
International Journal of Computer Applications (0975 – 8887)  

Volume 63– No.4, February 2013 

16 

Aspect-Oriented Software Development based 

Solution for Intervention Concerns 

Problems:Case Study 
 

Farhad Soleimanian 
Gharehchopogh 

Department of Computer 
Engineering, Science and 
Research Branch, Islamic 

Azad University, West 
Azerbaijan, Iran 

Esmail Amini 
Department of Computer 
Engineering, Science and 
Research Branch, Islamic 

Azad University, West 
Azerbaijan, Iran 

Behnam Zebardast 
Department of Computer 
Engineering, Science and 
Research Branch, Islamic 

Azad University, West 
Azerbaijan, Iran 

 

 

ABSTRACT 

All existing methods for Developing Software Systems, 

most insist on a separate system to keep the 

components together till they have been had the least 

overlapping. But these methods in the management 

system those have some parts and are using use case, 

and involved in the other parts of the systems, are 

inefficient. With arriving the Aspect-Oriented 

Programming, programmers were able to Implement 

the overcome some of these requirements and 

Implement them in a separate unit, but there are still 

some of the analysis requirements and design, because 

of the wrong analysis and design they cannot be 

implemented as a measure. In this article we want to 

prominent the phase of analysis and design of this work 

using the Aspect-Oriented Software, in order to 

implement them in the Implementation phase as a cup-

on. 

Keywords 

Intervention Concerns, Software Development, Aspect-

Oriented Software Development, Modularization 

Requirements. 

1. INTRODUCTION 
in modern programming techniques system developers have 

little attention to Modularization of the use case that are 

involved with the different parts in the system that we called 

intervention concerns in the Implementation phase are the use 

case which make the Complexity and Fragmentation in 

program, the system fails to develop. In the Implementation 

phase are some guidelines that can help programmers to solve 

some of these problems but there are some of the Concerns 

Intervention that should be diagnosed very early then 

Implementation phase and will provide a mechanism for them 

till can Modularization in the Implementation phase. With 

Aspect-Oriented Software Development, systems analysis and 

design phase we can by using the correct diagnosis achieve to 

use case Intervention Concerns a system and achieve them in 

the form of aspect model and System level to prevent them 

from being scattered and lost by a system and achieve to a 

Modularization System [1, 2]. 

In the second part of this issue we expressed concern concepts 

and Interventions Concerns more directly. In the third section 

examines and expresses the benefits and problems of the 

Aspect-oriented Programing and it. In the fourth section, we 

introduce the Development of Aspect-oriented Programing, in 

Section five using Aspect- oriented Software Development 

and The proposed new structure is based on aspects of Library 

Management Systems as a case study we will gain a method 

that is well-respected. In the sixth section presents the 

Conclusions and results as well as will provide the works that 

can be done in this area in the future. 

2. Aspect-Oriented Software Development 

Challenges Ahead 
With considering ways to develop the software that took 

advantage of them the methods of breaking the problem into 

smaller cases were used to overcome the Complexity So that 

these modules have to feel the same. But these methods do not 

have time to Implement an Embedded Software System so 

that problems may arise in the separation of the modules in 

this phase Analysis and Design of the system is wrong and 

you may not measure correctly separated the many problems 

encountered with the system development process. If these 

modules are attached to each other the separation them is not 

possible by a team of Software Development and also 

changing in the structure of a measure affects the whole 

system, that it raises the cost of System Maintenance. The 

Factor which Make Complexity in these systems is the 

Intervention Concerns.so separation the Intervention Concerns 

is the main problem. So that in all phases of System 

Development is Independent. To achieve this Goal-oriented 

Software Development Aspect was introduced so that the 

power Modularization Software used in the production cycle. 

This approach at first helps us diagnose use cases of the 

system and then based on their, we can Implement System 

Concerns in the case of modeling Aspects [1, 2, 7]. 

