
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.21, February 2013

53

Elicit – A New Component based Software

Development Model

Lata Nautiyal
Assistant Professor

Graphic Era University
Dehradun - India

Neena Gupta
Assistant Professor

Kanya Gurukul Campus,
Dehradun- India

ABSTRACT

This is an era of embryonic software development where there

is loads of pressure not only on developers but also on

software development organizations in order to stumble on

unswerving, fast and lucrative methods in software

production. Therefore, to fulfill the need, Component-Based

Development (CBD) has been broadly used in software

development as it enhances reusability, flexibility, and reduces

the cost as well as time.

In this paper, we are proposing a life cycle model commonly

encountered in component based development methodologies.

This model is divided into five stages or phases. Each phase

describes its sub segments and activities necessary to develop

Component Based software in a short span of time, effectively

and efficiently. This model emphasizes not only on the

development architecture but also focuses on validation of the

integration of components, to accommodate client needs and

requirements. The proposed model can be used for developing

a process for producing Component-Based systems.

General Terms

Software Engineering

Keywords

Commercial Off the Shelf (COTS), Software Life Cycle

Model, Software Reusability, Component-Based Development

(CBD)

1. INTRODUCTION

Now - a – days, Component-Based Development (CBD) is the

most brisk growing trend in IT industry. A component is an

encapsulated unit of functionality with a well-defined

interface that allows it to connect to other components, and be

independently deployed. Moreover, the assembling

components are the ones which define Component-based

applications.

The foremost benefits associated with component-based

technologies include: reduced system development cost and

time, enhanced quality, and reduced system evolution and

maintenance cost. Over the past decade, standard component-

based specifications have been developed in lieu of which the

importance of CBD has grown rapidly in the embedded

system industry.

It has been claimed that the component-based software

development endorses reusability, improves software quality

and increases software engineers’ productivity. A component

is a self-contained piece of software that provides clear

functionality, has open interfaces and offers plug-and-play

services.

2. Literature Review

The brainstorm gained its real momentum after COM+ [1]

from Microsoft, Enterprise JavaBeans [2] from SUN, and

IBM Component Broker [3] and CORBA [4] have made their

way among mainstream software technologies [5].

Additionally, incremental delivery of software features or

platforms that comprise a software product line is expected to

be at the forefront of software development in the next few

years, therefore component-based software engineering has

broad implications for how software engineers acquire,

build and maintain software systems [6].

Thus, we should see dramatic changes in designers’ primary

roles and required skills for software development in the near

future.

A Software Life Cycle Model is an expressive and

pictorial representation of all different stages or phases of the

software process. Software development life cycle (SDLC)

model describes the segments of the software cycle. [7]

The Twin Peaks model [8] also suggests for a concurrent,

iterative development of requirements and architecture during

software development. It presents a partial and simplified way

to develop the software.

In X Model, the processes are started by requirement

engineering and requirement specification. The chief

characteristic of this software life cycle model is

reusability in which software is developed by building

reusable components for software development and from

reusable and testable components. In software

development, it uses two main approaches, develop software

component for reuse and software development with or

without modification in reusable component. [9]

The Y Software Life Cycle Model describes software

reusability during CBSD. The Y Shape of the model considers

iteration and overlapping. Although the main phases may

overlap each other and iteration is allowed, the planned phases

are: domain engineering, frame working, assembly, archiving,

system analysis, design, implementation, testing,

deployment and maintenance. [10]

Knot Model emphasizes on reusability considering risk

analysis and feedback in each and every phase. This model

may be best suited for medium or larger complex system’s

development. It is based on three states of the component

[11]:

The Elite Life Cycle Model (ELCM) is an emerging lifecycle

for the development of new product using component based

technology. This model describes a general process of

Software development with the help of in built components.

[12].

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.21, February 2013

54

3. The Elicit – Proposed Model

The Elicit (See figure 1) CBSE life cycle model has been

proposed as a feasible substitute to address software

reusability throughout component-based software fabrication.

