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ABSTRACT 

Porosity of hydrocarbon bearing formations is a crucial 

parameter for reservoir characterization, reserve estimation, 

planning for completion, and geomechanical and geophysical 

studies. Accurate determination of porosity from laboratory 

core analysis is highly cost, time, and people intensive. 

Therefore, the quest for a rapid, cost-effective, and efficient 

method of determining porosity is inevitable. Conventional 

well log data are available in all wells and provide cheap 

continuous information. In this study, an improved strategy 

was followed to formulate conventional well log data (inputs) 

into core porosity (output) using the genetic optimized neural 

network (GONN). Firstly, back-propagation (BP) algorithm, 

the conventional learning method of neural network, was used 

to extract the formulation between inputs/output data space. 

Then, neural network was trained through the use of genetic 

algorithm (GA). Comparison between BP learning and GA 

demonstrated the effectiveness of GONN. It was deduced that 

GA enforces the performance function of neural network to 

converge to global minimum contrary to BP which frequently 

traps in local minima. 
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1. INTRODUCTION 
Porosity refers to the void space portion of the rocks. 

Characterization of reservoir porosity is a very complex task 

due to its inherent heterogeneity [1]. However, its role in 

petroleum industry, especially in economic success of a 

reservoir development, makes the reservoir porosity of great 

attention. Core analysis is the oldest and still practiced 

technique for accurate measurement of porosity. However, it 

is highly cost, time, and people intensive. Therefore, this type 

of data is scars in hydrocarbon fields. On the contrary, 

conventional well log data are available in almost all wells. 

These logs contain invaluable implicit information about the 

hydrocarbon formations. Several researchers have tried to 

estimate reservoir properties from conventional well log data 

[2, 3]. In this study, neural network is employed to reveal 

what the conventional well log data are hiding, i.e. porosity. 

Associated weights and biases of neural network play a 

remarkable role in performance of the neural network. Back-

propagation is the prevalent way of determining these 

parameters. This study proposes genetic optimized neural 

network in comparison with back-propagation neural network. 

Training efficiency of genetic algorithm (GA) is compared 

with back-propagation (BP). Results indicated the superiority 

of GA to BP in training the neural network. In this study, 

following three conventional well logs were chosen as inputs: 

 RHOB log measures the bulk density of rocks. 

Records of RHOB are governed by lithology and 

porosity. As the porosity decreases, portion of solid 

grains increases and consequently the RHOB 

increases. 

 Neutron porosity (NPHI) measures the hydrogen 

concentration in the formation. Since fluids filled 

the pore space of the rocks are the sole sources of 

hydrogen occurrence, NPHI has a relationship with 

core porosity. 

 Sonic transit time (DT) is reciprocal of 

compressional wave velocity and is dominated by 

porosity, i.e. DT increases as porosity increases. 

2. NEURAL NETWORK TRAINING: 

BACK-PROPAGATION LEARNING VS. 

GENETIC ALGORITHM 
Neural network is a computational tool which emulates the 

biological cognition of human's brain for both classification 

and regression purposes. Assuming a three-layered neural 

network with n input layer nodes, m hidden layer nodes, and 

one output layer node; neural network utilizes the following 

mathematics for formulating inputs to the output. 

 111   mmnnm netHLIbIIW (1) 

)( 11   mHLm netHLfOHL  (2) 

111111   netOLbOHLOW mm (3) 

)( 11 netOLfONN OL  (4) 

Where, IW, I, OW, Ib, and b refer to initial weights, input 

vector, output layer weights, initial biases, and output layer 

bias, respectively. netHL and netOL are net input vectors of 

hidden layer and output layer, correspondingly. OHL and 

ONN are in turn output vectors of hidden layer and neural 

network's output. ƒHL and ƒOL refer to transfer functions of 

hidden layer and output layer, respectively. These functions 

are defined as: 
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In above equations, all weights and biases are unknown. 

During the training process, neural network would be capable 

of learning from training data and adjusting its weights and 

biases. This process enables the neural network to extract a 

satisfying formulation between inputs and output. Back-

propagation algorithm is a popular method which is routinely 

used for training of neural network. The simplest 

implementation of back-propagation learning updates weights 

and biases in the direction in which the performance function 

(half of mean square error (MSE) of prediction) decreases 

most rapidly [4]. The following mathematics justify that 

performance function decreases most rapidly in direction of 

the negative of gradient. Supposing tj is the target value of jth 

node, oj is the real value jth node, and wij is connection weight 

and bias from ith node to jth node; performance function is 

defined as following equation. 
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Net input of jth node is equal to: 
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Assuming ƒj is transfer function of jth node, the real output of 

jth node is defined as: 

