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ABSTRACT 
A new NMF algorithm has been proposed for the 

deconvolution of overlapping chromatograms of chemical 

mixture. Most of the NMF algorithms used so far for 

chromatogram separation do not converge to a stable limit 

point. To get same results for all the runs, instead of random 

initialization, three different initialization methods have been 

used namely, ALS-NMF (robust initialization), NNDSVD 

based initialization and EFA based initializations. To improve 

the convergence, a new sNMF algorithm with modified 

multiplicative update (ML-sNMF) has been proposed in this 

work for overlapped chromatogram separation. The algorithm 

has been validated with the help of simulated partially, 

severely overlapped and embedded chromatograms. The 

proposed ML-sNMF algorithm has also been validated with 

the help of experimental overlapping chromatograms obtained 

using Gas Chromatography –Flame Ionization Detector (GC-

FID) for the chemical mixture of acetone and acrolein.  
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1. INTRODUCTION 
The resolution techniques so far applied to many fields to 

extract information from multivariate data are Evolving 

Factor Analysis (EFA) [1-2], Fixed Size Moving Window 

Evolving Factor Analysis (FSMW-EFA) [3], SIMPLe-to-use 

Interactive Self-modeling Mixture Analysis (SIMPLISMA) 

[4], Multivariate Curve Resolution (MCR) [5-7], Iterative 

Target Transformation Factor Analysis (ITTFA)  [8-9] and 

Heuristic Evolving Latent Projections (HELP) [10-11]. All the 

above methods have their limitations in separation of 

overlapped chromatograms when they are severely overlapped 

[12]. Many methods have been developed further to improve 

the resolution. However, it is still difficult to resolve severely 

overlapping peaks accurately.   

Lee and Seung Suggested Non-negative Matrix Factorization 

(NMF) in 1999 [13] and provided more algorithms in 2001 

[14]. It has been generally applied to image and text data 

mining. Several works have been carried out in NMF for 

image analysis [15-18], audio signal separation [19], spectral 

resolution [20] and signal separation in bio-medical 

application [21]. A chemometric application of the NMF 

method is proposed by Li et al. [22] to detect chemical 

compounds from a chemical substance represented through 

Raman spectroscopy. Hong-Tao Gao et al., (2005) applied 

NMF for two components overlapped spectrum resolution 

[20] in which NMF was applied after imposing   constraints 

based on unimodality, smoothness and sparseness of the data.  

This inspiring and interesting application of NMF has 

motivated to test sNMF, which was not used so far for the 

deconvolution of overlapping chromatograms.   

As a first step, overlapped chromatograms were obtained for 

acetone and acrolein mixture to test the algorithm to be 

proposed. These are the chemicals identified from the 

literature that produces overlapping chromatogram due to 

closer retention time (i.e., 1.127 min for acetone and 1.187 

min for acrolein).  Acetone is released from automobiles 

exhaust, tobacco smoke and certain kinds of burning waste 

materials. Acrolein can enter the environment as a result of 

burning wood, tobacco, vehicle fuels, overheating of cooking 

oils and industrial release from waste. Public will be exposed 

to acetone and acrolein from the environment. If the exposure 

limit exceeds the allowable value, it may produce ill effects 

[23]. Hence the existence of these chemicals has to be 

checked and quantified. Materials containing acetone and 

acrolein can be analyzed using high-performance liquid 

chromatography (HPLC) or Gas chromatography (GC) [23]. 

Due to their similar retention time (RT), this mixture produces 

overlapping chromatograms under certain instrumental 

condition and it will be difficult for the chemist to analyze the 

presence of those components. If some curve resolution 

techniques are used to separate overlapped chromatograms, 

then it can be easily resolved and analyzed. It also avoids the 

lengthier experimental separation procedure of acetone and 

acrolein [23]. Hence, NMF based curve resolution algorithms 

have been thought for separating overlapped chromatograms.  

