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ABSTRACT
It has been shown that the problem of equivalent and minimiza-
tion of fuzzy Mealy machines can be resolved via their algebraic
study. However, no attention has paid to study fuzzy Mealy ma-
chines topologically. This paper introduces topology on the state
set of a fuzzy Mealy machine and study of various kinds of fuzzy
Mealy machines viz. cyclic, retrievable, strongly connected, with
exchange property and connected through this topology. In addi-
tion, various products of fuzzy Mealy machines and their relation-
ship in regards to aforementioned kinds of fuzzy Mealy machines
are also studied.
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1. INTRODUCTION
Recently, there has been tremendous growth in research on fuzzy
automata theory, theoretically[8-10,12] as well as practically
[5,7,10,13]. Fuzzy Mealy machine is a kind of fuzzy automaton
with outputs capabilities based on both the current state and the
current input on similar lines to fuzzy automaton, fuzzy Mealy
machine generalize classical Mealy machines, in the sense of
partial (degree of) transition of states and outputs.This makes
possible to tackled uncertainty in transition as well output. Sur-
prisingly, very little research has done in this area [2,4,11]. Al-
gebraic study of fuzzy Mealy machines has done mainly by
Mordeson et al. [11] and Jun Liu, Zhiwen Mo, Dong Qiu and
Yang Wang [4]. Both the treatments study internal working of
fuzzy Mealy machines such as equivalence and minimization.
This kind of study for finite state machines has been discussed
by Mordeson et. al. [8] and Kumbhojkar and Chaudhari[6]. In
[1,3] equivalence of fuzzy Mealy machine and fuzzy Moore ma-
chine is discussed. The aim of the present paper is to study fuzzy
Mealy machine with the help of the topology induced by the
successor operator defined on its state set. Here, submachines,
(strongly) connected, cyclic (singly generated) and retrievable
fuzzy Mealy machines with the help of this topology are stud-
ied. This study is analogous to that of topological study of fuzzy
finite state machines discussed in [9]. Also products of fuzzy
Mealy machines and their cyclicness, retrievablity, strongly con-
nectedness, exchange property and connectedness are discussed.
Precisely following results are obtained in this paper
(i) Fuzzy Mealy machine M is strongly connected if and only if
the topology generated by the successor function is a discrete
topology. (ii) Fuzzy Mealy machine M satisfies the exchange
property ⇔ it is union of its strongly connected submachines

⇔ it is retrievable (iii) Fuzzy Mealy machine M is strongly con-
nected⇔ it is connected and retrievable⇔ its every submachine
is strongly connected. It is also shown that the cartesian product
and full direct product of fuzzy Mealy machines preserved these
properties, where as the restricted direct product, cascade prod-
uct and wreath product preserve these properties under strongly
connectedness of individual fuzzy Mealy machine(s).
This paper consists of three sections. In section 2, successor
function for the set of states of fuzzy Mealy machine is intro-
duced. The concept of cyclic, retrievable, strongly connected,
connected fuzzy Mealy machines along with their relationships
are introduced. Sections 3, introduces various products of fuzzy
Mealy machines such as cartesian product, full direct product,
restricted direct product, cascade product, wreath product. The
cyclicness, retrievability, and connectedness of these product are
also discussed. The paper is concluded by giving future direction
of research and by posing an open problem relating to the notion
of topologies which are (always exists due to theorem (2.2)) for
all the product introduced in this paper.

2. FUZZY MEALY MACHINES
Recall that a fuzzy Mealy machine (fmm) was introduced
by Mordeson and Nair in [11] as a four tuple M =
(Q,X, Y, µ),where Q is a finite non-empty set of states, X is
a finite non-empty set of inputs symbols, Y is a finite non-empty
set of output symbols and µ is a fuzzy subset ofQ×X×Q×Y
i.e. µ : Q×X ×Q× Y −→ [0, 1].
The extension of µ to Q×X∗ ×Q× Y ∗ is defined by

µ∗(q, λ, p, λ) =

{
1, if q = p

0, if q 6= p,

µ∗(q, λ, p, b) = 0 and µ∗(q, xa, p, yb) =
∨
{µ∗(q, x, r, y) ∧

µ(r, a, p, b) | r ∈ Q},∀q, p ∈ Q, ∀x ∈ X∗,∀a ∈ X, ∀b ∈
Y, ∀y ∈ Y ∗, where λ denotes the empty string.
Then ∀q, p ∈ Q, ∀x, u ∈ X∗,∀y, v ∈ Y ∗ such that |x| = |y|
and |u| = |v|, we have µ∗(q, xu, p, yv) =

∨
{µ∗(q, x, r, y) ∧

µ∗(r, u, p, v) | r ∈ Q}.
Therefore, ∀q, p ∈ Q, ∀x ∈ X∗,∀y ∈ Y ∗, if |x| 6= |y| then
µ∗(q, x, p, y) = 0. Due to this property, for the rest of the pa-
per we shall assume that |x| = |y| in any expression of the form
µ∗(q, x, p, y) that may encounter.
We now introduce a topology on the state set of a given fuzzy
Mealy machine. We begin with the concept of successor.
Definition 2.1 Let M = (Q,X, Y, µ) be a fmm. Let q, p ∈ Q.
Then p is called an immediate successor of q if ∃ a ∈ X and
b ∈ Y such that µ(q, a, p, b) > 0 and p is called successor of q
if ∃ x ∈ X∗ and y ∈ Y ∗ such that µ∗(q, x, p, y) > 0.
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Notation 2.2 Let M = (Q,X, Y, µ) be a fmm and q ∈ Q. We
shall denote S(q) the set of all successor of q.
Definition 2.3 Let M = (Q,X, Y, µ) be a fmm and T ⊆ Q.
The set of all successor of T , denoted by SQ(T ), is defined to
be the set SQ(T ) =

⋃
{S(q) | q ∈ T}.

When no confusion arises, we shall write S(T ) for SQ(T )
Theorem 2.1 LetM = (Q,X, Y, µ) be a fmm. Define a relation
∼ on Q as p ∼ q if and only if q is successor of p. Then ∼ is
reflexive and transitive.
Theorem 2.2 Let M = (Q,X, Y, µ) be a fmm. Then the suc-
cessor function, S : ℘(Q) −→ ℘(Q), i.e. S(A) the set of all
successors of A ⊆ Q, is a Kuratowski’s closure operator.
Proof. We prove idempotent property only. Clearly, S(A) ⊆
S(S(A)). Let q ∈ S(S(A)). Then q ∈ S(p) for some p ∈
S(A). Thus, p ∈ S(r) for some r ∈ A. Now, q is successor
of p and p is successor r. Thus, q ∈ S(r) ⊆ S(A), that is,
S(S(A)) ⊆ S(A). Hence S(S(A)) = S(A).
15mmTherefore, τ = {Ac|S(A) ⊆ A} defines a topology on Q.
Thus, A subset A of Q is τ -closed, if S(A) = A.
Clearly the set of all closed subset of Q is a poset under set inclu-
sion operation and it is also a complete lattice with ∧S(Ai) =
∩S(Ai) and ∨S(Ai) = S(∪(Ai)).
Definition 2.4 Let M = (Q,X, Y, µ) be a fmm. Then N =
(T,X, Y, ν) is called a submachine of M , if (1) T is τ -closed
subset of Q and (2) µ|T×X×T×Y = ν. It is said to be proper sub-
machine, if T is proper τ -closed subset of Q and µ|T×X×T×Y =
ν.
Clearly, if K is a submachine ofN andN is a submachine ofM ,
then K is a submachine of M .
Definition 2.5 Let M = (Q,X, Y, µ) be a fmm. Let q, p ∈ Q
and T ⊆ Q. Suppose that if p ∈ S(T ∪ {q}), p 6∈ S(T ), then
q ∈ S(T ∪ {p}). Then we say that M satisfies the exchange
property.
Theorem 2.3 Let M = (Q,X, Y, µ) be a fmm. Then M satis-
fies the exchange property if and only if ∀p, q ∈ Q, q ∈ S(p) if
and only if p ∈ S(q).
Proof. Let p, q ∈ Q and p ∈ S(q). Now, p 6∈ S(φ), therefore
q ∈ S(p). On similar line q ∈ S(p) implies that p ∈ S(q).
Conversely let T ⊆ Q, p, q ∈ Q. Suppose p ∈ S(T ∪ {q}), p 6∈
S(T ). Then p ∈ S(q). Hence, q ∈ S(p) ⊆ S(T ∪ {p})
Definition 2.6 Let M = (Q,X, Y, µ) be a fmm. Then M is
called strongly connected if ∀p, q ∈ Q, p ∈ S(q)
Theorem 2.4 Let M = (Q,X, Y, µ) be a fmm. Then M is
strongly connected if and only if τ is the discrete topology on
Q.
Proof. Suppose M is strongly connected. Let N = (T,X, Y, ν)
be a submachine of M such that T 6= φ. Then ∃ q ∈ T. Let
p ∈ Q. SinceM is strongly connected, p ∈ S(q). Hence, T = Q
and so τ is discrete topology on Q.
Conversely if p, q ∈ Q and N = (S(q),X, Y, ν), where
ν = µ|S(q)×X×S(q)×Y , then N is a submachine of M . Since
S(q) 6= φ and τ is discrete, we have S(q) = Q. Thus, p ∈ S(q).
Hence, M is strongly connected.
Theorem 2.5 Let M = (Q,X, Y, µ) be a fmm. Then for each
R ⊆ Q, S(R) is a τ -closed set.
Proof. S(S(R)) = S(R) proves the theorem.
Thus, N = (S(R),X, Y, µR) is a submachine of M for each
R ⊆ Q, where µR = µ|S(R)×X×S(R)×Y .