)( jjj netfo     (9) 

Use of the chain rule for derivative results in the following 

equation: 
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By substituting equation 8 into the second term of equation 

10, the following equation is deduced: 
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This equation means that modification of weights and biases 

in direction proportional to negative of gradient leads to 

decreasing of performance function. Generally, modification 

of weights and biases follows the succeeding equation: 

tt gtwtw  )()1(   (13) 

Where, w (t+1) and w (t) refer to weights and biases of (t+1) th 

and tth iterations, respectively. t and tg are learning rate 

and gradient in tth iteration, correspondingly. Up to now, 

several methodologies have been presented by some 

researchers for implementing equation 13. They tried to 

propose fast and accurate ways of assigning and calculating 

learning rate and gradient. These attempts lead to several 

training functions, including Bayesian regularization (BR), 

Levenberg-Marquardt (LM), BFGS Quasi-Newton (BFG), 

Resilient Backpropagation (RP), Conjugate Gradient with 

Powell/Beale Restarts (CGB), Scaled Conjugate Gradient 

(SCG), Fletcher-Powell Conjugate Gradient (CGF), Polak-

Ribiére Conjugate Gradient (CGP), One Step secant (OSS), 

and Variable Learning Rate Backpropagation (GDX). More 

details about these training functions can be found in a 

number of papers and reviews [5-13].  

 

Figure 1: Graph showing the difference between local 

minimum and global minimum. 

According to equation 13, in local minima where gradient 

approaches to zero weights and biases tend to remain 

unchanged. Based on this equation, back-propagation 

algorithm cannot distinguish between local minima and global 

minimum (difference between local minimum and global 

minimum is illustrated in Figure 1). Therefore, it’s a common 

trouble for neural networks to be trapped in local minima. 

Consequently, the extracted formulation between inputs and 
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output is not the optimal one. It means all constructed neural 

network associated with uncertainty. To eliminate this flaw, it 

is necessary to find another way of assigning connection 

weights and biases for neural network which is capable of 

escaping from local minima. 

Table.1. Statistics of Datasets used in this study. 

 

Min Max Mean sigma 

R2 

with 

output 

NPHI 0.0046 0.3140 0.1138 0.0642 0.5511 

RHOB 2.1071 2.8280 2.6084 0.1155 0.4054 

DT 40.7304 88.2162 60.5129 7.9745 0.3597 

Porosity 0.007 0.333 0.1028 0.0534 1 

 

Genetic algorithm is a method for solving widespread 

optimization problems. Genetic algorithm produces the global 

minimum of introduced fitness function (function that its 

global minimum is sought). Therefore, a function meant to be 

solved should be rearranged such that the global minimum of 

rearranged function and sought point of original function are 

coinciding. Genetic algorithm follows an interesting strategy 

for finding the global minimum. It randomly gathers a 

population of probable solutions (chromosomes) and asses 

each based on fitness function. The assessment assigns a score 

to each chromosome which is used for their ranking. Top-

ranked chromosomes are then selected and genetic operations 

are applied to them for generating chromosomes of next 

population. Genetic operators include cross-over, mutation, 

inversion and elite preservation. All chromosomes are codded 

into binary strings. If all zeros converted to ones and vice 

versa, it is called inversion operator. If two chromosomes 

randomly break from one or more parts and switch their 

brocken parts, they will produce two new chromosomes. This 

procedure is called cross-over. Mutation refers to stochastic 

change of one or more digits of chromosomes. Elites are those 

chromosomes with the lowest value of fitness function (or the 

highest score). The aforementioned genetic operators provide 

a stochastic search capability for genetic algorithm. 

Mentioned process is repeated in successive iterations 

evolving toward optimal chromosome. Selection of initial 

population and generation of succeeding populations all 

exploit a stochastic nature. In other words, final result of 

genetic algorithm is independent of the points that genetic 

algorithm starts from. In order to train neural network with 

genetic algorithm, the performance function of neural network 

(equation 7) should be introduced into genetic algorithm. It 

can be stated in following form, too. 
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Genetic algorithm would be able to extract all associated 

weights and biases for neural network through the stochastic 

optimization of equation 14. By use of genetic algorithm 

instead of back-propagation algorithm, risk of sticking in local 

minima will be eliminated. 