Initially,  NMF algorithms have  been used by the authors [24-

26] for the separation of overlapped chromatogram of acetone 

and acrolein mixture. But, there is no convergence of the 

algorithm to a stable limit point [27-29]. The algorithm results 

with different resolved chromatograms (differs in shape or in 

eluting time) in different runs and same results in some runs 

due to random initial matrices. It makes the qualitative 

analysis difficult. Hence, instead of random initial matrices, 

fixed matrices using some initialization techniques have been 

proposed in this work. Three such initialization strategies 

namely ALS-NMF (robust initialization) [30], NNDSVD 

based initialization [31] and EFA based initialization are used, 

compared and the best initialization method for each cases 

taken is identified. To improve the convergence of sNMF 

algorithm, the multiplicative update has been modified [27] 

and unimodality and selectivity constraints have been 

imposed in this proposed modified sNMF (ML-sNMF) 

algorithm. The proposed ML-sNMF algorithm has been 

applied for the separation of simulated overlapped 

chromatograms of acetone and acrolein mixture. The results 

are encouraging. Then the proposed ML-sNMF algorithm has 

also been applied on the experimental overlapping 
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chromatograms obtained for acetone and acrolein mixture 

using Gas chromatography –Flame Ionization Detector (GC-

FID). The results of proposed         ML-sNMF are compared 

with   that of the existing Multivariate Curve Resolution-

Alternating Least Square (MCR-ALS) method. The results 

show that the proposed           ML-sNMF is suitable for 

severely overlapped and embedded chromatograms’ 

resolution.   

 

2. MATERIALS AND METHODS 

2.1 Experiments 
              Initially the chromatograms for the acetone and 

acrolein standards were obtained using GC-FID by injecting 

the standards separately. Then the acetone and acrolein were 

mixed in 4 different concentrations. The mixture was 

vigorously stirred separately under ice cold condition for half 

an hour and 0.2µL of these mixtures were injected and 

analyzed using GC-FID.  

2.1.1 Instrumental condition 
Gas chromatography with Flame Ionization Detector was used 

with the detector temperature of 150º C. A capillary column 

(30 m × 0.25 mm ID, BP5) was used with a temperature of 

100 º C. The temperature was programmed as  40 º C for  2 

min, 5º C/min, 68 º C for 2min, 10 º C/min, 100 º C for 2min. 

Injector temperature was kept at 150 º c.  Nitrogen was used 

as a carrier gas at a flow rate of 90 ml/min. The sample of 

0.2µL volume was injected into the column for analysis. All 

the graphs were obtained using the software Iris 32 provided 

by chemito technologies pvt ltd., running on PC with Intel (R) 

Pentium4 CPU 2.00GHz and 512MB RAM.  The 

chromatographic data (i.e., retention time t and detector 

output) has been exported to an ASCII file through Iris 32 

software and acquired through MATLAB R2008a software. 

The above instrumental condition produces overlapping 

chromatogram for the acetone and acrolein mixture. 

2.2 Method 

2.2.1 Non-negative Matrix Factorization 
 NMF is a technique of decomposing a non-negative matrix A 

into two non-negative matrices W and H as shown in equation 

1. 

 

 

                                                                                                                    

-------------              

(1) 

 

                                                                                                                                      

                     where k=1 to r  < min (m,n). 

Usually, r is the number of principal components.  

     The decomposition is performed so that the product WH 

should compress and approximates the original data matrix A. 

W is called basis matrix whereas H is called 

encoding matrix, of which each column is in one-to-one 

correspondence with a column in A. Thus, the original data 

are represented as linear combinations of these basis vectors.  

Usually r is chosen to be smaller than n or m, so that W and H 

are smaller than the original matrix A. This results in a 

compressed version of the original data matrix. 

NMF allows only additive operations to provide meaningful 

decomposition. While PCA is used for decomposition, the two 

factorized matrices will contain positive and negative entries 

simultaneously, and these negative components make the 

result often unacceptable in chemical meanings. Instead, NMF 

does not allow negative entries in the factorized matrices W 

and H, permitting each column of basis matrix H to represent 

chromatogram in this work. NMF extensions also exist which 

includes, projective NMF [32], shifted NMF [33], incremental 

NMF [34] and sparse higher order NMF [35].  

2.2.2 sparse Non-negative Matrix 

Factorization(sNMF) 
           Although NMF is successful in Matrix Factorization, 

the NMF model does not impose the sparse constraints. 

