
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.17, February 2013

38

Runtime Customization of Swap Partition to Improve the

Performance of a Number Crunching Algorithm

Rajeev Raghuvanshi

Student of ME
Dept. of Information Technology

Medi-Caps Institute of Technology
and Management, Indore (M.P.)

Rakesh Verma
Assistant Professor

 Dept. of Computer Science
 Medi-Caps Institute of Technology

and Management, Indore (M.P.)

Dharmendra Sharma
Associate Professor

Dept. of Computer Science
Sushila Devi Bansal College of

Engineering, Indore (M.P.)

ABSTRACT

This paper focuses on the enhancement of the practical

performance of an algorithm and data structures. It provides a

way to achieve the effect on performance parameters of

operating system. The proposed work has been done about the

performance of a number crunching program (Matrix

Multiplication) by varying the swap area at run time. We feed

a C program as input to the system that executes it for

different value of swap area and records the performance

parameters as real time, system time, CPU utilization, page

faults occurs during execution, context switching due to time

slice and context switching due to input output etc. It also

presents the way of enhancement in performance of program

by customizing the swap partition of operating system.

General Terms

Algorithm, Performance Parameter, Operating System, Matrix

Multiplication etc.

Keywords

MIPF, CSIO, Swap area CST, CSIO, PSO, System Time,

User Time, Page Fault, Cache Size.

1. INTRODUCTION
An algorithm is a sequence of finite instructions, a well

defined computational procedure that takes some value or set

of values, as input and produces some value, or set of values,

as output [1]. In mathematics, computing and related subjects,

an algorithm is a step by step process, often used for

calculation and data processing [2]. It is formally a type of

effective method in which a list of well-defined instruction for

completing a task will, when given an initial state, proceed

through a well-defined series of successive states, eventually

terminating in an end-state. The efficiency of an algorithm can

be decided by measuring the performance of an algorithm. We

can measure the performance of an algorithm by computing

two factors [3].

A. Amount of time required by algorithm to execute.

B. Amount of storage required by an algorithm.

This is popularly known as time complexity and space

complexity of an algorithm.

1.1 Space Complexity
The Space complexity can be defined as amount of memory

required by an algorithm to run. Space complexity is also

measured with Big O notation.

To compute the Space complexity we use two factors constant

and instance characteristics. The space requirement S(p) can

be given as:

 S(p) = C + sp

Where C is a constant i.e. fixed part and denotes the space of

inputs and outputs. This space is an amount of space taken by

instruction, variables and identifiers [5]. And sp is a space

dependent upon instant characteristics. This is a variable part

whose space requirement depends on particular problem

instance.

1.2 Time Complexity
The time complexity of an algorithm is the amount of

computer time required by an algorithm to run to completion.

Time complexity required T(P) to run a program P also

consists of two components:

A fixed part: compile time which is independent of the

problem instance  C.

A variable part: run time which depends on the problem

instance  tp(instance)

T(P) = C +tp(instance)

The time complexity is measured in terms of a unit called

frequency count. Frequency count is a count denoting number

of times of execution of statement.

The algorithmic analysis stops here. However, the effect of

using different data structures, languages, compilers, memory

hierarchies, cache size and swap area etc [3]. On the

performance of an implementation of an algorithm is

completely ignored. From developer’s point of view, all these

facts contribute a lot towards the executed program. The

proposed study deals with the effect of different swap areas on

execution time of a program. In this study, main objective is

to provide the different configurations of swap area under

Linux operating system environments to improve the

performance of an algorithm [8]. It also focuses on different

parameter of operating system that affects execution of any

type of program like swap area, cash size, page size etc. Our

work is the first step to evaluate the optimize value of

operating system parameter in minimum time. It also enlists

the operating system parameters that affect the following

components of operating system [9].

1. Memory management system

1.1 Cache size.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.17, February 2013

39

1.2 Swap area.

1.3 Page size.

1.4 Page fault.

2. Process management system

2.1 Turnaround time.

2.2 Time spent in user mode.

2.3 Time spent in kernel mode.

2.4 Size of process during its lifetime.

2.5 Size of process in data area.

2.6 Size of process in stack apace.

2.7 Number of times the process swapped out of main

memory.

