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ABSTRACT 
Due to higher integration densities, technology scaling and 

variation in parameters, the performance failures may occur for 

every application. The memory applications are also prone to 

single event upsets and transient errors which may lead to 

malfunctions. The paper deals with the idea of a novel fault 

detection and correction technique using EG-LDPC codes with 

the application mainly focused on memories. The majority logic 

decoding is used here, since it can correct a large number of 

errors. Even though the majority decoding consumes more time, 

it can be overcome by the proposed technique which detects the 

errors in less cycle time. It can obviously reduce memory access 

time when the data read process is error free. The use of an 

additional logic results in a slight area overhead in proposed 

method when compared to the existing technique, which is 

overcome by a modified implementation of majority gate. The 

results obtained are compared with the existing version of the 

technique.  
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1.    INTRODUCTION  
Memories are the most universal component today. They are 

prone to errors like soft and transient errors. Some type of 

embedded memory, such as ROM, SRAM, DRAM, flash 

memory etc is seen in almost all system chips. Now days, the 

memory failure rates are increasing due to the impact of 

technology scaling-smaller dimensions, high integration 

densities, lower operating voltages etc.[4],[5]. The ability to 

quickly determine that a bit has flipped is key to high reliability 

and high availability applications. Some commonly used error 

detecting techniques are Triple Modular Redundancy (TMR) 

and Error Correction Codes (ECCs). 

The TMR triplicates all the memory parts of the system and to 

choose the correct data using a voter. This method have 

disadvantage of large area and complexity overhead of three 

times. Therefore the ECC became the best way to mitigate soft 

errors in memory [4]. 

The most commonly used ECC codes are Single Error 

Correction (SEC) codes that can correct one bit error in a 

memory word. Due to consequence of augmenting integration 

densities, there is an increase in soft errors which points the 

need for higher error correction capabilities [1], [3]. More 

advanced ECCs has been proposed for memory applications but 

even Double Error Correction (DEC) codes with a parallel 

implementation results in a significant power consumption 

penalty. The usual multi error correction codes, such as Reed–

Solomon (RS) or Bose Chaudhuri–Hocquenghem (BCH) are 

not suitable for this task due to complex decoding algorithm.  

Cyclic block codes have the property of being majority logic 

(ML) decodable. Therefore cyclic block codes have been 

identified as more suitable among the ECC codes that meet the 

requirements of higher error correction capability and low 

decoding complexity. Euclidean geometry low-density parity 

check (EG-LDPC) codes, a subgroup of the low-density parity 

check (LDPC) codes, which belongs to the family of the ML 

decodable codes, is focused here. 

The advantages of ML decoding are that it is very simple to 

implement and thus it is very practical and has low complexity. 

The drawback of ML decoding is that, it needs as many cycles 

as the number of bits in the input signal, which is also the 

number of taps, N, in the decoder and also same decoding time 

for both error and error free code words. This is a great impact 

on the performance of the system, depending on the size of the 

code. 

Another alternative is to first detect if there are errors in the 

word and only perform the rest of the decoding process when 

there are errors. This greatly reduces the average power 

consumption as most words will have no errors. Error detection 

in a block code can also be implemented by computing the 

syndrome and checking whether all its bits are zero [15]. By 

calculating the syndrome, we can implement a fault detector for 

an ECC is but this also would add an additional complex 

functional unit. This paper focus on using the MLD circuitry 

itself as an error detecting module therefore with no additional 

hardware the read operations could be accelerated. 

The remainder of this paper is organized as follows. Section II 

gives an overview of existing ML decoding solutions. Section 

III presents the novel ML detector/decoder (MLDD) using EG- 

LDPC cyclic codes. Section IV discusses the results obtained in 

respect to speedup, delay and power consumption. Finally, 

Section V discusses conclusions and future work. 

2.   MAJORITY LOGIC DECODING (MLD) 

SOLUTONS 
Among the error correction technique one step majority 

correction is a fast and relatively efficient with low 

complexity error-correcting technique [6]. One-step-majority 

correctable ECC codes are limited which include type-I two-

dimensional EG-LDPC.  