Definition 2.7 Let M = (Q,X, Y, µ) be a fmm. Let R ⊆ Q.
The smallest submachine generated by R, i.e. < R >, is the
intersection of all submachines of M whose state sets are sub-
sets of Q containing R. Thus, < R >= ((

⋂
i∈I
Qi,X, Y,

⋂
i∈I
µi),

where Ni = (Qi,X, Y, µi) is a submachine of M such that
R ⊆ Qi,∀i.
Note that the state set of < R > is the τ -closure of R.
Theorem 2.6 Let M = (Q,X, Y, µ) be a fmm. Let R ⊆ Q.
Then < R >= (S(R),X, Y, µR).

Proof. Now, < R >= (
⋂
i∈I
Qi,X, Y,

⋂
i∈I
µi), where Ni =

(Qi,X, Y, µi) are submachines of M such that R ⊆ Qi. It suf-
fices to show that S(R) =

⋂
i∈I
Qi. Since (S(R),X, Y, µR) is a

submachine of M such that R ⊆ S(R), we have that S(R) ⊇⋂
i∈I
Qi. Let p ∈ S(R). Then ∃r ∈ R and x ∈ X∗, y ∈ Y ∗ such

that µ∗(r, x, p, y) > 0. Now r ∈
⋂
i∈I
Qi and since < R > is

a submachine of M , p ∈
⋂
i∈I
Qi. Thus S(R) ⊆

⋂
i∈I
Qi. Hence

S(R) =
⋂
i∈I
Qi.

Definition 2.8 Let M = (Q,X, Y, µ) be a fmm. M is called
singly generated or cyclic if ∃ q ∈ Q such that {q} is τ -dense in
Q. i.e S({q}) = Q. In this case q is called a generator ofM and
we say that M is generated by q.
Hence, M is singly generated by q ∈ Q if and only if M =
〈{q}〉.
Definition 2.9 A fmm M = (Q,X, Y, µ) is said to be retriev-
able when ∀q ∈ Q, ∀x ∈ X∗, y ∈ Y ∗, if ∃ p ∈ Q such
that µ∗(q, x, p, y) > 0, then ∃u ∈ X∗, v ∈ Y ∗ such that
µ∗(p, u, q, v) > 0.
Theorem 2.7 LetM = (Q,X, Y, µ) be a fmm. Then the follow-
ing statements are equivalent

1. M satisfies the exchange property
2. M is union of strongly connected submachines
3. M is retrievable

Proof. (1) ⇒ (2): Clearly M =
⋃n

i=1 < {qi} >, where
S({q1, q2, ..., qn}) = Q. Also S(qi) ∩ S(qj) = φ if i 6= j. Let
p, q ∈ S(qi). Then qi ∈ S(p) and so q ∈ S(p). Thus < qi > is
strongly connected. (2)⇒ (1): NowM =

⋃n
i=1Mi, where each

Mi = (Qi,X, Y, µi) strongly connected. Let p, q ∈ Q. Suppose
p ∈ S(q). Now ∃i such that q ∈ Qi. Then p ∈ S(q) ⊆ S(Qi) =
Qi. Thus p, q ∈ Qi. Since Mi is strongly connected,q ∈ S(p).
Hence M satisfies the Exchange Property by theorem(2.3).
(2) ⇒ (3): Now M =

⋃n
i=1Mi, where each Mi =

(Qi,X, Y, µi) strongly connected. Let q ∈ Q,u ∈ X∗, v ∈
Y ∗ be such that µ∗(q, u, t, v) > 0 for some t ∈ Q. Now
q ∈ Qi for some i. Thus t ∈ S(q) ⊆ S(Qi). Since Mi

is strongly connected, q ∈ S(t). Hence ∃x ∈ X∗, y ∈
Y ∗ such that µ∗(t, x, q, y) > 0. Thus M is retrievable. (3) ⇒
(2): Let q ∈ Q and let r, t ∈ S(q). Then ∃x, u ∈ X∗ and
∃y, v ∈ Y ∗ such that µ∗(q, x, r, u) > 0 and µ∗(q, u, r, v) > 0.
Since M is retrievable ∃z ∈ X∗ and w ∈ Y ∗ such that
µ∗(r, z, q, w) > 0. Hence q ∈ S(r) and < q > is strongly
connected. So M =

⋃
q∈Q < q >.

Definition 2.10 Let M = (Q,X, Y, µ) be a fmm. A proper sub-
machine N = (T,X, Y, ν) is said to be separated if Q-T is a
proper τ -closed subset of Q.
Theorem 2.8 Let M = (Q,X, Y, µ) be a fmm. Let N =
(T,X, Y, ν) be a submachine of M . Then N is separated if and
only if S(Q− T ) ∩ T = φ.
Proof. Suppose N is separated. Then T is τ -closed subset of Q.
Thus, S(Q-T) = Q-T. Hence S(Q− T ) ∩ T = Q− T ∩ T = φ.
Conversely,let q ∈ S(Q−T ). Then by assumption q 6∈ T . Thus,
q ∈ Q − T . Therefore, S(Q − T ) = Q − T . i.e. Q − T is a τ -
closed subset of Q.
Theorem 2.9 Let M = (Q,X, Y, µ) be a cyclic then it has sep-
arated and strongly connected submachine.
Proof. Take T = {p ∈ Q | S(p) = Q}. Then N =
(T,X, Y, µ |S(q)) is the required submachine.
Definition 2.11 Let M = (Q,X, Y, µ) be a fmm. Then M is
said to be connected if and only if Q has no proper τ -open and
τ -closed subset.
Theorem 2.10 Let M = (Q,X, Y, µ) be a fmm. Then M is
connected if and only if M has no separated submachine.
Proof. Suppose M is connected. Let if possible M has a proper
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separated submachine, say N = (T,X, Y, ν). Then T is a
proper τ -closed subset of Q. Since, N is separated, we have
S(Q − T ) = Q − T . Therefore, QT is τ -closed. i.e. T is τ -
open subset of Q. Therefore, T is proper τ -closed and τ–open
subset of Q which is contradiction to M is connected.
Conversely, if M is not connected then M has a proper sepa-
rated submachine, say N = (T,X, Y, ν). Then clearly, T is a
proper τ -open and τ -closed subset of Q, which is contradiction
to the hypothesis. Therefore, M is must not connected.
The difference between strongly connected and connected is de-
picted in the following example.
Example 2.11 Consider a Mealy machineM : µ(p, x2, q, y2) =
0.3, µ(p, x1, r, y1) = 0.7 and µ(q, x1, r, y1) = 0.8.
Then M is connected but not strongly connected.
Theorem 2.12 Let M = (Q,X, Y, µ) be a fmm. Then M
is connected if and only if for all proper submachines N =
(T,X, Y, ν), ∃ s ∈ Q−T and t ∈ T such that S(s)∩S(t) 6= φ.
Theorem 2.13 Let M be strongly connected fmm. Then M is
cyclic, retrievable, connected.
Theorem 2.14 LetM = (Q,X, Y, µ) be a fmm. Then following
assertions are equivalent.

1. M is strongly connected.
2. M is connected and retrievable.
3. Every submachine of M is strongly connected.

Proof. (1)⇒ (2): By theorem (2.4),M does not have any proper
submachine and so M has no proper separated submachines.
Thus M is connected. Now we show that M is retrievable. Let
q, t ∈ Q and x ∈ X∗, y ∈ Y ∗ be such that µ∗(q, x, t, y) > 0.
SinceM is strongly connected q ∈ S(t). Then ∃u ∈ X∗, v ∈ Y ∗
such that µ∗(t, u, q, v) > 0. Hence M is retrievable.
(2) ⇒ (3): Let N = (T,X, Y, ν) be a submachine of M . Sup-
pose p, q ∈ T are such that p 6∈ S(q). Then S(q) 6= Q and
so K = (S(q),X, Y, µ |S(q)×X×S(q)×Y ) is a proper subma-
chine of M . Since M is connected, S(Q − S(q)) ∩ S(q) 6= φ.
Let r ∈ S(Q − S(q)) ∩ S(q). Then r ∈ S(t) for some
t ∈ Q − S(q) and r ∈ S(q). Now ∃x ∈ X∗andy ∈ Y ∗ such
that µ∗(t, x, r, y) > 0). Since M is retrievable, ∃u ∈ X∗ and
v ∈ Y ∗ such that µ∗(r, u, t, v) > 0). Thus t ∈ S(r). Hence
t ∈ S(r) ⊆ S(q), a contradiction. Thus p ∈ S(q)∀p, q ∈ T .
Hence N is strongly connected.
(3)⇒ (1): Obvious.
Theorem 2.15 If M is cyclic and T = {p ∈ Q | S(p) = Q}
then N = (T,X, Y, µ|S(q)

) has a retrievable and connected sub-
machine.
Proof. Follows by above theorem (2.13).