3. RESULTS & DISCUSSION 
At the first stage of this study, quality of datasets was checked 

and bad hole intervals were removed by processing of 

conventional well log data. Introducing noisy data make 

confused the neural network. Therefore, it was necessary to 

remove noisy data by removing bad hole intervals. Table 1 

indicates the statistics of inputs/output datasets used in this 

study. The underlying dependency between inputs and output 

is mention in Table 1 using the concept of coefficient of 

determination (R-Square). In next step, a three-layered back-

propagation neural network was constructed for estimating 

porosity from conventional well log data. Framework of 

neural network was composed of three input nodes, five 

hidden nodes, and one output nodes. TANSIG and PURELIN 

transfer functions were used for hidden layer and output layer, 

respectively. TANSIG transfer function is mathematically 

equivalent to hyperbolic tangent function, and PURELIN 

transfer function is equivalent to function “f(x) =x”. The 

constructed neural network was trained using the Levenberg-

Marquardt training function (one of the popular 

implementation of back-propagation algorithm). 

 

Figure 2: Graph showing mean square of error for 

training and test data versus epochs. Back-propagation 

algorithm defines points A and B as local minimum and 

global minimum, respectively. 

 Figure 2 illustrates the mean square error of training data and 

test data during the learning procedure of neural network. It 

shows the mean square error (MSE) of constructed model is 

equal to 0.03373 for normalized data. The learning process 

ceased in point B and back-propagation algorithm defined the 

point B as global minimum. This figure indicates that BP 

could escape from the point A, which is a local minimum. 

After training the neural network using the back-propagation 

algorithm, performance of the constructed model was 

evaluated by introducing test data. Figure 3 shows the quality 

of estimation using the concept of correlation coefficient. This 

figure indicates the neural network with back-propagation 

algorithm was capable of satisfyingly estimate core porosity 

from conventional well log data. The deviation between fitted 

line and ideal line in Figure 3 is related to high-valued core 

porosity. In other words, lack of sufficient representative high 

porosity data cause this error. 
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Figure 3: Crossplot showing the correlation coefficient 

between core porosity and BPNN predicted values in 

normalized scale. 

 

Figure 4: Best and mean values of fitness function for 

GONN model during the 1000 generations. 

In the latter stage, an unfilled skull of neural network 

(equation 14) was introduced to genetic algorithm. Genetic 

algorithm was capable of filling this skull through its 

stochastic search capability, i.e. all weights and biases of 

neural network were extracted by virtue of genetic algorithm. 

This strategy is called genetic optimized neural network 

(GONN). To construct the GONN, equation 14 was defined as 

fitness function. A population of twenty random 

chromosomes was employed to initiate the evolutionary 

process through the use of genetic operators, including cross-

over, mutation, inversion and elite preservation. Figure 4 

illustrates the best and mean fitness function scores for each 

population of chromosomes during the 1000 generations of 

genetic algorithm. It indicates the mean square error of 

GONN for normalized data is equal to 0.033222. Figure 5 

indicates the correlation coefficient between measured core 

porosity and GONN predicted values. It is observed that 

GONN significantly improved the accuracy of final prediction 

and fitted line approached to ideal line. Figure 6 illustrates the 

error (Core Porosity-GONN Predicted Porosity) of prediction 

in normalized scale versus sample. It indicates most of the 

data points are in good agreement with reality. Error for sixty 

eight percent of samples located in range of mu±sigma, where 

mu and sigma are mean and standard deviation of error 

distribution of GONN. 

 

Figure 5: Crossplot showing the correlation coefficient 

between core porosity and GONN predicted values in 

normalized scale. 

 

Figure 6: Graph showing error of estimation versus 

sample. Error of 68% of samples locates in range of 

mu±sigma. 

4. CONCLUSIONS 
This study followed a sophisticated approach to construct a 

quantitative formulation between conventional well log data 

and core porosity. Results indicated that back-propagation 

neural network (BPNN) is capable of producing precise 

estimation of porosity from conventional well log data. 

However, use of genetic algorithm for optimizing the neural 

network, which is called genetic optimized neural network 

(GONN), can significantly enhance the accuracy of final 

prediction. Correlation coefficient and MSE are two witness 

criteria for this claim. MSE for BPNN and GONN was equal 

to 0.03373 and 0.03322, respectively. Furthermore, the 

correlation coefficient for BPNN and GONN models was 

equal to 0.8185 and 0.8309, correspondingly. Use of GONN 

instead of BPNN undoubtedly eliminates the risk of sticking 

in local minima. Accuracies of both models were shrinkaged 

in high porosity values, which are attributed to lack of 

sufficient representative data for high porosities. This 

confirms the need for a comprehensive datasets in modeling 

by neural networks. Eventually, it is deduced obviously that 

implementation of the proposed strategy can considerably 

reduce cost of reservoir characterization and saves time. 
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