
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.17, February 2013

1

Implementation of Wireless Sensor Network

Testbed - SRMSenseNet

M. Pushpalatha

SRM University

Revathi Venkataraman
SRM University

K. Sornalakshmi
SRM University

T. Ramarao
SRM University

ABSTRACT

As Wireless Sensor Networks have emerged as an exciting

new area of research, testbeds have become the preferred

basis for experimentation. In such testbeds, getting correct

experimental result is essential. To address this need, we have

developed a testbed termed as SRMSenseNet which consists

of sensor nodes connected to a testbed server facilitating

remote access to users. In this paper, we have proposed an

easy data retrieval mechanism which helps to store the

structured data results in the testbed. Additionally by

providing web interfaces, our testbed allows the users to

reserve their sensor motes. Users can experiment with real

hardware resources and interact with our testbed in real-time.

Keywords

Wireless Sensor Networks, Testbeds, TelosB Motes,

Reservation System.

1. INTRODUCTION
The research in wireless sensor networks has bloomed in

recent years because of their potential applications in many

areas, such as environmental monitoring, surveillance,

disaster recovery and rescue. Wireless Sensor Network

Testbeds (WSN-Testbeds) are the basis for experimentation

with wireless sensor networks in real-world settings; and they

are also used by many researchers to evaluate specific

applications pertaining to specific areas. A WSN-Testbed

typically consists of sensor nodes deployed in a controlled

environment. WSN Testbed provides a platform for

experimentation of large development projects. [1]

WSN-Testbeds are easily scalable, that is, increasing the

number of motes should require only limited hardware and

software adjustments. Users can test their algorithms or

applications on different platforms such as TelosB, MicaZ,

and Iris etc.

The setting up of different wired, wireless and wireless sensor

network testbeds is growing in fast pace. Testbeds are being

set up in many universities all over the world, few of them in

collaboration with major organizations like Intel, Motorola

etc. The testbeds studied include wireless sensor network

testbeds (Kansei[2], Motelab[3], TWIST[4] and SensorNet[5],

CitySense[6]), wireless testbeds (Kansei, Orbit, and

Emulab[7]), and wired network testbeds (Emulab and

Planetlab[8]).

This paper describes the architecture and features of the

testbed framework developed in SRM University, India.

Section II discusses the related testbed tools. Section III

contains the proposed system and Section IV points to

conclusion and future enhancements.

2. RELATED WORKS
MoteLab [1] is a very popular WSN testbed solution. It uses

stargate board to provide an Ethernet back-channel to each

sensor node in the network. The interaction between the users

and the testbed is batch oriented and is controlled via a

dynamic web interface supported by a back-end database.

Motelab does not provide any facility to cancel a scheduled

job. [9]

The Kansei testbed [2] is designed at The Ohio State

University. It supports various wireless platforms such as

Extreme Scale Motes (XSMs), TelosB, Imote2 and Stargates.

The Startgates act as a local gateway for each kansei node in

the network. Kansei’s hardware infrastructure consists of

three components: Stationary Array, Portable Array, and

Mobile Array. Each node in the stationary array consists of

two hardware platforms: Extreme Scale Motes (XSMs) and

Stargates.

In our testbed, there is no need to have one interface board or

Stargate for each “mote”. Motes are connected to the

microserver through USB interface making it cost effective

than other testbeds in terms of hardware devices used.

SensorNet [5] is a testbed developed by Inter Berkeley

Research. To solve the user disputation, they developed

Mirage tool which applies microeconomic approaches to

arbitrate among competing users. Users submit bids for

bundle of resources using virtual currency. A combinatorial

auction runs periodically to select the potential winners. The

winner is the one who spend more currency on a particular

resource. Mirage tool does not provide automated

reprogramming of the nodes and data storage.

NetEye testbed [9] developed at Wayne State University is

probably the first testbed to use the latest version of TinyOS

2.0.[10] whereas all other testbeds use TinyOS 1.1. Our

Testbed uses the latest version TinyOS 2.1.1 which provides

CC2420 security features and supports Iris and Shimmer

platforms. The CC2420 in-line security implementations add

two new interfaces to the CC2420 radio stack in TinyOS 2.1:

CC2420SecurityMode and CC2420Keys. So the users can

benefit from the advantages of this latest version in our

testbed. New comers can also be motivated to use this testbed

as TinyOS 2.1.1 is much easier to use than TinyOS 2.0 and

TinyOS 1.1.