3. PRODUCTS OF FUZZY MEALY MACHINES
This section is an introduction of various products of fmms and
discussed their interrelationship in terms of cyclicness, retriev-
ability exchange property and connectedness.
Definition 3.1 Let Mi = (Qi,Xi, Yi, µi) be a fmms,i = 1, 2.
Then the machine M1 �M2 = (Q,X, Y, µ1 � µ2) is called
1) the cartesian product of fmms of M1 and M2, with X1 ∩
X2 = φ and Y1∩Y2 = φ, ifQ = Q1×Q2,X = X1∪X2, Y =
Y1 ∪ Y2 and (µ1 � µ2)((q1, q2), a, (p1, p2), b) =

=


µ1(q1, a, p1, b) if a ∈ X1, b ∈ Y1 and q2 = p2
µ2(q2, a, p2, b) if a ∈ X2, b ∈ Y2 and q1 = p1
0 otherwise

(1)

∀(p1, p2), (q1, q2) ∈ Q1 ×Q2, a ∈ X1 ∪X2, b ∈ Y1 ∪ Y2.
2) the full direct product of fmms of M1 and M2,
if Q = Q1 × Q2,X = X1 × X2, Y = Y1 × Y2

and (µ1 � µ2)
∗((q1, q2), (x1, x2), (p1, p2), (y1, y2)) =

µ∗1(q1, x1, p1, y1) ∧ µ∗2(q2, x2, p2, y2), ∀(q1, q2), (p1, p2) ∈

Q1 ×Q2,∀(x1, x2) ∈ X1 ×X2,∀(y1, y2) ∈ Y1 × Y2.
3) the restricted direct product of fmms of M1 and M2,
if Q = Q1 × Q2,X = X1 = X2, Y = Y1 = Y2 and
(µ1 � µ2)

∗((q1, q2), x, (p1, p2), y) = µ∗1(q1, x, p1, y) ∧
µ∗2(q2, x, p2, y), ∀(q1, q2), (p1, p2) ∈ Q1 × Q2,∀x ∈ X, ∀y ∈
Y .
4)the cascade product of fmms of M1 and
M2, if Q = Q1 × Q2,X = X2, Y = Y2

and (µ1 � µ2)
∗((q1, q2), x2, (p1, p2), y2) =

µ∗1(q1, ωx(q2, x2), p1, ωy(q2, y2)) ∧µ∗2(q2, x2, p2, y2),
∀(q1, q2), (p1, p2) ∈ Q1 × Q2,∀x2 ∈ X2 and ∀y2 ∈ Y2

and ωx : Q2 ×X2 → X1 and ωy : Q2 × Y2 → Y1.
5) the wreath product of fmms of M1 and M2, if
Q = Q1 × Q2,X = XQ2

1 × X2, Y = Y Q2
1 × Y2 and

(µ1 � µ2)
∗((q1, q2), (f, x2), (p1, p2), (g, y2)) = µ∗1(q1, f(q2),

p1, g(q2)) ∧µ∗2(q2, x2, p2, y2),∀(q1, q2), (p1, p2) ∈
Q1 × Q2,∀x2 ∈ X2 and ∀y2 ∈ Y2 and XQ2

1 = {f :

Q2 → X1} and Y Q2
1 = {g : Q2 → Y1}.

Remark 3.1 i) The restricted direct product of M1 and M2 is a
special case of their cascade product, X1 = X2, Y1 = Y2 and
ωx : Q2 ×X2 → X1, ωy : Q2 × Y2 → Y1 both are projection
functions.
ii) The cascade product of M1 and M2 is a special case of their
wreath product, when XQ2

1 = {ωx} and Y Q2
1 = {ωy}.

Theorem 3.2 Let Mi = (Qi,Xi, Yi, µi) be a fmms,
i = 1, 2 and let X1 ∩ X2 = φ and Y1 ∩ Y2 = φ. Let
M1 �M2 = (Q1 ×Q2,X1 ∪X2, Y1 ∪ Y2, µ1 � µ2)
be the cartesian product of M1 and M2. Then ∀x ∈
X∗1 ∪X∗2, x 6= λ, ∀y ∈ Y ∗1 ∪ Y ∗2 , y 6= λ
(µ1 � µ2)

∗((q1, q2), x, (p1, p2), y) =

=


µ∗1(q1, x, p1, y) if x ∈ X∗1, y ∈ Y ∗1 and q2 = p2
µ∗2(q2, x, p2, y) if x ∈ X∗2, y ∈ Y ∗2 and q1 = p1
0 otherwise

(2)

∀(p1, p2), (q1, q2) ∈ Q1 ×Q2

Proof. Let x ∈ X∗1 ∪ X∗2, x 6= λ, y ∈ Y ∗1 ∪ Y ∗2 , y 6= λ and let
| x |=| y |= n. Suppose that x ∈ X∗1 and y ∈ Y ∗1 . Clearly
the result is true if n = 1. Suppose the result is true ∀u ∈ X∗1, |
u |= n − 1, n > 1 and ∀v ∈ Y ∗1 , | v |= n − 1, n > 1. Let
x = au where a ∈ X1 and u ∈ X∗1 and y = bv where b ∈ Y1

and v ∈ Y ∗1 . Now, (µ1 � µ2)
∗((p1, p2), au, (q1, q2), bv) =

= ∨ {(µ1 � µ2)((p1, p2), a, (r1, r2), b)

∧ (µ1 � µ2)
∗((r1, r2), u, (q1, q2), v) |

(r1, r2) ∈ Q1 ×Q2}
= ∨ {µ1(p1, a, r1, b) ∧ (µ1 � µ2)

∗((r1, p2), u, (q1, q2), v)

| r1 ∈ Q1}

=

{
∨{µ1(p1, a, r1, b) ∧ µ∗1(r1, u, q1, v) | r1 ∈ Q1} if p2 = q2
0 otherwise

=

{
µ∗1(p1, au, q1, bv) if p2 = q2
0 otherwise

(3)
The result is now follows by induction. Similarly, if x ∈ X∗2 and
y ∈ Y ∗2 one can prove the other case.
Theorem 3.3 Let Mi = (Qi,Xi, Yi, µi) be a fmms,
i = 1, 2 and let X1 ∩ X2 = φ and Y1 ∩ Y2 = φ. Let
M1 �M2 = (Q1 ×Q2,X1 ∪X2, Y1 ∪ Y2, µ1 � µ2)
be the cartesian product of M1 and M2. Then
∀x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1, y2 ∈ Y2

(µ1 � µ2)
∗((q1, q2), x1x2, (p1, p2), y1y2) =

µ∗1(q1, x1, p1, y1) ∧ µ∗2(q2, x2, p2, y2)
= (µ1 � µ2)

∗((q1, q2), x2x1, (p1, p2), y2y1)
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Proof. Let x1 ∈ X∗1, x2 ∈ X∗2, y1 ∈ Y ∗1 , y2 ∈ Y ∗2 and
(q1, q2), (p1, p2) ∈ Q1 ×Q2.
case(i) If x1 = x2 = y1 = y2 = λ then x1x2 = y1y2 = λ.
case(ii) Suppose, (q1, q2) = (p1, p2), then q1 = p1 or q2 = p2.
Hence, (µ1�µ2)((q1, q2), x1x2, (p1, p2), y1y2) = 1 = 1∧1 =
µ∗1(q1, x1, p1, y1) ∧ µ∗2(q2, x2, p2, y2).
suppose,(q1, q2) 6= (p1, p2), then either q1 6= p1 and
q2 6= p2. Thus, µ∗1(q1, x1, p1, y1) ∧ µ∗2(q2, x2, p2, y2) = 0.
Hence (µ1 � µ2)((q1, q2), x1x2, (p1, p2), y1y2) = 0 =
µ∗1(q1, x1, p1, y1) ∧ µ∗2(q2, x2, p2, y2).
case(iii) If x1 = λ, y1 = λ and x2 6= λ, y2 6= λ or
x1 6= λ, y1 6= λ and x2 = λ, y2 = λ.Then by theorem 3.2 result
holds.
case(iv) Suppose, x1 6= λ, y1 6= λ and x2 6= λ, y2 6= λ. Now
(µ1 � µ2)

∗((q1, q2), x1x2, (p1, p2), y1y2) =

=
∨
{(µ1 � µ2)

∗((q1, q2), x1, (r1, r2), y1)

∧ (µ1 � µ2)
∗((r1, r2), x2, (p1, p2), y2) |

(r1, r2) ∈ Q1 ×Q2}

=
∨
{
∨
{(µ1 � µ2)