The purpose of the Software Engineering is to produce a 

system expected to realize the tasks that these tasks are well 

known System Requirements [7]. Within a given structure 

may be several requirements have the ability to aggregate and 

it is also depended on the users’ expectations, in this case it is 

called Concerns. While some of these Concerns are essential 

to achieve system goals and System Performance is disturbed 

without them [4]. When systems are complex, developers 

need to overcome the Complexity by Putting Forwarding 



International Journal of Computer Applications (0975 – 8887)  

Volume 63– No.4, February 2013 

17 

some solutions, one of which is in the System Development in 

a component and the Requirements Encapsulates in the form 

object and service, but there are some requirements that have 

not inherently capable of being encapsulated in a component, 

and always are involved with various systems and Are 

scattered in the whole system, which ultimately led to the 

scattering problem and the Complexity of the system [5]. The 

Requirements which have such a feature called Interference 

Concerns. By Using Object-oriented Programming, 

Intervention Concerns are scattered throughout the code and 

prevent the achievement of this method by producing software 

is useless because we need to enter codes related to Concern 

Intervention in various parts of the System Components to 

reach to related Requirements of this Concerns and 

communicated between them [6]. 

When the System Developer needs to Implement a component 

in the system May require in one part of it to an additional 

requirement, which it is Implemented before. If there are 

codes of Implementing in several components the 

Requirement for Intervention is a Concern and this causes 

System Complexity and because the codes of this concern has 

spread in the Distribution System Component, say there is 

scattering in the system and the system will not respond to 

changes in it [3, 7]. 

3. Aspect-Oriented Programming 
One of the main reasons for the Complexity and Distribution 

of software systems are Intervention Concerns that despite the 

modern techniques such as Object-oriented Programming can 

be seen in the code [7]. With the Aspect-oriented 

Programming dramatic change make in the solving problem 

Intervention, So that programmers use Aspect-oriented 

techniques, which could interfere the Concerns locally and 

Modularization inside aspects. With using The Aspect-

oriented Programming can a piece of code Implementation 

Concerns related to Interference separate from other System 

Components and Encapsulates them in the form of one or 

more Aspects of the systems that reduce System Complexity 

and reducing code scattering is due to Interference Concerns 

and code rate is very much more Understandable [8]. 

4. Aspect-Oriented Software Development 
As mentioned in Section 3, the Aspect-oriented programming 

would measure the Concerns of the aspects in to the aspects, 

But there were still some Concerns in systems that had not the 

feature of measuring, The reason is that these Concerns as the 

main part of the use case are modeling and separating them 

from the inside of their use case and Modularization is not 

possible. A use case may also act as a concern in the system 

so that it should be involved with several other components. 

So we can conclude that Intervention Concern can be 

considered as a use case member that to come into the system 

at component level is involved with several classes that cause 

system complications and misunderstandings of that Concern 

Intervention. By using Aspect-oriented software development 

and with a new attitude towards this issue by using a new 

method of Aspect-oriented Modularization Concerns for 

Intervention and also reach to improve the modeling of use 

case [6, 8]. One can use the Aspect-oriented software 

development identify as the Concerns Intervention before 

detecting the Implementation phase and wrap them in 

measured action That it needs-based development as a 

foundation member of based on our work, we get the desired 

result [8]. Because the use case of as a tool for software 

development companies is very accessible and the various 

concepts of it is accessible, for Aspect-oriented. Method that 

can be used by Using Aspect-oriented development based on 

use case, at first concern intervention by the use case of the 

system is  modeling Then the use case are designed their 

cover based on class and Finally by using cutting aspects of 

the system and use case that their concerns have are modeled 

system [9, 10]. 

4.1 Modularization of Concern within 

Aspect 
Aspect-oriented programming uses an experimental concept 

that called for modular aspect concerns in the code. The 

modular nature of the code is to will prevent from scattering 

Implementing codes of the system components and 

encapsulates them inside itself. In The Object-oriented 

approach to cope with complex systems, a new approach 

called "object" is proposed to break large systems into small 

systems. Which it is used in Aspect-oriented programming 

concept and the Aspect-oriented programming of Aspects and 

class structure uses and the main operation and powered can 

be implemented by classes so that the Intervention can be 

implemented by Aspect [11, 12]. 

