topological space Y and let H be
a closed subset of X. Then the restriction [/ : H —Y is sg*
continuous where H is endowed with the relative topology
Proof: Let F be any closed subset in Y. Since f is sg*- continuous.
f~1(F) is sg* -closed in X.Levine[13]) has proved that intersec-
tion of a closed set is closed.Pari[25] has proved that intersection
of two sg* -closed set is sg*- closed set. Thus if f"1(F) N H =
H, then H; is a sg* -closed setin X.Since (f/x) ' (F) = Hy,it
is sufficient to show that H; is sg*-closed in H. Let G; be any
open set of H suchthat G; D H;. Let G; = G N H where G is
open in X.Now H; C GN H C G.SinceH, is sg*- closed in X.
H, C G.Nowcly(H)) = H NH C GNH = G1 where
cli (A) is the closure of a subset A C H in a subspace H of X.
Therefore f/H is sg*- continuous.

Remark 3.19:In the above theorem the assumption of closed-
ness of H cannot be removed as seen from the following exam-
ple.

Example 3.20:Let X = {a,b,c} , 7 = {¢,{a}, X}, Y =
{p.at and o = {g, {p}, Y} Let f : (X,7) — (Y, ) be de-
fined by f(a)=f(c)=q, f(b)=p. Then f is sg*- continuous. Now
H = {a,b} is not closed in X. Then f is sg* -continuous but
the restriction f/p is not sg*- continuous.Since for the closed
set F ={q}inY.fY(F)={a,c}and fH(F)NH = {a}is
not sg*- closed in H.

4. PASTING LEMMA FOR SG* - CLOSED SETS

In this section we have introduce the concept of Pasting Lemma
for sg*- continuous maps in topological space.

Theorem 4.1: Let X = A U B be a topological space with
topology 7 and Y be a topological space with topology o. Let
f:(A7/a— (Y,o)and g : (B,7/5 — (Y,0) be sg* con-
tinuous maps suchthat f(x)=g(x) for every x € A N B. Sup-
pose that A and B are sg* closed in X. Then the combination
a: (X,7) = (Y,0)is sg* continuous.

Proof:Let F be any closed setin Y. Clearly o' (F) = f~1(F)U
g (F) = CUD where C = f~!(F) and D=g~!(F).But C is
sg* closed in A and A is sg* closed in X and so C is sg* closed
in X.Since previous paper proved that if B C A C X.B is sg*
closed in A and A is sg* closed in X then B is sg* closed in X.
Simillary D is sg* closed in X. Also C' U D is sg* closed in X.
Therefore a1 (F) is sg* closed in X. Hence « is sg*- continuous.

5. FURTHER STUDY ON STRONGLY
G*IRRESOLUTE MAPS

In this section we have introduce the continuation study on
strongly g*-irresolute maps in topological space.

Theorem 5.1:A map £:X —Y is sg*- irresolute if and only if
the inverse image of every sg*- open set in sg* is open in X.
Proof:Assume that f is sg* -irresolute. Let A be any sg* -open
set in Y. Then A€ is sg*- closed in Y. Since f is sg* -irresolute
71 (A°) is sg* -closed in X.But f! (A¢) = X - f"1(A) and
so f~1(A) is sg* -open in X. Hence the inverse image of every
sg* -open set in Y is sg*- open in X. Conversely assume that
the inverse image of every sg*- open in Y is sg*- open X. Let
A be any sg* -closed set in Y. Then A€ is sg*- open in Y. By
assumption =1 (A°) is sg*- open in X.But f~1 (A4°) =X -f~1(A)
and so f~1(A) is sg* -closed in X. Therefore f is sg*-irresolute.
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Theorem 5.2: A map f: X —Y is sg* -irresolute then it is sg*
-continuous .

Proof:Assume that f is sg*- irresolute . Let F be any closed set
in Y. Since every closed set is sg*- closed . F is sg*- closed in Y.
Since fis sg* -irresolute , f ~1(F) is sg*- closed in X. Therefore f
is sg*- continuous.

Remark 5.3: The converse neednot be true as seen from the fol-
lowing example

Example 54:let X = Y = {abec} 7 =
{6.{a}. {c}. {a,c}, X} and o = {p.{a},Y}. Let
f:(X,7) = (Y, o) be defined by f(a)=f(c)=a ,and f(b)=b. Then
f is sg*- continuous. However {a, c} is sg*- closed in Y but f~!
{a,c} = {a,c} is not sg* closed in X. Therefore f is not sg*
-irresolute.

Theorem 5.5: Let X,Y and Z be any topological spaces. For any
sg*- irresolute map f:X —Y and any sg*- continuous map g:Y
—Z the composition gof:X —Z is sg*- continuous

proof: Let F be any closed set in Z.Since g is sg*- continuous
g 1(F)is sg* -closed in Y. Since fis sg* -irresolute . f~1(g~1(F))
=(gof)~(F).Therefore gof is sg*-continuous

Theorem 5.6: If f:X —Y from a topological space X into a topo-
logical space Y is bijective,open and sg*-continuous then fis sg*-
irresolute

Proof: Let A be a sg* -closed setin Y. Let f~1(A) C O where O
is open in X. Therefore A C f(0) holds. Since f(0) is open and
Ais sg*- closed in Y. A C f£(0) holds and hence f~*(A) C O.

Since fis sg* -continuous and A is closed in Y. f~*(A) C O and

so f~1(A) C O.Therefore f~1(A) is sg* -closed in X .Hence f
is sg*-irresolute.

Remark 5.7: The following examples show that no assumption
of above theorem can be removed

Example 5.8: Let X = Y {a,b,c} , T

16 {a}, (¢} {0}, X} and o = {6 {a}, {0, b}, V7 Let f
(X,7) — (Y,0) be defined by f(a)=f(c)=a and f(b)=b. Then
f is sg*- continuous and open but it is not bijective and f is
not sg* -irresolute since for the sg* -closed set G = {a,c} in
Y.f 1 (F) = {a, c} is not sg*- closed in X.

Example 5.9: Let (X, 7) and (Y, o) be the topological spaces
in Example 2.2 the identity map f : (X,7) — (Y, 0) is sg*-
continuous ,bijective and not open. And f is not sg* -irresolute.
Since for the sg*- closed set G = {a,c} in Y, 1(G)=G is not
sg* -closed in X.

Example 510: LetX = Y = {a,b,c} .7 = {¢,{a}, X}
and o be the discrete topology of Y.Then the identity map
f: (X,7) = (Y, 0) is bijective open and not sg*- continuous
and f is not sg* -irresolute since for the sg*- closed set G = {a}
in Y,f~1(G)=G is not sg* -closed in X.The following two exam-
ples shows that the concept of irresolute maps and sg*- irresolute
maps are independent of each other.
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Example 5.11:Let X = Y = {a,b,c} , =
{¢,{a},{b},{a,b}, X} and 0 = {9, {a} {b, c} Y} Then the
identityu map f : (X, 7) — (Y, 0)is irresolute since for the sg*-
closed set G={a} in Y f1(G) is not sg* -closed in X.

Example 5.12: Let (X, 7) and (Y, o) be the spaces defined in
above. Let f : (X,7) — (Y, o) be a map defined by f(a)=c,
f(b)=b and f(c)=a.Then f is sg*- irresolute, but it is not irresolute.
Since for the sg* -closed set. G={b} in Y, f~}(G)=G is not sg*
-closed in X.
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