Tutornet [11] testbed is in Ronald Tutor Hall at University of

Southern California. It consists of 13 clusters, with each

cluster consisting of a stargate and several motes attached to it

via USB cables. These stargates communicate with a central

PC over 802.11b, from where any node on the testbed can be

programmed. However it provides only raw packet data

information as an experimental result.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.17, February 2013

2

SRMSenseNet addresses these challenges by providing a

mechanism to get the structured experimental data results.

Using MsgReader and port forwarding, the users can get a log

as shown in Fig. 6.

3. SRMSenseNet ARCHITECTURE
SRMSenseNet architecture consists of three different levels.

1. Sensor nodes

2. Microservers

3. Server machine

 Figure 1. Testbed Architecture

At the lowest level sensor nodes (motes) are placed in order to

take sensor readings or to perform certain functions based on

the sensor application. These sensor nodes are connected to

microservers at the second level through USB hub. Server

Machine is placed at the third level which connects to all of

the microservers over an Ethernet cables. The Server handles

a database which contains information about the different

sensor nodes and the microservers they are connected to. The

server machine also provides an interface between the testbed

and the end-users. Users may log onto the server to exchange

messages with motes contained in the testbed.

3.1 Server Machine
Testbed server is a remotely accessible frame work for

Wireless sensor network applications.

Testbed Server provides the following services.

1. Web interface for registration of motes for specific time

interval.

2. Resource Scheduling using MySQL database information.

3. Programming the nodes.

3.2 Web Interface
PHP [12] generated pages present a user interface for

reservation of motes, checking mote availability at particular

date and to delete the reservation. Users can reserve range of

motes (eg.1-10) as well as random motes using space

separated mote id (eg 1 5 8) as shown in Fig. 2.

Figure 2. Snapshot of the Reservation System

At the end of reservation, users will get the Reservation ID.

Users can delete the reservation by specifying the Reservation

ID.

To find out all reservations within a time interval, click the

Mote Availability Table and enter the date, then click on the

"Check!" button. Users will get a table which displays the

already reserved motes at the particular date. It will be helpful

to the user to find out which motes are free in a time interval.

3.3 MySQL Database
MySQL database is used to store all the information necessary

for running the testbed such as name of the user who reserved

the nodes, start date and end date of reservations, time

duration of reservations, status of each node and Reservation

ID.

4. FEATURES OF SRMSENSENET
1. Remote Programming

2. Status Informations

3. Mote Informations

4. SerialForwarder

5. Execution Log

6. Alert to user

7. Easy Data Retrieval

4.1 Remote Programming
Deploying the motes into the physical environment and

collect data from them is time-consuming. To avoid this, our

WSN-Testbed allows users to remotely program the sensor

motes and gather logs via internet. Only authorized users can

access the testbed remotely.

4.2 Job Daemon
The Job Daemon is a python [13] script that runs as a cron

job. The Job Daemon is responsible for changing the status of

motes from reserved mode to free mode after the reserved

time is completed. It also kills the processes like serial

forwarder after the scheduled duration to free the resources.

4.3 Programming the motes
In order to program a mote, the files main.ihex and main.exe

are needed. User has to move these two files to testbed server

using scp command. After Logging into the testbed server,

programming the nodes is done by shell scripting. The

program running on the mote should have a receptor

component to read the data from the serial port. The data is

written to the serial port using the serial forwarder. The users

Testbed server

Microserver

USB Hubs

Motes

Ethernet

Cables

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.17, February 2013

3

have two options while programming the motes, that is,

whether to start the SerialForwarder or not.

4.4 Status Information
During installation of the program, the process may be in any

one of the following two states.

Done – Installation is completed.

Waiting – Installation is in progress.

4.5 Mote Information

Figure 3. Mote Information

Users can get information about each mote using its mote ID

such as the micro server in which the particular mote is

connected, Serial no of the mote, Internal Port number and

External Port number as shown in Fig 3.

4.6 SerialForwarder
SerialForwarder program opens a packet source and lets many

applications connect to it over a TCP/IP stream in order to use

that source. Users can kill the specific SerialForwarder for a

particular mote. The script running as a cron job will kill all

the SerialForwarder after the scheduled duration.

4.7 Execution Log
Users can get their execution log file to check for possible

errors during installation such as Timeout Error,

Synchronization Error.