5. Library Management System: A Case 

Study 
The main objective of software development is to achieve 

maximum stakeholder who wants to achieve this goal, we 

developed a system based on use cases because these use 

cases come from use case needs and Concerns of the system 

can be distinguished by using them [10]. By using of 

modeling of the first stage can be achieved complexity and 

distribution in a system [12]. In this paper, we investigate of 

Library Management system as a case study and the model of 

system which we're using is Enterprise Architect Version 7.0. 

Fig 1. we can see the use case of the Library Management 

System with their relations. 

 

 

 

 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 63– No.4, February 2013 

18 

 

5.1 Analysis of Use Case 
After identifying the relationship between use cases should be 

identified concrete classes needed to realize them. Depending 

on your circumstances, your items are measured in one or 

more classes. If your case involves one or more Intervention 

Concerns the Implementation of the code will be broadcast in 

several classes [13]. With analyzing of use cases items can be 

configured easier and the development of parallel systems can 

be incredible [12]. In Figure (2) you can see use case and 

classes, that includes the Library Management System, and 

Concerns Intervention. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Diagram of the Relationship between the use cases of the Library Management System 



International Journal of Computer Applications (0975 – 8887)  

Volume 63– No.4, February 2013 

19 

 

After identifying the classes and the use case must enter the 

details and internal structure of each class according to the 

internal structure of each class, some points that should be 

analyzed [12, 13, and 14]. It should be noted that at the 

realization of the different use cases of the class makes 

complexity in a class and also each section of use case does 

not constitute a complete class but also includes some parts of 

the class that will be required to fulfill use case requirements 

[15]. In Figure 3 you can see the cutting of the parts of the use 

case which are scattered in the class system. 

As in Fig3. each member of use case, includes some parts of 

class that is required for its realization. In practice that we use 

a case we need to have complete characters of it. Therefore all 

scattering parts of a class should be combined with each other 

till a use case properly work [13, 14]. 

 

       Fig 2:  The Concerns Intervention of Library Management System 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 63– No.4, February 2013 

20 

 

5.2 The Realization of Use Cases using 

Aspects 
The use case in the modeling work of stakeholder work 

effective. It should be noted that at the design stage and 

Implementation stage concerns showed be separated, that it a 

use case is possible by cutting your cases [12]. After cutting 

should be identified a use case, to achieve the required classes 

that recognize and to determine their roles [14]. The 

Book_Trust_Controler class library management system plays 

a controller interface for other classes of systems in order to 

achieve Book_Entity class. The Book_Trust_Controler as a 

coordinator and also a class that have required controls to 

realize the main use case of the Library Management System. 

The Book_Trust_Controler class role as a controller class can 

be seen in Fig 4. 

 

 

 

Fig. 4. shows the sequence that the other classes of system use 

to achieve class Book_Entity, Book_Trust_Controler. In fact 

the Book_Trust_Controler class receives and performs the 

necessary controls for realizing the use case and then puts 

them through interfaces that provide Book_Entity class, will 

perform the update operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3:  Distribution of use case cutting in component-level of Library Management System 

 class Class Model

Member

Library_Manager

Book_Trust_Controler

Book_Entity

Book_Borrow Restore_Safekeeping Renew_Safekeeping

Slice(1)

Slice(2)

Slice(3)

Slice(4)

Slice(1)

Slice(2)

Slice(3)

Slice(4)

Slice(1)

Slice(2)

Slice(3)

Slice(4)



International Journal of Computer Applications (0975 – 8887)  

Volume 63– No.4, February 2013 

21 

 

5.2.1 Identify Aspects of the System 

After characterizing the interaction of components in the 

system, Aspects that causes reducing dispersion in system 

must be specified, which ways of identifying them are in the 

form of correspondence between the classes? If there a use 

case in a class that is associated with several other classes, 

actually we face with the Concerns that their realization 

requires the use of other system components and at this 

situation to reduce the complexity of it; we need to define 

aspects [15, 16]. In The Library Management System 

according to the correspondence courses between 

Book_Trust_Controler and Book_Entity, we need to define 

Aspects to reduce the complexity of our system. Figure (5) 

shows Aspects that are needed to reduce the complexity and 

reality of them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                         Fig 4:  Sequence Diagram of Registered the Book Loan in Library Management System 



International Journal of Computer Applications (0975 – 8887)  

Volume 63– No.4, February 2013 

22 

As you can see in Fig 5. every correspondence aspect cover a 

separate use case in the system in such a way that minimized 

the scattering code. Of Course, this post should also be noted 

that the Concern with one Aspect of the system is also 

possible that this model is used less in systems with much less 

Concern [16]. 