∗((q1, q2), x1, (r1, r2), y1)

∧ (µ1 � µ2)
∗((r1, r2), x2, (p1, p2), y2) | r2 ∈ Q2} |

r1 ∈ Q1}

=
∨
{(µ1 � µ2)

∗((q1, q2), x1, (r1, q2), y1)

∧ (µ1 � µ2)
∗((r1, q2), x2, (p1, p2), y2) | r1 ∈ Q1}

=µ∗1(q1, x1, p1, y1) ∧ µ∗2(q2, x2, p2, y2)

(4)

Similarly,(µ1 � µ2)
∗((q1, q2), x2x1, (p1, p2), y2y1) =

µ∗1(q1, x1, p1, y1) ∧ µ∗2(q2, x2, p2, y2).
Theorem 3.4 Let Mi = (Qi,Xi, Yi, µi) be a fmms,
i = 1, 2 and let X1 ∩ X2 = φ and Y1 ∩ Y2 = φ. Let
M1 �M2 = (Q1 ×Q2,X1 ∪X2, Y1 ∪ Y2, µ1 � µ2)
be the cartesian product of M1 and M2. Then ∀x ∈
(X1 ∪ X2)

∗∃x1 ∈ X∗1, x2 ∈ X∗2 and ∀y ∈ (Y1 ∪ Y2)
∗∃y1 ∈

Y ∗1 , y2 ∈ Y ∗2 such that (µ1 � µ2)
∗((q1, q2), x, (p1, p2), y) =

(µ1 � µ2)
∗((q1, q2), x1x2, (p1, p2), y1y2)

∀(p1, p2), (q1, q2) ∈ Q1 ×Q2.
Proof. Let x ∈ (X1 ∪ X2)

∗, y ∈ (Y1 ∪ Y2)
∗ and

(p1, p2), (q1, q2) ∈ Q1 × Q2. If x = λ = y, then we
can choose x1 = x2 = y1 = y2 = λ. In this case the
result is trivially true. Suppose x 6= λ, y 6= λ. If x ∈ X∗1 or
x ∈ X∗2, y ∈ Y ∗1 or y ∈ Y ∗2 , then again the result is trivially true.
Suppose x 6∈ X∗1x 6∈ X∗2 and y 6∈ Y ∗1 or y 6∈ Y ∗2
case(I) If x = x1x2, x1 ∈ X∗1 − λ, x2 ∈ X∗2 − λ and
y = y1y2, y1 ∈ Y ∗1 − λ, y2 ∈ Y ∗2 − λ. Then result follows by
Theorem (3.3)
case(II) Suppose x = x11x21x12 where x11, x12 ∈
X∗1, x21 ∈ X∗2 and y = y11y21y12, where y11, y12 ∈
Y ∗1 , y21 ∈ Y ∗2 , x1i, x21, y1i, y21 are non-empty strings,
i = 1, 2. Let x1 = x11x12 ∈ X∗1 and x2 = x21
and y1 = y11y12 ∈ Y ∗1 and y2 = y21. Then
(µ1 � µ2)

∗((q1, q2), x11x21x12, (p1, p2), y11y21y12) =∨
{(µ1 � µ2)

∗((q1, q2), x11, (r1, r2), y11) ∧(µ1 �
µ2)

∗((r1, r2), x21x12, (p1, p2), y21y12)|(r1, r2) ∈ Q1 × Q2}
=

∨
{(µ1 � µ2)

∗((q1, q2), x11, (r1, r2), y11) ∧(µ1 �
µ2)

∗((r1, r2), x12x21, (p1, p2), y12y21 )|(r1, r2) ∈ Q1 × Q2}
= (µ1 � µ2)

∗((q1, q2), x11 x12x21, (p1, p2), y11y12y21)
case(III) Suppose x = x21x11x22 where x21, x22 ∈ X∗2, x11 ∈
X∗1 and y = y21y11y22 where y21, y22 ∈ Y ∗2 , y11 ∈ Y ∗1 ,
x21, x2i, y21, y2i are non-empty strings i = 1, 2. Let
x2 = x21x22 ∈ X∗2 and x1 = x11 and y2 = y21y22 ∈ Y ∗2 and
y1 = y11. The proof of this case is similar to case(II)
case(IV) Suppose x = x11x21x12x22, where x11, x12 ∈
X∗1, x21, x22 ∈ X∗2 and y = y11y21y12y22, where
y11, y12 ∈ Y ∗1 , y21, y22 ∈ Y ∗2 , x1i, x2i, y1i, y2i are non-empty

strings, i = 1, 2. Let x1 = x11x12 ∈ X∗1 x2 = x21x22 ∈ X∗2
and y1 = y11y12 ∈ Y ∗1 y2 = y21y22 ∈ Y ∗2
Then (µ1�µ2)

∗((q1, q2), x11x21x12x22, (p1, p2), y11y21y12y22) =∨
{(µ1 � µ2)

∗((q1, q2), x11, (r1, r2), y11) ∧(µ1 �
µ2)

∗((r1, r2), x21x12x22, (p1, p2), y21y12y22)|(r1, r2) ∈
Q1 ×Q2}=

∨
{(µ1 � µ2)

∗((q1, q2), x11, (r1, r2), y11) ∧(µ1 �
µ2)

∗((r1, r2), x12x21x22, (p1, p2), y12y21y22)|(r1, r2) ∈
Q1 × Q2} (by case (III)) = (µ1 � µ2)

∗((q1, q2),
x11x12x21x22, (p1, p2), y11y12y21y22).
case(V)Suppose x = x21x11x22x12, where x11, x12 ∈
X∗1, x21, x22 ∈ X∗2 and y = y21y11y22y12, where
y11, y12 ∈ Y ∗1 , y21, y22 ∈ Y ∗2 , x1i, x2i, y1i, y2i are non-empty
strings, i = 1, 2. Let x1 = x11x12 ∈ X∗1 x2 = x21x22 ∈ X∗2
and y1 = y11y12 ∈ Y ∗1 y2 = y21y22 ∈ Y ∗2 . The proof of
this case is similar to case(IV). The theorem now follows by
induction.
Theorem 3.5 Let Mi = (Qi,Xi, Yi, µi) be a fmms, i = 1, 2.
Then fmms M1 �M2 is cyclic if and only if M1 and M2 are
cyclic, where � is cartesian product and full direct product.
Proof. 1) When � is cartesian product. Suppose M1 and
M2 are cyclic, say Q1 = S(q1) and Q2 = S(q2) for
some q1 ∈ Q1 and q2 ∈ Q2. Let (p1, p2) ∈ Q1 × Q2.
Then ∃x1 ∈ X∗1, x2 ∈ X∗2, y1 ∈ Y ∗1 , y2 ∈ Y ∗2 such
that µ∗1(q1, x1, p1, y1) > 0 and µ∗2(q2, x2, p2, y2) > 0.
Thus (µ1 � µ2)

∗((q1, q2), x1x2, (p1, p2), y1y2) =
µ∗1(q1, x1, p1, y1) ∧ µ∗2(q2, x2, p2, y2) > 0. That is,
(p1, p2) ∈ S(q1, q2). Thus, Q1 × Q2 = S((q1, q2)).Hence
M1 �M2 is cyclic.
Conversely, Suppose M1 � M2 is cyclic. Let Q1 × Q2 =
S((q1, q2)), for some (q1, q2) ∈ Q1 × Q2. Let p1 ∈ Q1 and
p2 ∈ Q2. Then ∃x ∈ (X1 ∪ X2)

∗ and ∃y ∈ (Y1 ∪ Y2)
∗ such

that (µ1 � µ2)
∗((q1, q2), x, (p1, p2), y) > 0. Then by the-

orem 3.3 ∃x1 ∈ X∗1, x2 ∈ X∗2 and ∃y1 ∈ Y ∗1 , y2 ∈ Y ∗2
such that µ∗1(q1, x1, p1, y1) ∧ µ∗2(q2, x2, p2, y2) =
(µ1 � µ2)

∗((q1, q2), x, (p1, p2), y) > 0. That is
∃x1 ∈ X∗1, x2 ∈ X∗2 and ∃y1 ∈ Y ∗1 , y2 ∈ Y ∗2 such that
µ∗1(q1, x1, p1, y1) > 0 and µ∗2(q2, x2, p2, y2) > 0. That
is p1 ∈ S(q1) and p2 ∈ S(q2). That is Q1 = S(q1) and
Q2 = S(q2). Thus M1 and M2 are cyclic.
2)When � is full direct product. Suppose M1 and M2

are cyclic, say Q1 = S(q1) and Q2 = S(q2) for some
q1 ∈ Q1 and q2 ∈ Q2. Let (p1, p2) ∈ Q1 × Q2.
Then µ∗1(q1, x1, p1, y1) > 0 and µ∗2(q2, x2, p2, y2) > 0.
Thus (µ1 � µ2)