The data flow of memory system schematic with MLD is that 

the word is first encoded and is then written to the memory [2]. 

After the reading process of the memory it is passed to a 

majority logic detector block which detects and corrects the 

errors which occurred while the reading code word. 
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This type of decoder can be implemented in two ways. The first 

one is called the Type-I ML decoder, which determines the bits 

need to be corrected from the XOR combinations of the 

syndrome, [9]. The Type-II ML decoder that calculates the 

information of correctness of the current bit under decoding, 

directly out of the codeword bits [6]. Both are quite similar, but 

when implementation is considered the Type-II uses less area, 

since it does not have a syndrome calculation as an intermediate 

step. For this reason the paper focus on this type II 

implementation. 

2.1 Existent Plain ML Decoder 
The existent plain majority decoder have the method of working 

in which from the received codeword itself the correct values of 

each bit under decoding can directly found out. This method 

consists of mainly two steps-  

1) Generating a specific set of linear sums of the received 

vector bits using the xor matrix 2) Determining the majority 

value of the computed linear sums. It is the majority logic output 

which determines the correctness of the bit under decoding. If 

the majority output is ‘1’, then the bit is inverted, otherwise 

would be kept unchanged. 

As described before, the ML decoder is powerful and simple 

decoder, which has the capability of correcting multiple random 

bit-flips depending on the number of parity check equations. It 

consists of four parts: 1) a cyclic shift register; 2) an XOR 

matrix; 3) a majority gate; and 4) an XOR for correcting the 

codeword bit under decoding. The circuit implementing a serial 

one-step majority logic corrector [6], [12] for (15, 7, 5) EG-

LDPC code is shown in Figure 1. 

The cyclic shift register is initially stored with the input signal x 

and shifted through all the taps. The results {Bj} of the check 

sum equations from the XOR matrix is calculated from the 

intermediate values in each tap. In the Nth cycle, the result 

would reach the final tap, producing the output signal, which is 

the decoded version of input [2]. 

 

 
Figure 1. Serial one-step majority logic corrector for (15, 7, 

5) EG-LDPC code 

 

This is the situation of error free case. The input x might 

correspond to wrong data corrupted by a soft error or SEUs. 

The decoder is designed to handle this situation as follows. 

From the parity check sum equations hardwired in the xor 

matrix the decoding starts at the very next moment after the 

codeword x are loaded into the cyclic shift register. The linear 

sum outputs {Bj} is then forwarded to the majority logic circuit 

which determines the correctness of the bit under decoding. If 

the majority of the Bj bits are “1” that is greater than the 

majority number of zeros then the current bit is erroneous and 

should be corrected, otherwise it is kept unchanged. 

 
Figure 2. Flow diagram of the ML algorithm 

 

The process is repeated and contents of the shift registers are 

rotated up to the whole N bits of the codeword are processed. 

When all the parity check sums outputs are zero the codeword 

is correctly decoded. Further details on how this algorithm 

works can be found in [6], [12]. The whole algorithm [2] is 

depicted in Figure 2. The algorithm needs as many cycles as the 

number of bits in the input signal, which is number of taps, N, 

in the decoder and also needs same decoding time for both error 

and error free code words. 

3 ML DETECTOR/DECODER 

A novel version of the ML decoder for improving performance 

is presented here. With reference to the original ML decoder, 

the proposed ML detector/decoder (MLDD) has been 

implemented using the Euclidean geometry low-density parity 

check (EG-LDPC) codes. The EG-LDPC codes are based on 

the structure of Euclidean geometries over a Galois field. 

Among EG-LDPC codes there is a subclass of codes that is one 

step majority logic decodable (MLD) [12].The Figure 3 shows 

the memory system schematic of proposed MLDD [1]. 

 
 

Figure 3. Schematic of a memory system with MLDD 

 

The proof of the hypothesis that all error will be detected in 

three cycles is very complex from the mathematical point of 

view. It is practical to generate and check all possible error 
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combinations for codes with small words and affected by a 

small number of bit flips. When the size of code and the number 

of bit flips increases, it is difficult to exhaustively test all 

possible combinations. Therefore the simulations are done in 

two ways, the error combinations are exhaustively checked 

when it is feasible and in the rest of the cases the combinations 

are checked randomly. 