The formation of software is characterized by revolutionize

and unsteadiness, hence the diagrammatic representation of

the Elicit model considers overlapping and iteration where

apposite. Although the main phases may superimpose each

other and iteration is allowed yet the planned phases are:

domain engineering, frame working, assembly, archiving,

system analysis, design, implementation, testing,

deployment and maintenance.

3.1.1 Phases of ELICIT Model

3.1.1.1 Assess Prerequisite

This phase analyze requirements in a broad manner. This

stage is completed when general lines are agreed upon

between analysts and users (See figure 2). It consists of three

important elements.

a) Client Interface:

b) Endeavor Depiction:

c) Domain Analysis:

a) Client Interface:

The exceedingly first stage of the project commencement is

the client interface which includes the following.

1. Communication with the consumer

2. Identification of client’s needs and requirements

3. Precedence and Importance of client’s requirements

4. Review of client’s requirement list

5. Fixing client’s requirements.

b) Endeavor Depiction:

After fixing some or all requirements of the client, we must

determine the overall planning and description of the project

i.e. problem domain. This stage includes the basic and

detailed descriptions of the project; at least a skeleton of the

problem domain must be established.

c) Domain Analysis:

Domain Analysis is a process of analyzing an application

domain in order to ascertain areas of cohesion and ways to

describe it using a uniform vocabulary. Thus, domain

engineering is an activity that should be carried out at the

commencement of software specification if reuse is to be

considered. As domain engineering can yield an initial set

of vocabulary reflecting the main conceptual entities

within an application domain, essential properties of that

domain are captured and initial candidates for reusable

components emerge.

Fig 1. Elicit Model

User needs, software requirements, provided

functionality, objectives and constraints of the system are very

much of interest during the system analysis and domain

engineering phases. Thus, it is important to understand the

real-world application and an abstract model of that appliance

to be depicted. Therefore, the boundary between system

analysis and domain engineering may be at times seems

fuzzy because identifying key abstractions in the application

domain may be viewed as part of system analysis or domain

engineering. Nevertheless, at this level, domain

engineering is also concerned with the identification of

potentially reusable components.

Fig 2. Constituents of the Access Prerequisite Phase

3.1.1.2 Select the Components

It focuses on selecting an assortment of reusable

components or frameworks from specific application

domains. (See figure 3) There are differences in the

mechanisms used to accomplish reusability when different

kinds of reusable components are involved. The most basic

software components are often reused by composition, which

Assess Prerequisite

Select the Components

Amalgamate them and perform

testing

Revise it according to Feedback

A

C

D

B

 Maintenance
E

Assess

Prerequisite

A

Client Interaction

Endeavor Depiction

 Domain Analysis

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.21, February 2013

55

Select the

Components

B

COTS

Develop

Outsource

can be seen as a process of building a piece of software from

elementary self-contained components.

A framework could be viewed as a generic structure that

provides a skeleton for producing software in a certain

application domain. Frame working attempts to identify

components and establish inter relationships perceived

important within the application domain. Such

identification of components may arise from the well known

functionality common to that application domain, usually in

the form of semantic relationships between components.

Fig 3. Constituents of the Select the Components Phase

Consider, for example, the application domain of

airline reservation systems; typical entities of these systems

are: seats, flights, crews and passengers; and

interrelationships can be: reserve a seat, assign a crew to a

flight, schedule a flight and so on.

So, there are important relationships among these entities,

which can be organized into a framework according to their

semantic meaning in that application domain. There are 3

main categorories of traditional components.