∗((q1, q2), (x1, x2), (p1, p2), (y1, y2)) =
µ∗1(q1, x1, p1, y1) ∧ µ∗2(q2, x2, p2, y2) > 0. That is,
(p1, p2) ∈ S((q1, q2)). Thus, Q1 � Q2 = S(q1, q2).Hence
M1 �M2 is cyclic.
Conversely, Suppose M1 � M2 is cyclic. Let Q1 � Q2 =
S((q1, q2)), for some (q1, q2) ∈ Q1�Q2. Let p1 ∈ Q1 and p2 ∈
Q2. Then (µ1 � µ2)

∗((q1, q2), (x1, x2), (p1, p2), (y1, y2)) =
µ∗1(q1, x1, p1, y1) ∧ µ∗2(q2, x2, p2, y2) > 0. This implies
µ∗1(q1, x1, p1, y1) > 0 and µ∗2(q2, x2, p2, y2) > 0. Therefore,
p1 ∈ S(q1) and p2 ∈ S(q2).That is Q1 = S(q1), for some
q1 ∈ Q1 and Q2 = S(q2), for some q2 ∈ Q2. Hence, M1 and
M2 are cyclic.
Theorem 3.6 Let Mi = (Qi,Xi, Yi, µi) be a fmms, i = 1, 2 If
fmms M1 �M2 is cyclic then M1 and M2 are cyclic, where �
is restricted direct product, cascade product and wreath product.
Proof. 1) When � is restricted direct product. Sup-
pose M1 � M2 is cyclic. Let Q1 × Q2 = S((q1, q2)),
for some (q1, q2) ∈ Q1 × Q2. Let p1 ∈ Q1 and
p2 ∈ Q2. Then (µ1 � µ2)

∗((q1, q2), x, (p1, p2), y) =
µ∗1(q1, x, p1, y) � µ∗2(q2, x, p2, y) > 0. This implies
µ∗1(q1, x, p1, y) > 0 and µ∗2(q2, x, p2, y) > 0. Therefore,
p1 ∈ S(q1) and p2 ∈ S(q2). That is Q1 = S(q1), for some
q1 ∈ Q1 and Q2 = S(q2), for some q2 ∈ Q2. Hence, M1 and
M2 are cyclic.
2) When � is cascade product. Suppose M1 �M2 is cyclic. Let
Q1×Q2 = S((q1, q2)), for some (q1, q2) ∈ Q1×Q2. Let p1 ∈
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Q1 and p2 ∈ Q2. Then (µ1 � µ2)
∗((q1, q2), x2, (p1, p2), y2) =

µ∗1(q1, ωx(q2, x2), p1, ωy (q2, y2)) ∧ µ∗2(q2, x2, p2, y2) > 0.
This implies µ∗1(q1, ωx(q2, x2), p1, ωy (q2, y2)) > 0 and
µ∗2(q2, x2, p2, y2) > 0. Therefore, p1 ∈ S(q1) and
p2 ∈ S(q2).That is Q1 = S(q1), for some q1 ∈ Q1 and
Q2 = S(q2), for some q2 ∈ Q2. Hence, M1 and M2 are cyclic.
3) When � is wreath product. Suppose M1 �M2 is cyclic. Let
Q1×Q2 = S((q1, q2)), for some (q1, q2) ∈ Q1×Q2. Let p1 ∈
Q1 and p2 ∈ Q2. Then (µ1 � µ2)

∗((q1, q2), (f, x2), (p1, p2), (g
, y2)) = µ∗1(q1, f(q2), p1, g(q2)) ∧ µ∗2(q2, x2, p2, y2) > 0. This
implies µ∗1(q1, f(q2), p1, g(q2)) > 0 and µ∗2(q2, x2, p2, y2) > 0.
Therefore, p1 ∈ S(q1) and p2 ∈ S(q2).That is Q1 = S(q1), for
some q1 ∈ Q1 and Q2 = S(q2), for some q2 ∈ Q2. Hence, M1

and M2 are cyclic.
The converse of the above theorem is true when individual fmms
are strongly connected.
Theorem 3.7 Let Mi = (Qi,Xi, Yi, µi) be a strongly con-
nected fmms, i = 1, 2. Then M1 �M2 is cyclic , where � is
restricted direct product, cascade product and wreath product.
Proof. 1) When � is restricted direct product. By theo-
rem (3.1) M1 and M2 are cyclic, one has Q1 = S(q1)
and Q2 = S(q2) for some q1 ∈ Q1 and q2 ∈ Q2. Let
(p1, p2) ∈ Q1 × Q2. Then µ∗1(q1, x, p1, y) > 0 and
µ∗2(q2, x, p2, y) > 0. Thus (µ1�µ2)

∗((q1, q2), x, (p1, p2), y) =
µ∗1(q1, x, p1, y) ∧ µ∗2(q2, x, p2, y) > 0. That is,
(p1, p2) ∈ S((q1, q2)). Thus, Q1 × Q2 = S(q1, q2).Hence
M1 �M2 is cyclic.
2) When� is cascade product. SinceM1 andM2 are cyclic, one
has Q1 = S(q1) and Q2 = S(q2) for some q1 ∈ Q1 and q2 ∈
Q2. Let (p1, p2) ∈ Q1 × Q2. Then µ∗1(q1, ωx(q2, x2), p1, ωy

(q2, y2)) > 0 and µ∗2(q2, x2, p2, y2) > 0. Thus
(µ1 � µ2)

∗((q1, q2), x2, (p1, p2), y2) = µ∗1(q1, ωx

(q2, x2), p1, ωy(q2, y2)) ∧ µ∗2(q2, x2, p2, y2) > 0. That is,
(p1, p2) ∈ S((q1, q2)). Thus, Q1 × Q2 = S(q1, q2).Hence
M1 �M2 is cyclic.
3) When � is wreath product. Since M1 and M2 are
cyclic, one has Q1 = S(q1) and Q2 = S(q2) for some
q1 ∈ Q1 and q2 ∈ Q2. Let (p1, p2) ∈ Q1 × Q2. Then
µ∗1(q1, f(q2), p1, g(q2)) > 0 and µ∗2(q2, x2, p2, y2) > 0.
Thus (µ1 � µ2)

∗((q1, q2), (f, x2), (p1, p2), (g, y2)) =
µ∗1(q1, f(q2), p1, g (q2)) ∧ µ∗2(q2, x2, p2, y2) > 0. That is,
(p1, p2) ∈ S((q1, q2)). Thus, Q1 × Q2 = S(q1, q2). Hence
M1 �M2 is cyclic.
Theorem 3.8 Let Mi = (Qi,Xi, Yi, µi) be a fmms, i = 1, 2.
Then fmms M1 �M2 is retrievable if and only if M1 and M2

are retrievable, where � is cartesian product and full direct
product.
Proof. 1) When � is cartesian product.Suppose M1 and
M2 are retrievable. Let (q1, q2), (p1, p2) ∈ Q1 × Q2

and x ∈ (X1 ∪ X2)
∗, y ∈ (Y1 ∪ Y2)

∗ be such
that(µ1 � µ2)

∗((q1, q2), x, (p1, p2), y) > 0. Let x∗1 = x1x2
be the standard form of x, x1 ∈ X1 and x2 ∈ X2 and
y∗1 = y1y2 be the standard form of y, y1 ∈ Y1 and
y2 ∈ Y2. Then (µ1 � µ2)

∗((q1, q2), x, (p1, p2), y) = (µ1 �
µ2)

∗((q1, q2), x1x2, (p1, p2), y1y2) = µ∗1(q1, x1, p1, y1) ∧
µ∗2(q2, x2, p2, y2). Thus µ∗1(q1, x1, p1, y1) > 0 and
µ∗2(q2, x2, p2, y2) > 0. Since M1 and M2 are
retrievable,∃u1 ∈ X∗1, u2 ∈ X∗2, v1 ∈ Y ∗1 , v2 ∈ Y ∗2 such
that µ∗1(p1, u1, q1, v1) > 0 and µ∗2(p2, u2, q2, v2) > 0.
Thus (µ1 � µ2)

∗((p1, p2), u1u2, (q1, q2), v1v2) > 0. That is
(µ1 � µ2)

∗((p1, p2), u, (q1, q2), v) > 0. Hence, M1 � M2 is
retrievable.
Conversely, suppose M1 �M2 is retrievable. Let q1, p1 ∈ Q1,
x ∈ X∗1 and y ∈ Y ∗1 be such that µ∗1(q1, x1, p1, y1) > 0.
Then ∀q2 ∈ Q2, (µ1 � µ2)

∗((q1, q2), x1, (p1, q2), y1) > 0
Thus ∃u ∈ (X1 ∪ X2)

∗ and ∃v ∈ (Y1 ∪ Y2)
∗ such that

(µ1 � µ2)
∗((q1, q2), u, (p1, q2), v) > 0. Let u = u1u2

be the standard form of u and v respectively where
u1 ∈ X∗1, u2 ∈ X∗2 and v1 ∈ Y ∗1 , v2 ∈ Y ∗2 . Then 0 <