4.8 Alert to User
This is the unique feature of SRMSenseNet Testbed. While

using the testbed, cron job script will give an alert message to

the users, 15 minutes before the scheduled time gets over.

After the specific interval cron job script will erase the entire

program on motes to make it ready for further usage. So users

have to save their output log during the reservation period.

Figure 4. Alert Message

4.9 Data Retrieval
Our testbed allows users to connect directly to the

SerialForwarder using its External port number. The External

port number can be obtained from mote information by giving

its moteid.

Figure 5. Pretty listen output

Using prettylisten tool, users can store their output log in their

system as shown in Fig 4. but it results the binary output of

any packet it hears. User has to parse the packet format

manually to extract the fields. Alternatively, the user can

utilize the Message Interface Generator (MIG), which

automatically parse each of the fields in the packet and it

provides a set of standard accessors and mutators for printing

out received packets.

Figure 6. MsgReader output

Using the testbed, users can store the output log of MIG by

forwarding the External port to local port of users as shown in

Fig 5. SSH command to Forward SerialForwarder (SF),

ssh -nNxTL localport:localport:e_port testbed.srmuniv.ac.in

Figure 7. SSH Port Forwarding

Once forwarded the external port from testbed server to the

local port of the user, users can access the remote

SerialForwarder like a local one. Users has to make sure that

it attaches to the correct port as specified in the SSH Tunnel

(the above command forwards the remote port to your

localport). For example, to listen packets from localport 9001,

user would first need to set the MOTECOM environment

variable as follows:

export MOTECOM=sf@localhost:9001

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.17, February 2013

4

5. CONCLUSION
Using the testbed webinterface, users can reserve a set of

motes for a specific period of time. Then users can install their

own programs on the nodes. By using our testbed, researchers

can save lot of time on building a WSN experiment

environment and reduce the hardware cost, but at the same

time, enhance the device utility rate, and quick verification of

the experimental results.

 In this paper, we have focused mainly on the

software aspects of the testbed. Next hardware aspects have to

be extended. If users want to run their application on a

different hardware platforms or perform a mixed operation in

a heterogeneous environment we need further support for

writing of programs for these different hardware platforms.

6. REFERENCES
[1] Khalid El-Darymli,Mohamed H. Ahmed, “Wireless

Sensor Network Testbeds: A Survey”.

[2] Emre Ertin, Anish Arora, Rajiv Ramnath, Mikhali

Nesterenko, Vinayak Naik, Sandip Bapat, Vinod

Kulathumani, Mukundan Sridharan, Hongwei Zhang,

Hui Cao, “Kansei: A Testbed for Sensing at Scale”, in

Proceedings of the 5th IEEE International Conference on

Information Processing in Sensor Networks (ISPN 2006),

April 2006.

[3] Geoffrey Werner-Allen, Matt Welsh, and Patrick

Swieskowski “MoteLab: A Wireless Sensor Network

Testbed”, Division of Engineering and Applied Sciences,

Harvard University.

[4] Vlado Handziski, Andreas K¨opke, Andreas Willig,

Adam Wolisz, “TWIST: A Scalable and Reconfigurable

Testbed for Wireless Indoor Experiments with Sensor

Networks”, Telecommunication Networks Group

Technische University at Berlin, Germany, 2006.

[5] Intel Research Berkeley, “Mirage: Microeconomic

Resource Allocation for SensorNet Testbeds”,

http://mirage.berkeley.intel-research.net

[6] Murty R.N “CitySense: An Urban-Scale Wireless Sensor

Network and Test bed” , School of Eng. & Applied

Sciences., Harvard University., Boston, MA,2008

[7] “Emulab – Network Emulation Testbed”,

http://www.emulab.net/

[8] Larry Peterson, Andy Bavier, Marc E. Fiuczynski, Steve

Muir, “Experiences Building PlanetLab”, in the

proceedings of the 7 th conference on USENIX

symposium on Operating Systems Design and

Implementation (Volume 7), 2006.

[9] Divya Sakamuri, “NetEye: A Wireless Sensor Network

Testbed Thesis”, Wayne State University, Detroit,

Michigan, 2008.

[10] “Tinyos Tutorial”, http://www.tinyos.net/

[11] “Tutornet – A Tiered Wireless Sensor Network Testbed”,

http://en.usc.edu/projects/tutornet/

[12] “PHP Tutorial”, http://www.php.net/

[13] “Python Tutorial”, http://docs.python.org/tutorial/