2.8 Number of context switch due to time slice expired.

2.9 Number of context switch due to I/O operations.

3. File management system

3.1 Number of file system inputs by the process.

3.1 Number of file system outputs by the process.

2. METHODOLOGY
For the customization of swap partition we develop a system

that consist of two parts shell program and c program. The

working diagram of system is shown below

Fig 1: Working Diagram of System

The systems takes the number crunching program as input and

repeats the execution 10 times for fixed value of swap

partition and record the real time, MIPF, PSO, CST, CSIO.

The system will repeat the same process with different value

of swap partitions up to 10 times. For customization of swap

area we use swap on and swap off command of Linux [10].

For the optimization of swap area at run time we develop

software in C programming and some modules in shell

programming language [11].

The developed software takes a C program as input, executes

it with default and variable swap area and records the

following values.

Real Time – Defines the time interval between submissions

of process to its completion in seconds.

System Time – Defines the total time spent by a process in

kernel mode.

User Time - Defines the total time spent by a process in user

mode.

Waiting Time - Defines the total time spent by a process in

waiting queue.

Swap Area – Defines the amount of memory required for

swapping of process.

%CPU – Defines the CPU utilization during execution of

process.

MIPF – Defines the number of minor, or recoverable, page

faults. These are faults for pages that are not valid but which

have not yet been claimed by other virtual pages.

CST- Defines the number of times the process was context-

switched involuntarily (because the time slice expired).

CSIO - Defines the number of waits: times that the program

was context-switched voluntarily, for instance while waiting

for an I/O operation to complete.

PSO - Defines the number of times the process was swapped

out of main memory.

In each run the system executes the input program ten times

and computes the average. The system also increases the swap

area by 102 MB in each run.

3. RESULT
We use the following number crunching function to evaluate

the result

1. void mm(a[m][n], b[n][o], c[m][n],i, j, k)

2. for i=1 to m do

3. for j=1 to o do

4. for k=1 to n do

5. C[i][j] = c[i][j]+(a[i][k]*b[k][j])

Where m=n=o=825

For matrix multiplication algorithm we have considered total

number of elements as 825x825 that lead to total number of

instruction to be executed as 8253. These many instructions

are large enough to verify the results [12]. We execute the

matrix multiplication algorithm expressed in C programming

language with initial value of swap area and page size as 102

MB and 4KB respectively

Table 1. Time Statistics of Matrix Multiplication for n=825

S. No. Real Time User Time System Time Waiting Time

1 21.23 18.31 0.09 2.83

2 21.25 18.21 0.08 2.96

3 21.32 18.28 0.08 2.96

4 21.07 18.16 0.09 2.82

5 21.13 18.2 0.08 2.85

6 21.06 18.15 0.1 2.81

7 21.23 18.24 0.08 2.91

8 21.25 18.1 0.07 2.08

9 21.19 18.26 0.09 2.84

10 21.12 18.19 0.07 2.86

From the table 1, we can observe that in each execution we

got the slight variation in the value of real time, user time

and system time [13]. This variation may occur due to parallel

execution of other processes. Thus, there is need to calculate

the average value of real time system time and user time. The

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.17, February 2013

40

average value of real time, user time and system time obtained

as 21.48 seconds, 18.51 seconds and 0.08 seconds

respectively.

Table 2. Performance of Algorithm with Variable Swap

Partition

No.
Swap

Area

Real

Time
%CPU MiPF CST CSIO PSO

1 102 21.31 85 2126.8 1726.5 2262.2 0

2 204 21.073 86 2125.7 1712.8 2262.5 00

3 306 21.191 87 2126.6 1717.9 2262.2 0

4 408 21.389 86.3 2126.7 1714.7 2262.1 0

5 510 21.185 86.1 2126.8 1699 2262.4 0

6 612 21.176 86 2126.8 1675.4 2262.3 447.51

7 714 21.394 86.1 2127.1 1712.6 2262.1 0

8 616 21.166 86 2126.9 1689.5 2262.2 0

9 918 21.052 86 2126.9 1683.9 2262.2 0

10 1020 21.076 86 2126.9 1699.3 2262.4 0

From the table 2, we can observe that by linear increase in

swap area result in slight variation in real time, CPU

utilization, MIPF, CST and CSIO. This slight variation may

be occurring due to multiprogramming environment of

operating system. It is also observed that for the swap area

612 MB we obtained the PSO become maximum as 447,

which increase the execution time. This variation may occur

due to external fragmentation in swap area.

Fig 2: Swap Area Vs Real Time

Figure 2 indicates the variation in real time with respect to the

swap area. This figure gives the estimation of swap area for

the different value of real time. From this figure we can

obtained swap area for minimum real time.