(µ1�µ2)
∗((q1, q2), u1u2, (p1, q2), v1v2) = µ1(q1, u1, p1, v1)∧

µ2(q2, u2, q2, v2). Thus µ1(q1, u1, p1, v1) > 0. Hence M1 is
retrievable. Similarly M2 is retrievable.
2)When � is full direct product. Suppose M1 and M2

are retrievable. Let (q1, q2), (p1, p2) ∈ Q1 × Q2 and
(x1, x2) ∈ (X1 × X2)

∗,(y1, y2) ∈ (Y1 × Y2)
∗ be such

that (µ1 � µ2)
∗((q1, q2), (x1, x2), (p1, p2), (y1, y2)) =

µ∗1(q1, x1, p1, y1) ∧ µ∗2(q2, x2, p2, y2) > 0. Since, M1

and M2 are retrievable. ∃u1 ∈ X∗1, v1 ∈ Y ∗1 and
∃u2 ∈ X∗2, v2 ∈ Y ∗2 , such that µ∗1(p1, u1, q1, v1) > 0
and µ∗2(p2, u2, q2, v2) > 0. Now µ∗1(p1, u1, q1, v1) ∧
µ∗2(p2, u2, q2, v2) = (µ1 × µ2)

∗((p1, p2), (u1, u2),
(q1, q2), (v1, v2)) > 0. Therefore,M1 � M2 is retriev-
able.
Conversely, suppose M1 � M2 is retrievable. Let
(q1, q2) ∈ Q1 × Q2, (x1, x2) ∈ (X1 × X2)

∗ and
(y1, y2) ∈ (Y1 × Y2)

∗∃(p1, p2) ∈ Q1 × Q2 such that
(µ1 � µ2)

∗((q1, q2), (x1, x2), (p1, p2), (y1, y2)) > 0 then
∃(u1, u2) ∈ (X1 × X2)

∗, (v1, v2) ∈ (Y1 × Y2)
∗ such

that (µ1 � µ2)
∗((p1, p2), (u1, u2), (q1, q2), (v1, v2)) =

µ∗1(p1, u1, q1, v1) ∧ µ∗2(p2, u2, q2, v2) > 0. Hence, M1 and M2

are retrievable.
Theorem 3.9 Let Mi = (Qi,Xi, Yi, µi) be a fmms, i = 1, 2 If
fmms M1 �M2 is retrievable then M1 and M2 are retrievable,
where � is restricted direct product, cascade product and wreath
product.
Proof. 1) When� is restricted direct product. SupposeM1�M2

is retrievable. Let (q1, q2), (p1, p2) ∈ Q1 × Q2, x ∈ X
and y ∈ Y such that (µ1 × µ2)

∗((q1, q2), x, (p1,
p2), y) > 0 then ∃u ∈ X∗, v ∈ Y ∗ such that
(µ1 × µ2)

∗((p1, p2), u, (q1, q2), v) = µ∗1(p1, u, q1, v)
∧µ∗2(p2, u, q2, v) > 0. Hence, M1 and M2 are retriev-
able.
2) When� is cascade product. SupposeM1�M2 is retrievable.
Let (q1, q2), (p1, p2) ∈ Q1 × Q2, x2 ∈ X2 and y2 ∈ Y2 such
that (µ1 � µ2)

∗((q1, q2), x2, (p1, p2), y2) > 0 then ∃u2 ∈
X∗2, v2 ∈ Y ∗2 such that (µ1 � µ2)

∗((p1, p2), u2, (q1, q2), v2) =
µ∗1(p1, ωu(p2, u2), q1, ωv(p2, v2)) ∧ µ∗2(p2, u2, q2, v2) > 0.
Hence, M1 and M2 are retrievable.
3) When � is wreath product. Suppose M1 �M2 is retrievable.
Let (q1, q2), (p1, p2) ∈ Q1 × Q2, x2 ∈ X∗2 and y2 ∈ Y ∗2 such
that (µ1 � µ2)

∗((q1, q2), (f, x2), (p1, p2), (g, y2)) > 0
then ∃u2 ∈ X∗2, v2 ∈ Y ∗2 such that (µ1 �
µ2)

∗((p1, p2), (f, u2), (q1, q2), (g, v2)) = µ∗1(p1, f(p2), q1,
g(p2)) ∧ µ∗2(p2, u2, q2, v2) > 0. Hence, M1 and M2 are
retrievable.
The converse of the above theorem is true when individual fmms
are strongly connected.
Theorem 3.10 Let Mi = (Qi,Xi, Yi, µi) be a strongly con-
nected fmms, i = 1, 2. Then M1 �M2 is retrievable , where �
is restricted direct product, cascade product and wreath product.
Proof. 1) When � is restricted direct product.
By theorem (3.1) M1 and M2 are retrievable. Let
(q1, q2), (p1, p2) ∈ Q1 × Q2 and x ∈ X∗,y ∈ Y ∗

be such that (µ1 � µ2)
∗((q1, q2), x, (p1, p2), y) =

µ∗1(q1, x, p1, y)∧µ∗2(q2, x, p2, y) > 0. Since,M1 andM2 are re-
trievable. ∃u ∈ X∗, v ∈ Y ∗, such that µ∗1(p1, u, q1, v) > 0 and
µ∗2(p2, u, q2, v) > 0. Now µ∗1(p1, u, q1, v) ∧ µ∗2(p2, u, q2, v) =
(µ1 � µ2)

∗((p1, p2), u, (q1, q2), v) > 0. Therefore,M1 �M2 is
retrievable.
2) When � is cascade product. Suppose M1 and M2 are retriev-
able. Let (q1, q2), (p1, p2) ∈ Q1×Q2 and x2 ∈ X∗2,y2 ∈ Y ∗2 be
such that (µ1�µ2)

∗((q1, q2), x2, (p1, p2), y2) = µ∗1(q1, ωx(q2,
x2), p1, ωy(q2, y2)) ∧ µ∗2(q2, x2, p2, y2) > 0. Since,
M1 and M2 are retrievable. ∃u2 ∈ X∗2, v2 ∈ Y ∗2 ,
such that µ∗1(p1, ωu(q2, u2), q1, ωv(q2, v2)) > 0
and µ∗2(p2, u2, q2, v2) > 0. Now µ∗1(p1,�u(q2, u2),
q1,�v(q2, v2)) ∧ µ∗2(p2, u2, q2, v2) = (µ1 �
µ2)

∗((p1, p2), u2, (q1, q2), v2) > 0. Therefore,M1 � M2
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is retrievable.
3) When � is wreath product. Suppose M1 and M2 are retriev-
able. Let (q1, q2), (p1, p2) ∈ Q1 × Q2 and x2 ∈ X∗2,y2 ∈ Y ∗2
be such that (µ1 � µ2)

∗((q1, q2), (f, x2), (p1, p2), (g, y2)) =
µ∗1(p1, f(p2), q1, g(p2))∧µ∗2(q2, x2, p2, y2) > 0. Since,M1 and
M2 are retrievable. ∃u2 ∈ X∗2, v2 ∈ Y ∗2 , such that µ∗1(p1, f(p2),
q1, g(p2)) > 0 and µ∗2(p2, u2, q2, v2) > 0. Now µ∗1(p1, f(p2),
q1, g(p2)) ∧ µ∗2(p2, u2, q2, v2) = (µ1 � µ2)

∗((p1, p2), (g,
u2), (q1, q2), (g, v2)) > 0. Therefore,M1 �M2 is retrievable.
Remark 3.2 Let Mi = (Qi,Xi, Yi, µi) be a fmms, then by
theorem (2.7),(3.8) and (3.9)

(1) Fmm M1 � M2 is union of strongly connected subma-
chines (exchange property) if and only if M1 and M2 are
union of strongly connected submachines (exchange prop-
erty), where � is cartesian product and full direct product.

(2) Fmm M1 � M2 is union of strongly connected subma-
chines(exchange property) then M1 and M2 are union
of strongly connected submachines (exchange property),
where � is restricted direct product, cascade product and
wreath product.