Since it is convenient to first describe the chosen design and 

also for simplicity, let us assume that the hypothesis is true, that 

only three cycles are needed to detect all errors affecting up to 

four bits [12] in EG LDPC Codes 

. 

3.1   Design Structure of encoder 

The systematic generator matrix to generate (15, 7, 5) EG-

LDPC code is shown in Figure 4 [6]. The encoded vector  

mainly consists of two parts, the first part consist of information 

bits and second part is the parity bits, where each parity bit is 

simply an inner product of information vector and a column of  

X , from G=[I:X]. 

The encoder circuit [6] to compute the parity bits of the (15, 

7, 5) EG-LDPC code is shown in Figure 5. In this figure, the 

information vectors are (i0,….i6) and will be copied to (c0,..,c6) 

bits of the encoded vector, c. The rest of encoded vector 

(c7…c14), that is the parity bits are the linear sums (XOR) of the 

information bits. 

 

 
 

Figure 4. Generator matrix for the (15, 7, 5) EG-LDPC code 

 

 
 

Figure 5. Structure of an encoder circuit for the (15, 7, 5) 

EG-LDPC code 

3.2   Proposed MLDD structure 
In general, the proposed version uses the same decoding 

algorithm as the one in plain ML decoder version. The 

advantage is that, proposed method stops intermediately in the 

third cycle when there is no error in data read, [2] as illustrated 

in Figure. 6, instead of decoding it for the whole codeword size 

of N. The xor matrix is evaluated for the first three cycles of the 

decoding process, and when all the outputs {Bj} is “0,”the 

codeword is determined to be error-free and forwarded directly 

to the output. On other hand, the proposed method would 

continue the whole decoding process to eliminate the errors [2] 

if the {Bj} contain at least a “1” in any of the three cycles. 

 

 
Figure 6.  Flow diagram of the MLDD algorithm. 

 

A detailed schematic of the proposed design for 15 bit code 

word is shown in Figure 7. 

 

 
 

Figure 7. Schematic of the proposed MLDD for 15 bit code 

word. 

 a) Control logic   b) Output tristate buffers 
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A detailed schematic of the proposed design for 15 bit code 

word is shown in Figure 7. The figure shows the basic ML 

decoder with a 15-tap shift register, an XOR array to calculate 

the orthogonal parity check sums and a majority logic circuit  

which will decide whether the current bit under decoding is 

erroneous and the need for its inversion. The plain ML decoder 

[2] shown in Figure 1 is also having the same schematic 

structure up to this stage. The additional hardware [2] intended 

for fault detection illustrated in Figure 8 are: a) the control logic 

unit and b) the output tristate buffers. The control unit triggers a 

finish flag when there is no errors are detected in data read.  

The output tristate buffers are always in high impedance state 

until the control unit sends the finish signal so that the current 

values are forwarded to the output y from the shift register.  

The control logic schematic [2] is illustrated in Figure 8. The 

detection process is managed by the control unit. F o r  

distinguishing t h e  f i r s t  three iterations of the ML decoding, 

a counter is used here which counts up to three cycles. 

The control unit evaluates the output from xor matrix Bj by 

giving it as input to the OR 1 gate. This output value is fed to 

 

 
 

Figure 8.  Schematic of the control unit. 

 

two shift registers which has the results of the previous stages 

stored in it. The values are shifted accordingly. The third 

coming input is directly forwarded to the OR 2 gate and finally 

all are evaluated in the third cycle in the OR 2 gate. If the result 

is “0,” a finish signal is send by the FSM which indicates that 

the processed word is error-free. The ML decoding process 

runs until the end, if the result is “1”. 

The majority logic gate is implemented by using the 

conventional majority logic decoding mechanism. That is two 

level logic [6].If during the memory read access an error is 

detected, the xor gate will correct it, by inverting the current bit 

under decoding.  