Therefore, it can hardly yield a factorization, which reveals 

local sparse features in the data A. Related sparse coding is 

proposed in the work of [36] for matrix factorization. Inspired 

by the original NMF and sparse coding, the aim of this work 

is to propose sparse Non-negative Matrix Factorization  which 

imposes the sparse and nonnegative constraint, for 

chromatograms resolution.Since NMF is an approximation 

factorization, we need to define the cost function to qualify 

this approximation. One natural way is to use the divergence 

function between A and WH. Hence, sNMF algorithm which 

is given in equation 2 has been applied to find the factors.  

 

m n k nij

ij qj
i=1 j=1 q=1 j=1ij

A
 [A log  - A + ] +α H

(
WH

WH)
( )                                                  

------------     (2) 

where  α obtained by experience was assumed a positive 

constant. 

A sparse solution to the above constrained minimization can 

be found by the update rules of W and H given in [24]. 

Several runs of the above said sNMF algorithm with random 

initialization will give different answers in each run. Hence, it 

is important to have efficient and consistent initial matrices W 

and/or H because the solution and convergence provided by 

NMF algorithms highly depends on initial conditions.The 

multiplicative update of sNMF [24] do not assure 

convergence to a stationary point [27-29] .There are 

difficulties which exist in the multiplicative   algorithm due to 

zero values in the matrices [27].  

2.2.3 Proposed ML-sNMF algorithm 
    In this proposed ML-sNMF algorithm, the update 

rules of sNMF [24] have been replaced by the modified 

update to improve the convergence to a stable limit point. To 

speed up the convergence and to get same results in all runs, 

ALS-NMF (Robust initialization) [30], NNDSVD [31] and 

EFA based initialization strategies have been tested in this 

proposed algorithm for the separation of overlapped 

chromatograms. 

   A   sparse solution to the above constrained 

minimization (2) can be found by the following update rules 

of W and H: 

i) Assign        and       

ii) Initialize 1

iqW 0 and 1

qjH 0, i,q, j,   using 

Robust initialization or    NNDSVD or EFA. 

iii) Let p be the number of iterations. 

     For k = 1, 2…p 

a) If ( )k kW ,H is stationary, stop. 

  Else 

              

                                                                                                 

 

 
k

iqk,n k k k,n

iq iq W qjk k,n k,n T

iq

W
W =W -  f(W ,H ) , i,q

(W H (H ) ) + ε 
     

Where     

k

qjk,n k k k

qj qj H qjk T k k

qj

H
H = H - f(W ,H ) , q, j

((W ) W H ) + ε 
 

  = mn mk knmn
A WH W H 
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T T

W Hf(W,H)=(WH - A)H and f(W,H)=W (WH - A) 

                  

k

qj

k T k k

qj

H

((W ) W H ) + ε 
 is the step 

size 

        Where   

 

  

       ε [37,38]  and   δ  are the small positive numbers 

assumed to avoid division by zero. 

b) Normalize k,nW  and k,nH to k+1H  and 

k+1W respectively so that   k+1W ’s  column sum is one. 

c) Unimodality and selectivity constraints are 

additionally imposed into        the algorithm so as to use the 

algorithm for chromatogram separation. 

d) The iterative algorithm used has been stopped 

when the number of iterations p achieves or exceed a 

predefined maximum number of iteration.  It is assumed that 

there is no need for peak shifting, base line correction and 

noise filtering. 

iv) Calculate the objective function using new 

updated W   and   H. 

v) Repeat from (iii) to (iv) until convergence 

is achieved. 

                  The modified multiplicative update overcomes the 

difficulties that exist in the convergence of sNMF algorithm.  

Each column of W matrix gives the chromatogram of 

individual chemical present in the mixture.  The algorithm can 

handle sparseness in the data. The maximum number of 

iterations has to be specified.  

Procedure  
 Step1: The detector output of each experiment has been 

taken as an individual column of matrix A. The experimental 

data were taken for mixtures of different concentration ratios 

to get a pseudo second order data. (Only one-way data can be 

taken with the help of detector available with us.) Hence, the 

shape and area of the overlapped chromatogram is based on 

its chemical concentration. Here, the shift in position or shape 

of the chromatogram couldn’t be differentiated. Hence, 

preprocessing was not needed. The main focus of this work is 

resolving the overlapping components. It is proposed to use 

ML-sNMF   algorithm to perform the deconvolution of a data 

matrix A. 

  Step2: The size of matrix W is based on the number of 

components k in a mixture. The unknown number of 

components k, in a mixture taken for analysis, was determined 

by principal component analysis (PCA). 