Remark 3.3 Let Mi = (Qi,Xi, Yi, µi) be a strongly connected
fmms, then by theorem (2.7),(3.5) and (3.10) M1 � M2 is
union of strongly connected submachines (exchange property),
where � is restricted direct product, cascade product and wreath
product.
Theorem 3.11 Let Mi = (Qi,Xi, Yi, µi) be a fmms, i = 1, 2.
Then fmm M1 �M2 is connected if and only if M1 and M2 are
connected, where � is cartesian product and full direct product.
Proof. 1) When � is cartesian product.
Suppose M1 and M2 are connected. Let (q1, q2), (p1, p2) ∈
Q1 × Q2, Now ∃q10, q11, ..., q1n ∈ Q1, q1 = q10, p1 = q1n
and ∃a11, a12, ..., a1n ∈ X1 and ∃b11, b12, ..., b1n ∈ Y1

∀i = 1, 2, ..., n either µ1(q1i−1, a1i, q1i, b1i) > 0 or
µ1(q1i, a1i, q1i−1, b1i) > 0 and ∃q20, q21, ..., q2m ∈ Q2,
q2 = q20, p2 = q2m and ∃a21, a22, ..., a2m ∈ X2

and ∃b21, b22, ..., b2m ∈ Y2 ∀i = 1, 2, ...,m either
µ2(q2i−1, a2i, q2i, b2i) > 0 or µ2(q2i, a2i, q2i−1, b2i) >
0. Consider the sequence of states (q1, q2) =
(q10, q20), (q11, q20), ..., (q1n, q20), (q1n, q21), ...(q1n, q2m) =
(p1, p2) ∈ Q1 × Q2 and the sequence
a11, a12, ..., a1n, a21, a22, ..., a2m ∈ X1 ∪ X2 and
b11, b12, ..., b1n, b21, b22, ..., b2m ∈ Y1 ∪ Y2.∀i = 1, 2, ..., n
either µ1 � µ2((q1i−1, q20), a1i, (q1i, q20), b1i)) > 0
or µ1 � µ2((q1i, q20), a1i, (q1i−1, q20), b1i)) > 0 and
∀j = 1, 2, ...,m either µ1 � µ2((q1n, q2j−1), a2j , (q1n,
q2j), b2j)) > 0 or µ1�µ2((q1n, q2j), a2j , (q1n, q2j−1), b2j)) >
0. Hence (q1, q2) and (p1, p2) are connected. i.e. M1 �M2 is
connected
Conversely Suppose that M1 � M2 is connected. Let
q1, p1 ∈ Q1 and let r2 ∈ Q2. If p1 = q1 then p1 and
q1 are connected. Suppose, p1 6= q1 Then ∃ (q1, r2) =
(q10, r20), (q11, r21), ..., (q1n, r2n) = (p1, r2) ∈ Q1 × Q2

and a1, a2, ..., an ∈ X1 ∪ X2 such that ∀i = 1, 2, ..., n
either µ1 � µ2((q1i−1, r2i−1), ai, (q1i, r2i), bi)) > 0
or µ1 � µ2((q1i, r2i), ai, (q1i−1, r2i−1), bi)) > 0
Clearly, if q1i−1 6= q1i then r2i−1 = r2i and if
r2i−1 6= r2i then q1i−1 = q1i ∀i = 1, 2, ..., n Let
{q1 = q

′
11, q

′
12, q

′
13, ..., q

′
1k = p1} be the set of all dis-

tinct q
′
1i ∈ {q10, q11, ..., q1n} and let a

′
1, a

′
2, ..., a

′
k ∈ X1 and

b
′
1, b

′
2, ..., b

′
k ∈ Y1be the corresponding ai’s and bi’s respec-

tively and ∀j = 1, 2, ..., k either µ1(q
′
1j−1, a

′
j , q

′
1j , b

′
j) > 0

or µ1(q
′
1j , a

′
j , q

′
1j−1, b

′
j) > 0 Thus p1 and q1 are connected

and hence M1 is connected. Similarly we can show that M2 is
connected.
2) When � is full direct product.
case(i) Suppose M1 and M2 are connected. Let
(q1, q2), (p1, p2) ∈ Q1 × Q2, Now ∃q10, q11, ...,

q1n ∈ Q1, q1 = q10, p1 = q1n and ∃a11, a12, ..., a1n ∈
X1 and ∃b11, b12, ..., b1n ∈ Y1 ∀i = 1, 2, ..., n
µ1(q1i−1, a1i, q1i, b1i) > 0 and ∃q20, q21, ..., q2m ∈ Q2,
q2 = q20, p2 = q2m and ∃a21, a22, ..., a2m ∈ X2

and ∃b21, b22, ..., b2m ∈ Y2. ∀i = 1, 2, ...,m
µ2(q2i−1, a2i, q2i, b2i) > 0 Without loss of gen-
erality m ≤ n. Consider the sequence of states
(q1, q2) = (q10, q20), (q11, q21), ..., (q1m, q2m), (q1m+1,
q2m), ..., (q1n, q2m) = (p1, p2) and a sequence (a11, a21),
..., (a1m, a2m), (a1m+1, a2m+1), ..., (a1n, a2n) where
a2k = λ, ∀k = m + 1, ..., n. and a sequence (b11, b21), ..
., (b1m, b2m), (b1m+1, b2m+1), ..., (b1n, b2n) where
b2k = λ, ∀k = m + 1, ..., n. Then ∀i = 1, 2, ..., n,µ1 �
µ2((q1i−1, q2i−1), (a1i, a2i), (q1i, q2i), (b1i, b2i)) > 0, where
q2i = q2m,∀i = m + 1, ..., n. Hence (q1, q2) and (p1, p2)are
connected. i.e. M1 �M2 is connected.
case(ii) Suppose M1 and M2 are connected. Let
(q1, q2), (p1, p2) ∈ Q1 × Q2, Now ∃q10, q11, ...,
q1n ∈ Q1, q1 = q10, p1 = q1n and ∃a11, a12, ..., a1n ∈
X1 and ∃b11, b12, ..., b1n ∈ Y1 ∀i = 1, 2, ..., n
µ1(q1i, a1i, q1i−1, b1i) > 0 and ∃q20, q21, ..., q2m ∈ Q2,
q2 = q20, p2 = q2m and ∃a21, a22, ..., a2m ∈ X2

and ∃b21, b22, ..., b2m ∈ Y2. ∀i = 1, 2, ...,m
µ2(q2i, a2i, q2i−1, b2i) > 0 Without loss of gen-
erality m ≤ n. Consider the sequence of states
(p1, p2) = (q1n, q2m), (q1n−1, q2m), ..., (q1m, q2m),
(q1m−1, q2m−1), ..., (q11, q21), (q10, q20) = (q1, q2)
and a sequence (a1n, a2n), ..., (a1m, a2m), (a1m−1,
a2m−1), ..., (a10, a20) where a2k = λ, ∀k = m + 1, ..., n.
and a sequence (b1n, b2n), ..., (b1m, b2m), (b1m−1,
b2m−1), ..., (b10, b20) where b2k = λ, ∀k = m+ 1, ..., n.. Then
∀i = n, n−1, ..., 1,µ1�µ2((q1i, q2i), a1i, (q1i, q2i), b1i)) > 0,
where q2i = q2m,∀i = m + 1, ..., n.Hence (q1, q2) and
(p1, p2)are connected. i.e. M1 �M2 is connected.
case(iii) Suppose M1 and M2 are connected. Let
(q1, q2), (p1, p2) ∈ Q1 × Q2, Now ∃q10, q11, ...,
q1n ∈ Q1, q1 = q10, p1 = q1n and ∃a11, a12, ..., a1n ∈
X1 and ∃b11, b12, ..., b1n ∈ Y1 ∀i = 1, 2, ..., n
µ1(q1i−1, a1i, q1i, b1i) > 0 and ∃q20, q21, ..., q2m ∈ Q2,
q2 = q2m, p2 = q20 and ∃a21, a22, ..., a2m ∈ X2

and ∃b21, b22, ..., b2m ∈ Y2. ∀i = 1, 2, ...,m
µ2(q2i, a2i, q2i−1, b2i) > 0 Without loss of generality m ≤ n.
Consider the sequence of states (q1, q2) = (q10, q2m), (q11,
q2m−1), ..., (q1m, q20), (q1m+1, q20), ..., (q1n, q20) = (p1, p2)
and a sequence (a11, a2m), ..., (a1m, a21), (a1m+1,
a2m+1), ..., (a1n, a2n) where a2k = λ, ∀k = m + 1, ..., n
and a sequence (b11, b2m), ..., (b1m, b21), (b1m+1,
b2m+1), ..., (b1n, b2n) where b2k = λ∀k = m+ 1, ..., n.Hence
(q1, q2) and (p1, p2)are connected. i.e. M1 �M2 is connected.
case(iv) Suppose M1 and M2 are connected. Let
(q1, q2), (p1, p2) ∈ Q1 × Q2, Now ∃q10, q11, ...,
q1n ∈ Q1, p1 = q10, q1 = q1n and ∃a11, a12, ..., a1n ∈
X1 and ∃b11, b12, ..., b1n ∈ Y1 ∀i = 1, 2, ..., n
µ1(q1i, a1i, q1i−1, b1i) > 0 and ∃q20, q21, ..., q2m ∈ Q2,
q2 = q20, p2 = q2m and ∃a21, a22, ..., a2m ∈ X2

and ∃b21, b22, ..., b2m ∈ Y2. ∀i = 1, 2, ...,m
µ2(q2i−1, a2i, q2i, b2i) > 0 Without loss of gen-
erality m ≤ n. Consider the sequence of states
(q1, q2) = (q1n, q20), (q1n−1, q20), ..., (q1m+1, q20)(q1m, q20),
(q1m−1, q21), ..., (q10, q2m) = (p1, p2) and a sequence
(a1n, a2n), ..., (a1m, a21), (a1m−1, a22), ..., (a1n, a2m)
where a2k = λ, ∀k = m + 1, ..., n and a sequence
(b1n, b2n), ..., (b1m, b21), (b1m−1, b22), ..., (b1n, b2m) where
b2k = λ, ∀k = m + 1, ..., n.Hence (q1, q2) and (p1, p2)are
connected. i.e. M1 �M2 is connected.
Conversely Suppose M1 � M2 is connected. Let
(q1, q2), (p1, p2) ∈ Q1 × Q2, Now ∃ a sequence of
states {(q1, q2) = (q10, q20), (q11, q21), ..., (q1n, q2n) =
(p1, p2)} ∈ Q1 × Q2 and the sequence
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{(a11, a21), (a12 , a22), ..., (a1n, a2n)} ∈ X1 × X2