4    MODIFIED MLDD 

Since we are using a separate module for fault detection, there 

will be a slight area overhead. This area overhead can be 

overcome by using sorting network in the majority gate. 

The EG LDPC code used here is only for 15 bits, it have only 

outputs four outputs from xor matrix. Therefore the above 

structure of sorting network in Figure 9 (a) can be used. It takes 

only four input bits and the vertical lines shown here is 

comparator Figure 9 (b) which has two inputs and it will 

compare and larger bit is given to the top output and smaller to 

bottom respectively [6]. 

 

 
(a)                                                 (b) 

Figure 9. (a)Sorting network-four input   (b) Schematic of 

one comparator  

 

This clearly provides a performance improvement respect to the 

traditional method which is the existing MLD. [2]. The 

proposed method mostly would only take three cycles for 

decoding(five, if we consider the other two for input/output) 

since most of the words would be error free and would need to 

perform the whole decoding process only for those words with 

errors (which should be a minority).  

5   EXPERIMENTAL RESULTS  
In this section the simulations results of the proposed Majority 

Logic Decoder/Detector (MLDD) and the existing method Plain 

MLD is presented. The front end design of the architecture, its 

simulation, synthesis and comparison are done using XILINX 

ISE Design Suite 12.3. The target device is Spartan 3E-

XC3S500E. The designs are coded in VHDL language. A 

codeword of size 15 is chosen here for designing. 

5.1   Simulation Results 
The proposed MLDD and existing MLD techniques are 

simulated for both error free and erroneous conditions the 

during memory access, and the results are shown below in 

figure 10 and 11. 

 

 
 

Figure 10 Proposed technique MLDD without fault in 

memory 

5.2   Analysis of Memory Read Access Delay 
For the plain MLD, the memory read access delay is directly 

dependent on the code size, i.e., a code with length 15 needs 15 

cycles etc. Then, for I/O two extra cycles needed. On the other 

hand, for proposed MLDD the memory read access delay is 

only dependent on the word error rate (WER).  
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Figure 11 Existing technique MLD without fault in memory 

read access. 

 

When number of errors is more, then words to fully decode 

would be more. A summary of the performance of the two 

different designs is given in Table I. 

 

Table I    Comparison of no. of cycles needed for proposed 

and existing designs 

 

 

The proposed method MLDD designs is been compared with 

the existent method plain ML decoder (MLD). For the detection 

of errors, MLD always needs N+2 cycles in all cases. The 

proposed design just requires three cycles to detect any error 

(plus two of I/O).  

If an error is detected, all of the techniques need to run the 

whole decoding process. For MLD this represents N+2 cycles  

( N decoding cycles plus two I/O cycles).The proposed MLDD  

also have same procedure, but instead of N+2  cycles, three 

extra cycles are needed (for a total of N+2). In order to simplify 

the multiplexing logic, these three extra cycles have been added 

to the process. It has only a negligible impact on performance, 

but it provides significant savings in area when code size 

increases. 

 

 

The Table II gives a comparison of the MLD and MLDD 

techniques on the speed up of the proposed MLDD for Error 

free and erroneous Codeword. It gives the idea of how much 

speed-up can be obtained in an ideal situation. 

 

Table II    Speedup comparison for error free code words 

 

A great speed up can be achieved when the code word does not 

suffer from errors, (here 1099ns). When the code word does not 

suffer from errors, it can come out in the next cycle itself 

without further shifting. When code size increases the speed up 

will be even larger and when an occurs the extra time period of 

small fraction of nanoseconds are negligible since most of the 

situations the memory read access does not make errors. 

5.3   Delay Comparison  
Proposed MLDD have less delay when compared to existing 

MLD, since the proposed design detects the faults in just three 

cycles. The delay comparison is shown in table III. 

 

Table III    Delay comparison 

 

When the code word does not suffer from errors, it can come out 

in the next 4th cycle itself without further shifting. Therefore this 

is a great advantage for MLDD in terms of delay and 

performance. 

