
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.16, February 2013

11

 A Robust and Efficient Method For Error Detection And

Correction In Memories

Jayarani M.A
M.E VLSI Design Scholar

Sri Ramakrishna Engineering College
Coimbatore, India

M.Jagadeeswari, PhD.
Prof and Head, Dept. of M.E VLSI Design

Sri Ramakrishna Engineering College
Coimbatore, India

ABSTRACT
Due to higher integration densities, technology scaling and

variation in parameters, the performance failures may occur for

every application. The memory applications are also prone to

single event upsets and transient errors which may lead to

malfunctions. The paper deals with the idea of a novel fault

detection and correction technique using EG-LDPC codes with

the application mainly focused on memories. The majority logic

decoding is used here, since it can correct a large number of

errors. Even though the majority decoding consumes more time,

it can be overcome by the proposed technique which detects the

errors in less cycle time. It can obviously reduce memory access

time when the data read process is error free. The use of an

additional logic results in a slight area overhead in proposed

method when compared to the existing technique, which is

overcome by a modified implementation of majority gate. The

results obtained are compared with the existing version of the

technique.

Keywords
Majority logic decoding; error correction codes (ECCs);

Euclidean geometry low-density parity check (EG-LDPC);

memory.

1. INTRODUCTION
Memories are the most universal component today. They are

prone to errors like soft and transient errors. Some type of

embedded memory, such as ROM, SRAM, DRAM, flash

memory etc is seen in almost all system chips. Now days, the

memory failure rates are increasing due to the impact of

technology scaling-smaller dimensions, high integration

densities, lower operating voltages etc.[4],[5]. The ability to

quickly determine that a bit has flipped is key to high reliability

and high availability applications. Some commonly used error

detecting techniques are Triple Modular Redundancy (TMR)

and Error Correction Codes (ECCs).

The TMR triplicates all the memory parts of the system and to

choose the correct data using a voter. This method have

disadvantage of large area and complexity overhead of three

times. Therefore the ECC became the best way to mitigate soft

errors in memory [4].

The most commonly used ECC codes are Single Error

Correction (SEC) codes that can correct one bit error in a

memory word. Due to consequence of augmenting integration

densities, there is an increase in soft errors which points the

need for higher error correction capabilities [1], [3]. More

advanced ECCs has been proposed for memory applications but

even Double Error Correction (DEC) codes with a parallel

implementation results in a significant power consumption

penalty. The usual multi error correction codes, such as Reed–

Solomon (RS) or Bose Chaudhuri–Hocquenghem (BCH) are

not suitable for this task due to complex decoding algorithm.

Cyclic block codes have the property of being majority logic

(ML) decodable. Therefore cyclic block codes have been

identified as more suitable among the ECC codes that meet the

requirements of higher error correction capability and low

decoding complexity. Euclidean geometry low-density parity

check (EG-LDPC) codes, a subgroup of the low-density parity

check (LDPC) codes, which belongs to the family of the ML

decodable codes, is focused here.

The advantages of ML decoding are that it is very simple to

implement and thus it is very practical and has low complexity.

The drawback of ML decoding is that, it needs as many cycles

as the number of bits in the input signal, which is also the

number of taps, N, in the decoder and also same decoding time

for both error and error free code words. This is a great impact

on the performance of the system, depending on the size of the

code.

Another alternative is to first detect if there are errors in the

word and only perform the rest of the decoding process when

there are errors. This greatly reduces the average power

consumption as most words will have no errors. Error detection

in a block code can also be implemented by computing the

syndrome and checking whether all its bits are zero [15]. By

calculating the syndrome, we can implement a fault detector for

an ECC is but this also would add an additional complex

functional unit. This paper focus on using the MLD circuitry

itself as an error detecting module therefore with no additional

hardware the read operations could be accelerated.

The remainder of this paper is organized as follows. Section II

gives an overview of existing ML decoding solutions. Section

III presents the novel ML detector/decoder (MLDD) using EG-

LDPC cyclic codes. Section IV discusses the results obtained in

respect to speedup, delay and power consumption. Finally,

Section V discusses conclusions and future work.

2. MAJORITY LOGIC DECODING (MLD)

SOLUTONS
Among the error correction technique one step majority

correction is a fast and relatively efficient with low

complexity error-correcting technique [6]. One-step-majority

correctable ECC codes are limited which include type-I two-

dimensional EG-LDPC.

The data flow of memory system schematic with MLD is that

the word is first encoded and is then written to the memory [2].