 Step3: The W and H matrices have been initialized with 

Robust initialization (or) NNDSVD based initialization (or) 

EFA based initialization. The zero elements, if any, in the 

matrices ( A ,W or H ) are replaced by a small positive number 

(   ). Hence, the iteration never breaks and the algorithm can 

converge to minima.  

 Step 4: The proposed ML-sNMF algorithm is used to 

decompose the matrix A into W and H matrices.  

 

 

 

 

Step 5: After decomposition, the columns of W matrix are the 

individual chemical’s chromatogram of the mixture taken. 

The resolved chromatograms are compared with standard’s 

chromatogram and the correlation coefficients are obtained. 

The signal recovery is calculated using the formula given by   

 

p 2
[(S (t) /  std (S )]   

i it=1Pr ( dB) = 10  log  pi 10 2
[(S (t)  /  std (S )) -  (R (t) /  std(R ))]  

i i i it=1



   

where   Si   - chromatogram obtained for standard chemical 

(i.e., for  acetone, acrolein in the experimental work; the 

chromatogram of  individual component  in the simulated 

mixtures) 

              Ri   - resolved signal;          

             Std  - standard deviation; 

   Pri ( dB)  -- closeness of  ith resolved signal power with  that 

of ith standard signal;  

                i   -- 1,2…n ; where  ‘n’  is the number of 

components in the mixture. 

t    -- 1, 2…p; where ‘p’ is the end point of the 

chromatogram.  

Si(1)  =   detector output value  at the starting point 

(t=1) of the chromatogram for              the ith standard  

chemical 

  Si(p)  = detector output value  at the ending  point 

(t= p) of the chromatogram for the ith standard  chemical 

Ri(1)  =   detector output value  at the starting point 

(t=1) of the chromatogram for              the ith resolved   

chemical 

  Ri(p)  = detector output value  at the ending  point 

(t= p) of the chromatogram  for   ith   resolved  chemical 

The signal recovery says about how far the resolved signal 

deviates from its standard with respect to peak retention time 

point as well as in shape. All the above procedure was 

implemented using Matlab software.  

    Initially, the algorithm is tested on the simulated 

chromatograms of three cases, i.e., partially overlapped, 

severely overlapped and embedded peaks. One dimensional, 

GC-FID overlapped chromatograms containing tailing peaks 

(so that, it can be similar to the experimental chromatograms) 

of acetone and acrolein were simulated using cross product 

multiplication of Gaussian functions. The proposed ML-

sNMF algorithm has been performed to deconvolute the data 

matrix A of simulated overlapping and embedded 

chromatograms. 

    Finally, the proposed ML_sNMF   algorithm is applied on 

the experimental severely overlapping chromatograms of 

acetone and acrolein mixtures. All the results are compared 

with that of MCR-ALS method. 

3. RESULTS AND DISCUSSION 
            The chromatograms obtained for standards, acetone 

and acrolein, are shown in Fig.1 and Fig.2 respectively. The 

mixed solution of acetone and acrolein at four different 

concentrations were prepared.  

 

k k k

qj H qj

k k k

qj H qj

k

qj

H if f(W ,H ) 0,

max(H ,δ) if f(W ,H ) < 0

H
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Fig.1. Real experimental chromatogram of acetone 

standard. Retention time of acetone 1.128min. 

 

 

 

 
      

Fig.2. Real experimental chromatogram of acrolein 

standard. Retention time of acrolein 1.188 min. 

 

The mixer concentrations were i) 2 µL acrolein and 8 µL 

acetone, ii) 4µL a acrolein and 6µL acetone , iii) 10µL 

acrolein and 2µL acetone,  and iv) 6µL acrolein and 4µL 

acetone respectively. The chromatograms obtained are as 

shown in Fig.3 to Fig.6. It is found that the chromatograms 

are overlapped due to close retention time of acetone and 

acrolein. The chromatogram has some unknown peaks due to 

some impurities in the chemical mixture. But, focus is only on 

the overlapping region (from 1 min to 2 min), which has  to be 

resolved to separate severely overlapped acetone and acrolein, 

The remaining parts of the chromatogram are not considered 

in this work for analysis.  