5.4   Analysis of Power   
The concept of low power consumption can be achieved in case 

of the proposed technique since the proposed design detects the 

faults in just three cycles. Xilinx X Power Analyzer is used to 

estimate the total power (dynamic power + quiescent power) for 

the proposed MLDD and the existing wok of MLD is 

calculated. Table IV shows the comparison of estimated power. 

 When the code word does not suffer from errors, it can come 

out in next 4th cycle itself without further shifting for 

corrections. Therefore a large no. of clock cycles (here 12 clock 

cycles) are saved and hence considerable reduction in power is 

achieved. In the case that an error is detected, both the 

techniques need to launch the whole decoding process. But in 

this case also the extra power consumption for the proposed 

technique is almost negligible.  

 

Table IV Comparison of total estimated power consumption 

 

 

 

 

Techn

ique 

No. Of Cycles Needed 

 

I/

O 

 

Error 

Detectio

n 

Cycle at Which the 

Output Obtained  After  

Detection Process 

WithoutErro

r 

With Error 

 

Plain  

MLD 

(Existing) 

 

2 

 

N 

(E.g 

N=15) 

 

N+2 

(E.g. 

N=15+2) 

 

N+2 

(E.g.N=15+2

) 

 

Proposed 

MLDD 

 

2 

 

3 

 

3+2=5 

 

N+5 

(E.g.N=15+5

) 

Technique 
Time At Which The Output Obtained 

For Error Free Codeword (ns) 

Proposed 

MLDD 
1934 

Existing MLD 3033 

Technique 

Delay (ns) 

Gate Delay 
Net 

Delay 

Total 

Delay 

Proposed MLDD 3.983 8.595 12.578 

Existing MLD 3.836 9.17 14.006 

Technique Total Power 

Consumption 

Proposed MLDD  47 mW 

Existing MLD 49 mW 
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In the proposed MLDD, there is an extra circuitry of control 

logic which consists of three shift registers and an xor gate. 

Therefore there will be a slight area overhead when compared 

to existing MLD because of this detection logic. 

5.5.  Analysis of Area Utilization 
In the proposed MLDD, there is an extra circuitry of control 

logic which consists of shift registers and or gates. Table v 

shows the comparison of total estimated power consumption. 

 

Table V Comparison of equivalent gate count requirements 

for various techniques 

 

 

 

 

 

 

 

Therefore there will be a slight area overhead when compared 

to existing MLD because of this detection logic. But this is 

overcome by MLDD using sorting network. 

6. CONCLUSION 
The paper focuses on the design of a Majority Logic 

Decoder/Detector (MLDD) for fault detection along with 

correction of fault, suitable for memory applications, with 

reduced fault detection time.  

From the simulation results, (A codeword of size 15 is chosen 

here for designing), when compared to the existing MLD, The 

proposed MLDD has comparatively less delay of 12.578 ns and 

can detect the presence of errors in just 3 cycles even for 

multiple bit flips.  

It has found that for error detection and correction (for 

codeword of 15), when comparing to the existing technique, a 

speed up of about 1100 ns is obtained when there is no errors in 

data read access. It’s because the fault detection needs only 

three cycles and after the detection of an error free condition, 

the codeword is passed to the output without further 

corrections. This is a great saving of time since most of the 

situations the memory read access does not make errors. 

Therefore there is a considerable reduction in the memory 

access time.  

The proposed MLDD have about 4% low power consumption 

than the existing MLD technique, since the proposed design 

detects the faults in just three cycles. Therefore a large no. of 

clock cycles (here 12 clock cycles) are saved and hence 

considerable reduction in power is achieved. 

MLDD error detector is designed as it is independent of the 

code word size and inference about area is that for large values 

of code word size, the area overhead of the MLDD actually 

decreases with respect to the plain MLD technique. i.e., for 

large values of code word size both areas are practically the 

same. Therefore the proposed MLDD will be an efficient design 

for fault detection and correction. 

. 
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Technique Total Equivalent gate 

count requirement 

Existent MLD 3197 

MLDD 3322 

Modified MLDD 2229 