5.2.2 Modularization Concerns Intervention using 

Aspect-Oriented 

As we see in the previous section, aspect is an entity that can 

be cut from use case and Concerns, in the form of Intervention 

[13]. That will support modularity. There is a cut for any 

Concerns about the use of Intervention used in the model 

system. In fact, as an element of the stereotypical "aspect" 

will appear in your system and includes some Parts of the 

class as a Concern that the Intervention in other components 

of the system has appeared [17]. Aspect makes the piece of 

code that plays as an aspect role and is the main reason for the 

complexity and fragmentation in the system Removed and 

measured inside the desired component [14, 17]. Fig 6. the 

BookUpdate use cases that are dispersed in the different 

components have measured inside the BookUpdatin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Fig 5:  Aspects and cutting the identifying use case issues in Library Management System 



International Journal of Computer Applications (0975 – 8887)  

Volume 63– No.4, February 2013 

23 

 

As in Fig 6. see the section specifying the use case Book 

Updating and measure them in reducing their dependence on 

components and the dispersion is reduced, This in itself will 

reduce the system complexity. Checking Book aspects can 

also be expanded so as to cover cutting the existing use case 

in Book_Trust_Controler component. After entering into the 

system aspects we have taken on a big step on scattered 

Modularization concerns CheckingBook, BookUpdating in 

the system modeling phase as the complexity of the code are 

taken from foreign components [16]. Fig 7. shows the effect 

of Modularization concerns into aspects reducing on 

complexity and dispersion library management systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 Fig 6: The Modularization of Book Update Concern within the Book Updating 



International Journal of Computer Applications (0975 – 8887)  

Volume 63– No.4, February 2013 

24 

As in Figure (7) you can see many ties in the system that 

existed before entering the Interfere with the concerns 

identified and classified them into modular aspects of the and 

the more cause independence in the system components [16, 

17]. 

6. CONCLUSION AND FUTURE 

WORKS 
The purpose of this paper is to Solve Concerns Intervention 

problem with using Aspect-oriented software development. In 

the article first identified that the Intervention Concerns are 

emerging the main stimulus Aspect-oriented software 

development methods. The paper also examines the Aspect-

oriented programming language of Aspect-oriented software 

development which makes up the core infrastructure. After 

all, the Aspect-oriented software development began and the 

development phases, were check and finally we describes a 

method of Aspect-oriented software development in the form 

of case study Library Management System, There were cases 

in which the core business and we realize that the Aspect-

oriented software development helps us to modularize the 

Concerns Intervention in the phases of design, modeling and 

architecture. The main topic of Aspect-oriented software 

development system is to achieve aspects of concern because 

it is a phase that all functions are transferred to the next 

phases. In fact, if not achieve a suitable method for obtaining 

concerns (aspects) in the requirements phase; we will not have 

the other Aspect-oriented software development. Therefore, in 

the future work trying to be providing a more precise focus on 

early intervention system finding concerns So as to identify 

them before the Implementation phase and added to the power 

of Aspect-oriented software development in Modularization 

concerns. 

 

7. REFERENCES 
[1] IEEE 2000, “IEEE recommended practice for 

architectural description of software intensive systems”. 

Available: 

http://www.win.tue.nl/~johanl/educ/2II45/Lit/software-

architecture-std1471-2000.pdf. Last Availabel 

02.08.2012. 

[2] R.S.Pressman, Software Engineering: apractitioner’s 

approach, Fifth edition, McGraw-Hill, page 541, 2001. 