1. Outsourced:

2. Develop:

3. COTS (Commercially of the Shelf Components):

a) COTS (Commercially of the Shelf Components):

These are the components which are accessible in the

Components repository, pre-developed and pre-tested. We can

use these components without any modification or with some

condition based alterations, according to their availability and

client’s requirement suitability.

b) Develop:

It is not always possible to ensure the availability of these

COTS components. It may be possible that no component fits

according to the problem domain or because of problems

distinctiveness. In such cases we have to develop some

components from scratch. It may also possible that

development of new component is more feasible than using or

modifying COTS components.

c) Outsourced:

At times it is not feasible to reuse COTS components or the

development of new components since some risk factor may

be involved, or we need some portion of a component for very

short span of time. In such cases some third party components

may be outsourced.

3.1.1.3 Amalgamate them and perform testing

Reusability not only involves reusing existing components in

a new software system but also producing components meant

for reuse. When a software system has been developed, the

software engineer may realize that some components can be

generalized for impending reuse. In this phase, it includes

integration of New, Modified and out sourced components.

This phase also includes testing at regression level to find the

maximum numbers of errors. Basically, it focuses on

selecting a collection of reusable components or

frameworks from specific application domains (See figure

4). There are differences in the mechanisms used to achieve

reusability when different kinds of reusable components are

involved. The most basic software components are often

reused by composition, which can be seen as a process of

building a piece of software from elementary self-contained

components; although reusability is naturally

accomplished by reusing classes through inheritance during

object-oriented development, in such case, it takes place by

specialization and generalization of commonalities among

classes.

After integrating these components we must have validate

them according to the user needs or according to their

architecture. It may be doable that individual components

perform their intended task efficiently but their integration

introduces some sort of undesired results. To validate these

we must have to perform Integration Regression testing,

which includes:

a) Integration of components based on System

Architecture.

b) Perform Integration testing.

c) Perform Regression testing.

Fig 4. Constituents of the Integration Phase

 Amalgamate

them and

perform testing

C

Cots Components

Developed

Components

Outsourced

Components

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.21, February 2013

56

Make necessary changes accordingly and perform another

Regression testing with extended test cases.

Prioritize Minimize test cases and perform second level

Regression testing.

Validate this integrated software with the user requirements

and perform Regression testing accordingly.

3.1.1.4 Revise it according to feedback

The developer will now revise the system and return to the

first step for deeper and more elaborate analysis.

The above cycle is repeated until the system reaches the final

acceptance stage.

This is virtually an end of system development. Now the

system is ready to be presented to the customer. Nevertheless,

deployment involves more than putting the system into place,

it is the time when users should be helped to understand and

feel comfortable with the software. If deployment is not

successful, users will not make the most of the system and

may be unhappy with its performance. In either case, users

will not be as productive or effective as they could be and the

care taken to build a high-quality system is put in jeopardy.

The two key issues to successful transfer from the developer

to the user are documentation and training, which should be

integrated with the software. As the system is developed,

software engineers should plan and come up with aids that

help users learn about the system, such as on-line help.

Accompanying the system is documentation and manuals to

which users refer for problem solving, trouble shooting or

further information. The quality and type of documentation

can be critical, not only to training, but also to the success of

the system. Training for users and operators is based

predominantly on major system functionality; there is no need

to be aware of the system’s internal operation. Therefore,

system deployment should be considered with more care and

professionalism than it has been usually dealt with.

In addition, product flexibility is the new anthem of the

software marketplace and software family fulfils the promise

of tailor-made systems that are delivered quickly, at low costs,

built specifically for the needs of particular customers and

market segment. This requires constant improvement,

upgrading and releases of new versions of a software system

that is preferably compatible with old versions.

3.1.1.5 Maintenance

Many software engineers wrongly assume that once a

system is delivered their problems are over. A system life

does not end with deployment. Software is normally subject to

continuing changes after it is built, when it is operational.

Thus the efforts turn now to the challenge of maintaining a

continually evolving system. During software

maintenance, changes are introduced to a software system.