 

 
Fig.3. Real experimental severely overlapped 

chromatogram of acetone and acrolein  mixture ( 2 µl 

acrolein and 8 µl acetone) . 

 
 

Fig.4. Real experimental severely overlapped 

chromatogram of acetone and acrolein mixture (6 µl 

acrolein and 4 µl acetone). 

 

 

 
Fig.5. Real experimental severely overlapped 

chromatogram of acetone and acrolein   mixture (4 µl 

acrolein and 6 µl acetone). 
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Three different strategies namely EFA, NNDSVD and 

Robust initialization are used to estimate the initial matrices 

of the proposed ML-sNMF algorithm. Then the algorithm 

was used to resolve the overlapped chromatograms. 

 

3.1 Simulation study 

3.1.1 Simulation study using proposed ML-

sNMF algorithm with EFA based 

initialization  
Initially, the EFA based initialization has been used 

to initialize the matrices of the proposed ML-sNMF algorithm 

and used to resolve partially overlapped, severely overlapped 

and embedded chromatograms.  The results are shown in 

Fig.7- Fig.9. The resolved chromatograms are compared with 

standard’s chromatogram and its correlation coefficient and 

signal recovery are given in Tables 1, 2 and 3. 

 

 

 
Fig.6.   Real experimental severely overlapped 

chromatogram of acetone and acrolein mixture (10 µl 

acrolein and 2 µl acetone). 

 

 3.1.2 Simulation study using proposed 

ML-sNMF algorithm with NNDSVD 

based initialization  
Secondly, the proposed ML-sNMF algorithm 

with NNDSVD based initialization has been used for 

overlapped chromatogram separation.The proposed ML-

sNMF algorithm (NNDSVD based initialization) was applied 

on the simulated partially overlapped, severely overlapped 

and embedded chromatograms for separation. The unresolved 

and the resolved 

chromatograms are shown in Fig.10- Fig.12. The resolved 

chromatograms are compared with standard’s chromatogram 

 

 
Fig.7 Unresolved (partially overlapped) chromatogram of 

acetone and acrolein mixture  and resolved chromatograms 

using proposed ML-sNMF algorithm with EFA based 

initialization and its correlation coefficient and signal 

recovery are given in Tables 1, 2 and 3. 

 

3.1.3 Simulation study using proposed ML-

sNMF algorithm with Robust initialization  
In the third case, the proposed ML-sNMF 

algorithm has been initialized with Robust initialization 

method and applied on overlapped chromatograms for 

separation. 

The proposed ML-sNMF algorithm (Robust initialization) 

was used to separate individual chromatograms from the 

simulated partially overlapped, severely overlapped and 

embedded chromatograms. The unresolved and the resolved 

 

 

 
Fig.8 Unresolved (severely overlapped) chromatogram of 

acetone and acrolein mixture and resolved 

chromatograms using proposed ML-sNMF algorithm with 

EFA based initialization 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 63– No.21, February 2013  

6 

 
 

Fig.9 Unresolved (embedded) chromatogram of acetone 

and acrolein mixture and resolved chromatograms using 

proposed ML-sNMF algorithm with EFA based 

initialization 

 
 
Fig.10 Unresolved (partially overlapped) chromatogram of 

acetone and acrolein mixture and resolved 

chromatograms using proposed ML-sNMF algorithm with 

NNDSVD based initialization 

 

 

 

Fig.11 Unresolved (severely overlapped) chromatogram of 

acetone and acrolein mixture and resolved 

chromatograms using proposed ML-sNMF algorithm with 

NNDSVD based initialization 

chromatograms are shown in Fig.13- Fig.15. The resolved 

chromatograms are compared with standard’s chromatogram 

and its correlation coefficient and signal recovery are given in 

Tables 1, 2 and 3. 

 The application of the ML-sNMF algorithm  on 

the simulated overlapped chromatograms of acetone and 

acrolein mixture show that the proposed method fails to 

perform better than MCR-ALS method for a partially 

(slightly) overlapped chromatogram; but performs better than 

MCR-ALS method for severely overlapped and embedded 

chromatograms.  For the resolution of severely overlapped 

chromatogram, the ML-sNMF algorithm along with EFA 

method of initialization outperforms all other methods as 

shown in Tables 2. In the case of embedded chromatogram, 

the ML-sNMF algorithm along with Robust method of 

initialization performs better than all other methods as shown 

in Tables 3.  