and {(b11, b21), (b12, b22), ..., (b1n, b2n)} ∈ Y1 × Y2.
∀i = 1, 2, ..., n either µ1 � µ2((q1i−1, q2i−1), (a1i, a2i)
, (q1i, q2i), (b1i, b2i)) > 0 or µ1 � µ2((q1i, q2i), (a1i, a2i)
, (q1i−1, q2i−1), (b1i, b2i)) > 0. Without loss of generality, sup-
pose µ1 � µ2((q1i−1, q2i−1), (a1i, a2i) , (q1i, q2i), (b1i, b2i)) >
0. Consider the sequence {q1 = q10, q11, ..., q1n = p1}
and the sequence {a11, a12, ..., a1n} ∈ X1 and
{b11, b12, ..., b1n} ∈ Y1 such that ∀i = 1, ..., n, µ1(q1i−1, a1i
, q1i, b1i) > 0, hence M1 is connected. Consider the se-
quence {q2 = q20, q21, ..., q2n = p2} and the sequence
{a21, a22, ..., a2n} ∈ X2 and {b21, b22, ..., b2n} ∈ Y2 such
that ∀i = 1, ..., n, µ2(q2i−1, a2i, q2i, b2i) > 0, hence M2 is
connected.
Theorem 3.12 Let Mi = (Qi,Xi, Yi, µi) be a fmms, i = 1, 2
If fmm M1 �M2 is connected then M1 and M2 are connected,
where � is restricted direct product,cascade product and wreath
product.
Proof. 1) Suppose � is restricted direct product. Suppose
M1 �M2 is connected. Let (q1, q2), (p1, p2) ∈ Q1 ×Q2, Now
∃ a sequence of states {(q10, q20), (q11, q21), ..., (q1n, q2n)} ∈
Q1 × Q2 and the sequence {a1, a2, ..., an} ∈ X
and {b1, b2, ..., bn} ∈ Y ∀i = 1, 2, ..., n either
µ1 � µ2((q1i−1, q2i−1), ai, (q1i, q2i), bi) > 0 or
µ1 � µ2((q1i, q2i), ai, (q1i−1, q2i−1), bi) > 0. Without loss of
generality, suppose µ1 � µ2((q1i−1, q2i−1), ai, (q1i, q2i), bi) >
0. Consider the sequence {q1 = q10, q11, ..., q1n = p1} and
the sequence {a1, a2, ..., an} ∈ X and {b1, b2, ..., bn} ∈ Y
such that ∀i = 1, ..., n, µ1(q1i−1, ai, q1i, bi) > 0 and consider
the sequence {q2 = q20, q21, ..., q2n = p2} and the sequence
{a1, a2, ..., an} ∈ X and {b1, b2, ..., bn} ∈ Y such that
∀i = 1, ..., n, µ2(q2i−1, ai, q2i, bi) > 0.
2) Suppose � is cascade product. Suppose M1 � M2 is
connected. Let (q1, q2), (p1, p2) ∈ Q1 × Q2, Now ∃ a
sequence of states {(q10, q20), (q11, q21), ..., (q1n, q2n)} ∈
Q1 × Q2 and the sequence {x21, x22, ..., x2n} ∈ X2

and {y21, y22, ..., y2n} ∈ Y2 ∀i = 1, 2, ..., n either
µ1 � µ2((q1i−1, q2i−1), x2i, (q1i, q2i), y2i) > 0 or µ1 �
µ2((q1i, q2i), x2i, (q1i−1, q2i−1), y2i) > 0. Without loss of gen-
erality, suppose µ1�µ2((q1i−1, q2i−1), x2i, (q1i, q2i), y2i) > 0.
Consider the sequence {q1 = q10, q11, ..., q1n = p1}
and the sequence {ωx(q21) = x11(say), ωx(q22) =
x12, ..., ωx(q2n) = x1n} ∈ X1 and {ωy(q21)
= y11, ωy(q22) = y12, ..., ωy(q2n) = y1n} ∈ Y1 such
that ∀i = 1, ..., n, µ1(q1i−1, x1i, q1i, y1i) > 0. Now consider
the sequence {q2 = q20, q21, ..., q2n = p2} and the sequence
{x21, x22, ..., x2n} ∈ X2 and {y21, y22, ..., y2n} ∈ Y2 such that
∀i = 1, ..., n, µ2(q2i−1, x2i, q2i, y2i) > 0.
3) Suppose � is wreath product. Suppose M1 � M2 is con-
nected. Let (q1, q2), (p1, p2) ∈ Q1 × Q2, Now ∃ a sequence
of states {(q10, q20), (q11, q21), ..., (q1n, q2n)} ∈ Q1 × Q2

and the sequence {(f1, x21), (f2, x22), ..., (fn, x2n)} ∈
XQ2

1 × X2 and {(g1, y21), (g2, y22), ..., (gn, y2n)} ∈
Y Q2
1 × Y2, ∀i = 1, 2, ..., n either µ1 �
µ2((q1i−1, q2i−1), (fi, x2i), (q1i, q2i), (gi, y2i)) >
0 or µ1 � µ2((q1i, q2i), (fi, x2i), (q1i−1, q2i−1),
(gi, y2i)) > 0. Without loss of generality, suppose
µ1 � µ2((q1i−1, q2i−1), (fi, x2i), (q1i, q2i), (gi, y2i)) > 0.
Consider the sequence {q1 = q10, q11, ..., q1n = p1}
and the sequence {f1(q21) = x11(say), f2(q22) =
x12, ..., fn(q2n) = x1n} ∈ X1 and {g1(q21) =
y11(say), (g2(q22) = y12, ..., gn(q2n) = y1n} ∈ Y1 such
that ∀i = 1, ..., n, µ1(q1i−1, x1i, q1i, y1i) > 0. Now consider
the sequence {q2 = q20, q21, ..., q2n = p2} and the sequence
{x21, x22, ..., x2n} ∈ X2 and {y21, y22, ..., y2n} ∈ Y2 such that
∀i = 1, ..., n, µ2(q2i−1, x2i, q2i, y2i) > 0.
The converse of the above theorem is true when individual fmms
are strongly connected.

Theorem 3.13 Let Mi = (Qi,Xi, Yi, µi) be a strongly con-
nected fmms, i = 1, 2. Then M1 �M2 is connected,where � is
restricted direct product, cascade product and wreath product.
Remark 3.4 Let Mi = (Qi,Xi, Yi, µi) be a fmms. Then

(1) by Theorem (2.13),(3.8) to (3.13) fmmM1�M2 is strongly
connected if and only if M1 and M2 are strongly connected
, where � is cartesian product, full direct product restricted
direct product, cascade product and wreath product.

(2) by Theorem (2.4) the topology induced by M1 �M2 is dis-
crete if and only if the topologies induced by M1 and M2

are discrete.

4. CONCLUSION
This paper is the study of fuzzy Mealy machines via topology,
τ , defined by the successor function on their set of states. For
this purpose, various kinds of fuzzy Mealy machines such as
cyclic, retrievable, strongly connected and connected are intro-
duced. These kinds of fuzzy Mealy machines are discussed with
the help of this topology. The main findings of this paper are:
(i) The fuzzy Mealy machine M is strongly connected if and
only if τ is the discrete topology on state set of M.
(ii)The fuzzy Mealy machineM is connected if and only if it has
no separated submachine.
(iii) The cartesian product ( full direct product) of two fuzzy
Mealy machines is cyclic ( respectively retrievable, union of
strongly connected submachines and connected) if and only if
they are individually cyclic ( respectively retrievable, union of
strongly connected submachines and connected).
(iv) If the restricted direct (cascade, wreath) product two fuzzy
Mealy machines is cyclic ( respectively retrievable, union of
strongly connected submachines, connected) then they are indi-
vidually cyclic ( respectively retrievable, union of strongly con-
nected submachines, connected). The converse of this result is
true if both the fuzzy Mealy machines are strongly connected.
This paper will definitely leads to a study of decomposition as
well as minimization of fuzzy Mealy machines from different
angle, which may be the direction of further research. More-
over, one can introduce and study category of fuzzy Mealy ma-
chines. Also, various concepts from category theory as well as
from fuzzy Mealy machines can be verified using the topology
introduced in this paper.
This paper is concluded with the following open problem for fur-
ther study. What kind of topologies are generated by the products
of fuzzy Mealy machines? In our opinion these topologies will
be very much different from so far known topologies. However,
one can guess the nature of these topologies with the help of the
theorems proved in this paper (see remark 3.4(2) and definition
2.8).
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