[3] S. Brinkkemper,”Method engineering:  engineering of 

information systems development methods and tools”, 

Inf.    Software Technol. Vol. 38, N. 4, pp. 275-280, 

1996. 

[4] B.Morin, O.Barais, R.Ramos,”Towards a Generic 

Aspect-Oriented Modeling Framework”, Author 

manuscript, published in "Models and Aspects 

workshop”, at ECOOP 2007. Availabel: 

http://www.irisa.fr/triskell/publis/2007/morin07a.pdf , 

Last Availabel: 02.08.2012 

[5] S. Apel, D. Batory,”An Analysis of Eleven AspectJ 

Programs”, Technical Report, Number MIP-0801 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     Fig 7:  Entering the Aspects into the system components and their influence on the relations between use cases 



International Journal of Computer Applications (0975 – 8887)  

Volume 63– No.4, February 2013 

25 

Department of Informatics and Mathematics University 

of Passau, Germany, April 2008. 

[6] B., Nuseibeh, J.Kramer, and A.Finkelstein, “Expressing 

the relationships between multiple views in requirements 

specification”, Proceedings of 15th International 

Conference on Software Engineering, Baltimore, USA, 

pp: 1-10, May 1993. 

[7] G. Booch, I. Jacobson, and J. Rumbaugh, Object 

Oriented Analysis and Design with Applications, 3rd 

Edition, Addison.Wesley, 2007. 

[8] D.L. Parnas, “On the Criteria To Be Used in 

Decomposing Systems into Modules”, Communications 

of the ACM, Vol. 15, No. 12, pp. 1053-1058, 1972. 

[9] K.Gregor, J.Lamping, A.Mendhekar, C.Maeda, C.Lopes, 

J.Loingtier, and J. Irwin "Aspect-Oriented 

Programming", Proceedings of the European Conference 

on Object-Oriented Programming, vol.1241, pp.220–242, 

1997. 

[10] R.E.Filman, D.P.Friedman, Aspect-oriented 

programming is quantification and Obliviousness, 

RIACE Technical Report 01.12, pp.1-9, May 2001. 

[11] P. Jayaraman, J. Whittle, A. Elkhodary, and H. Gomaa. 

“Model Composition in Product Lines and Feature 

Interaction Detection Using Critical Pair Analysis”, In 

MoDELS’07: Proceedings of the 10th International 

Conference on “Model Driven Engineering Languages 

and Systems”, LNCS, pages 151–165, Nashville TN 

USA, Vanderbilt University,Springer-Verlag, Oct. 2007. 

[12] B.Morin, O.Barais, J.M. J. Equel, ” Weaving Aspect 

Configurations for Managing System Variability”, 

Availabel: 

http://www.irisa.fr/triskell/publis/2008/Morin08a.pdf. 

Last Availabel: 02.08.2012. 

[13] R.T. Alexander, J.M. Bieman, and A.A. 

Andrews,“Towards the Systematic Testing of Aspect- 

Oriented Programs”, Technical Report CS-4-105, 

ColoradoState University,2004. 

[14] A. Rashid, R. Chitchyan, "Aspect-Oriented 

Requirements Engineering: A Roadmap",  Proceeding 

EA '08 Proceedings of the 13th international workshop 

on Early Aspects Pages 35-41  

ACM New York, NY, USA ,2008. 

 

[15] H.Hosny, A.A.Zakaia, Metrics for Aspect-Orinted 

Software Design, Technical report The American 

University in Cairo, 2004. 

[16] O. Aldawud, T. Elrad, A. Bader, “Uml profile for aspect-

oriented software development”, Lucent Technologies 

Naperville, IL, Illinois Institute of Technology Chicago, 

IL, 2006. 

[17] J. Araujo, A.Moreira, I. Brito, A. Rashid, ”Aspect-

Oriented Requirements with UML”, Universidade Nova 

Lisboa, Instituto Politecnico de Beja, Lancaster 

University Lancaster, October 2002. 

 

http://www.irisa.fr/triskell/publis/2008/Morin08a.pdf
http://icse08.upb.de/
http://www.acm.org/publications