Such changes are not meant only for correcting errors

occurred in the operational software; these changes may be

also for improving, updating the system to anticipate future

errors or adapting the system in response to a modification in

the environment. Many software engineers wrongly

assume that once a system is delivered their problems are

over. A system life does not end with deployment. Software is

normally subject to continuing changes after it is built, when

it is operational. Thus the efforts turn now to the challenge of

maintaining a continually evolving system. During software

maintenance, changes are introduced to a software system.

Such changes are not meant only for correcting errors

occurred in the operational software; these changes may be

also for improving, updating the system to anticipate future

errors or adapting the system in response to a modification in

the environment. Therefore, during the maintenance phase,

software components may be accessed from, as well as new

ones may be added to a reusable library of the concerned

application domain.. After changes are introduced to the

system, an updated release of the software is generated.

Maintenance of software system does not only allow the

software to evolve but also the reusable library concerning

the existing systems expands during the maintenance of a

legacy system.

4. CONCLUSION
All these different software life cycle models have their own

advantages and disadvantages. In this paper, we have

discussed a number of activity areas that form a life cycle

framework for component-based software development.

Furthermore, we have also proposed a component based

software engineering life cycle perspective on selection and

development concerns.

The Elicit model supports “development with reuse” through

component assembly. Initially, the software engineer

identifies potentially reusable components from existing

reusable libraries. The components are then selected, adapted

and reused through various mechanisms. At the end of

software development, there may be many new reusable

components that need to be verified, catalogued, classified

and then stored into reusable libraries. The proposed Elicit

model covers the likely phases of large software development

and enforces software reusability along its phases. This model

emphasizes that if reusability is not feasible then outsourcing

or new development can take place, that is domain analysis

and problem architecture must be identified and defined.

5. Acknowledgement
From the core of my heart, I am really thankful to the

Management of Graphic Era University for always being

supportive. I would also like to express my gratitude to the

management of Gurukul Kangri University for providing such

a commendable research oriented platform to us.

6. References
[1] Microsoft, 2004.COM+,

http://www.microsoft.com/com/tech/complus.asp.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.21, February 2013

57

[2] SUN, 2004. Enterprise Java Beans,

http://www.java.sun.com/products/ejb/index.html.

[3] IBM, 2004. Component Broker,

http://www.software.ibm.com/ad/cb.

[4] Object Management Group, 2004. The Common Object

Request Broker Architecture,

http://www.omg.org.

[5] Wallnau, K. C., S.A. Hissam and R.C. Seacord,2002.

Building Systems from Commercial Components.

Addison-Wesley.

[6] Clements, P. and L. Northrop, 2002. Software Product

Lines. Addison-Wesley.

[7] S. Cohen, D. Dori, U. de Haan, “A Software System

Development Life Cycle Model for Improved

Stakeholders Communication and Collaboration”,

International Journal of Computers, Communications &

Control,Vol. V (2010), No. 1, pp. 20-41

[8] Royce, W.W., 1987. “Managing the development of

large software systems”. Proceedings of 9th IEEE

International Conference on Software Engineering, pp:

328-338.

[9] Gill N. S. and Tomar P., “X Model: A New Component-

Based Model”, MR International Journal of Engineering

and Technology, 2008, Vol. 1, No. 1 & 2, pp. 1-9.

[10] Luiz Fernando Capretz, " Y: A new Component-Based

Software Life Cycle Model ", Journals of Computer

Science1 (1) : pp.76-82.

[11] Rajender Singh Chhillar, Parveen Kajla, “A New Knot

Model for Component Based Software Development”,

International Journal of Computer Science Issues Year:

2011 Vol: 8 Issue: 3 Pp.: 480-484

[12] Lata Nautiyal, Umesh Kumar Tiwari, Sushil Chandra

Dimri, Shivani Bahuguna, “Elite: A New Component-

Based Software Development Model”, International

Journal of Computer Technology & Applications, Vol 3,

Issue 1, Jan 2012, pp 119-124

http://www.java.sun.com/products/ejb/index.html./
http://www.omg.org./