Fig 3: Swap Area Vs CPU Utilization

Figure 3 indicates the variation in CPU utilization with

respect to swap area. From this figure be can obtain the

required swap area and estimate for CPU utilization for the

desired process execution time.

Fig 4: Swap Area Vs Minor Page Fault

Figure 4 indicates the Swap area Vs Number of minor page

fault occurs during execution of algorithm. From this figure

be can obtain the required swap area for minimum minor page

fault for the desired process execution time.

Fig 5: Swap Area Vs Context Switch due to time slice

expired

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.17, February 2013

41

Figure 5 indicates the variation in Number of context switch

due to time slice expired with respect to the swap area. This

figure gives the estimation of swap for the different values of

context switch due to time slice expired. From this figure the

swap area for minimum context switch due to time slice

expired can be obtained.

Fig 6: Swap Area Vs Context Switch due to input-output

Figure 6 indicates the variation in Number of context switch

due to I/O with respect to the swap area. This figure gives the

estimation of swap area for the different values of context

switch due to I/O. From this figure can obtain the required

swap area for Number of context switch due to I/O for the

desired process execution time.

4. CONCLUSION
The analysis of algorithm is limited to their theoretical

behavior of algorithm, In general we use the asymptotic

notation and some rules used to estimate the execution time of

language construct. Then we estimate the best case, worst

case and average case performance of an algorithm for small

piece of code written in a programming language. The

algorithmic analysis stops here. However, the effect of using

different swap area on the performance of an implementation

of an algorithm is completely ignored. In this paper we use

number crunching algorithm to verify the effectiveness of the

developed software, we estimate the effect of swap area on the

performance of given algorithm expressed in c programming

language. The system records the effect of executions with

respect to memory management system, Process management

system, and file management system.

From the results one can obtain the following

1. Suitable swap area for maximum CPU utilization

and respective execution time.

2. Suitable swap area for minimum number of

recoverable page fault and respective execution

time.

3. Suitable swap area for minimum number of context

switch and respective execution time.

5. ACKNOWLEDGMENTS
Our thanks to my thesis guide and I thankful my parents and

my little sister for their support and encouragement

throughout my work. Finally I am grateful to Almighty God

for his blessing for the completion of most difficult task.

6. REFERENCES
[1] S.Mansoor Sarwar, Edwin E. Parks and Syed Aqeel

Sarwar “Laboratory Exercises for Practical Performance

of Algorithms and Data Structures”, IEEE Transactions

on Education, Vol 19, No. 4, November 1996.

[2] Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajshekharan,

“Performance Analysis”, in Fundamentals of computer

algorithms, New Delhi, India, Galgotia Publications,

2008.

[3] Sumitabha Das, “Advanced system administration”, in

Unix Concepts and Applications, 4 ed, New Delhi, TMH,

2006.

[4] Maurice j. Batch, “Memory Management Policies”, in

The Design of the Unix operating System”, 6 edition,

Delhi, India, Pearson Education, 2005.

[5] G.S. Baluja, “Recursion – A Breath Breaker”, in Data

Structures through C, 1 ed., Delhi, India, Dhanpat Rai,

2005.

[6] Udit Agrawal, “Growth of Functions”, in

Algorithm Design and Analysis, 1 ed., Delhi, India.

[7] Coremen Thomas, Leiserson CE, Rivest RL;

Introduction to algorithms; PHI.

[8] Michael T Goodrich, Robarto Tamassia, Algorithm

Design, wiely India.

[9] S. M, Sawar, M, H. A. Jaragh, S. A, Sarwar, and J,

Brandenburg, “Engineering quicksort,” Comp.

Languages, to be publiced.

[10] A. Aho, J. Hopcroft, and J. D. Ullman, Data Structures

and Algorithms. Reading, MA: Addison-Wesley, 1983.

[11] Burgin, M. Super-recursive algorithms, Monographs in

computer science, Springer.

[12] ACM Curriculum Committee on Computer Science,

“Curriculum ’78- recommendations for the under

graduate program in computer science,” Comm. ACM.

[13] Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajshekharan,

“Performance Analysis”, in Fundamentals of computer

algorithms, New Delhi, India, Galgotia Publications,

2008.

[14] M.L., Moore, C., and Costa, J.F. (2000) An analog

characterization of the subrecursive functions. In Proc. of

the 4th Conference on Real Numbers and Computers,

Odense University, pp. 91–109

http://en.wikipedia.org/wiki/Cris_Moore