  

3.2   Experimental study using proposed 

ML-sNMF algorithm 
The proposed ML-sNMF algorithm is applied on the 

experimental chromatogram to resolve acetone and acrolein.  

Initially, the W and H   matrices are initialized with robust 
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Fig.12 Unresolved (embedded) chromatogram of acetone 

and acrolein mixture and resolved chromatograms using 

proposed ML-sNMF algorithm with NNDSVD based 

initialization 

 

 
Fig.13 Unresolved (partially overlapped) chromatogram of 

acetone and acrolein mixture and resolved 

chromatograms using proposed ML-sNMF algorithm with 

Robust initialization 

The results are unique for all the runs.  The overlapped 

chromatogram of acetone and acrolein mixture and the 

resolved chromatograms are shown in Fig.16. 

 

 

 
 

Fig.14 Unresolved (severely overlapped) chromatogram of 

acetone and acrolein mixture and resolved 

chromatograms using proposed ML-sNMF algorithm 

with Robust  initialization 

 

 

 
 

Fig.15 Unresolved (embedded) chromatogram of acetone 

and acrolein mixture and resolved chromatograms using 

proposed ML-sNMF algorithm with Robust initialization 

 

 

The same dataset are again tested using proposed ML-sNMF 

algorithm by taking NNDSVD estimate as initial matrices and 

the resolved results are shown in Fig.17. The results are 

unique for all the runs.  Fig.18 shows the convergence of 

NNDSVD based initialization for the proposed algorithm.  

Then the same chromatograms are resolved using proposed 

ML-sNMF algorithm by taking EFA based estimate as initial 

matrices and the results are shown in Fig.19 and are unique 

for all the runs.  The correlation coefficients and the signal 

recoveries for the acetone and acrolein are calculated and 

given in Tables 4. 
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The proposed ML-sNMF algorithm is effective for 

chromatographic resolution.  The correlation coefficient is 

greater than 0.9 and signal recovery is greater than 7 dB 

always.  From the results of different initialization strategies 

given in Tables 4, it is clear that the NNDSVD based 

initialization is found to be better for the proposed ML-sNMF 

algorithm on experimental chromatograms separation.  

 
Fig.16  Experimental (severely overlapped) 

chromatogram of acetone and acrolein mixture and 

resolved chromatograms using proposed                 ML-

sNMF (Robust initialization) 

 

Fig.17 Experimental (severely overlapped) chromatogram 

of acetone and acrolein mixture and resolved 

chromatograms using proposed      ML-sNMF  (NNDSVD 

based initialization) 
 

The resolved components are indicating the 

retention time of chemicals only but the magnitude of the 

resolved chromatograms has scaling ambiguity. Hence the 

scale of the resolved chromatogram has been normalized and 

presented in all  

results. Even though the correlation coefficients are same for 

the resolved acetone and acrolein  in some cases, their signal 

recoveries differ due to the shift in peak position and shape of 

the resolved chromatogram from its standard. Hence, the 

signal recovery seems to be a useful performance measure in 

chromatogram resolution. 

4. CONCLUSION 

                      In this paper, existing MCR-ALS and proposed 

ML-sNMF algorithms were applied on the experimental 

overlapped chromatograms of acetone and acrolein mixture. 

The algorithms were also tested on the simulated overlapped 

and embedded peaks.  

 From the results, it can be concluded that 

the proposed ML-sNMF algorithm converge to a stable limit 

point and the results are found to be unique, which are the 

advantages of the proposed algorithm.  The proposed ML-

sNMF algorithm is better than the existing MCR-ALS 

method with higher mean correlation coefficient value of 

0.9901 as well as with higher mean signal recovery value of 

17.8561dB under experimental condition.  Under simulated 

conditions, the mean correlation coefficient value and mean 

signal recovery value are much higher than the experimental 

results and thus validating the proposed algorithm.   It does 

not require any peak parameters as an input and hence no 

prior information about the chemical mixture is needed.  Even 

though the overlapped chromatograms have tailing peaks, the 

proposed ML-sNMF algorithm resolve it without any 

difficulty.  The proposed ML-sNMF gives better performance 

than the existing MCR-ALS algorithm for the severely 

overlapped and embedded chromatograms separation. 
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