After the reading process of the memory it is passed to a

majority logic detector block which detects and corrects the

errors which occurred while the reading code word.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.16, February 2013

12

This type of decoder can be implemented in two ways. The first

one is called the Type-I ML decoder, which determines the bits

need to be corrected from the XOR combinations of the

syndrome, [9]. The Type-II ML decoder that calculates the

information of correctness of the current bit under decoding,

directly out of the codeword bits [6]. Both are quite similar, but

when implementation is considered the Type-II uses less area,

since it does not have a syndrome calculation as an intermediate

step. For this reason the paper focus on this type II

implementation.

2.1 Existent Plain ML Decoder
The existent plain majority decoder have the method of working

in which from the received codeword itself the correct values of

each bit under decoding can directly found out. This method

consists of mainly two steps-

1) Generating a specific set of linear sums of the received

vector bits using the xor matrix 2) Determining the majority

value of the computed linear sums. It is the majority logic output

which determines the correctness of the bit under decoding. If

the majority output is ‘1’, then the bit is inverted, otherwise

would be kept unchanged.

As described before, the ML decoder is powerful and simple

decoder, which has the capability of correcting multiple random

bit-flips depending on the number of parity check equations. It

consists of four parts: 1) a cyclic shift register; 2) an XOR

matrix; 3) a majority gate; and 4) an XOR for correcting the

codeword bit under decoding. The circuit implementing a serial

one-step majority logic corrector [6], [12] for (15, 7, 5) EG-

LDPC code is shown in Figure 1.

The cyclic shift register is initially stored with the input signal x

and shifted through all the taps. The results {Bj} of the check

sum equations from the XOR matrix is calculated from the

intermediate values in each tap. In the Nth cycle, the result

would reach the final tap, producing the output signal, which is

the decoded version of input [2].

Figure 1. Serial one-step majority logic corrector for (15, 7,

5) EG-LDPC code

This is the situation of error free case. The input x might

correspond to wrong data corrupted by a soft error or SEUs.

The decoder is designed to handle this situation as follows.

From the parity check sum equations hardwired in the xor

matrix the decoding starts at the very next moment after the

codeword x are loaded into the cyclic shift register. The linear

sum outputs {Bj} is then forwarded to the majority logic circuit

which determines the correctness of the bit under decoding. If

the majority of the Bj bits are “1” that is greater than the

majority number of zeros then the current bit is erroneous and

should be corrected, otherwise it is kept unchanged.

Figure 2. Flow diagram of the ML algorithm

The process is repeated and contents of the shift registers are

rotated up to the whole N bits of the codeword are processed.

When all the parity check sums outputs are zero the codeword

is correctly decoded. Further details on how this algorithm

works can be found in [6], [12]. The whole algorithm [2] is

depicted in Figure 2. The algorithm needs as many cycles as the

number of bits in the input signal, which is number of taps, N,

in the decoder and also needs same decoding time for both error

and error free code words.

3 ML DETECTOR/DECODER

A novel version of the ML decoder for improving performance

is presented here. With reference to the original ML decoder,

the proposed ML detector/decoder (MLDD) has been

implemented using the Euclidean geometry low-density parity

check (EG-LDPC) codes. The EG-LDPC codes are based on

the structure of Euclidean geometries over a Galois field.

Among EG-LDPC codes there is a subclass of codes that is one

step majority logic decodable (MLD) [12].The Figure 3 shows

the memory system schematic of proposed MLDD [1].

Figure 3. Schematic of a memory system with MLDD

The proof of the hypothesis that all error will be detected in

three cycles is very complex from the mathematical point of

view. It is practical to generate and check all possible error

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.16, February 2013

13

combinations for codes with small words and affected by a

small number of bit flips. When the size of code and the number

of bit flips increases, it is difficult to exhaustively test all

possible combinations. Therefore the simulations are done in

two ways, the error combinations are exhaustively checked

when it is feasible and in the rest of the cases the combinations

are checked randomly.

Since it is convenient to first describe the chosen design and

also for simplicity, let us assume that the hypothesis is true, that

only three cycles are needed to detect all errors affecting up to

four bits [12] in EG LDPC Codes

.

3.1 Design Structure of encoder

The systematic generator matrix to generate (15, 7, 5) EG-

LDPC code is shown in Figure 4 [6]. The encoded vector

mainly consists of two parts, the first part consist of information

bits and second part is the parity bits, where each parity bit is

simply an inner product of information vector and a column of

X , from G=[I:X].

The encoder circuit [6] to compute the parity bits of the (15,

7, 5) EG-LDPC code is shown in Figure 5. In this figure, the

information vectors are (i0,….i6) and will be copied to (c0,..,c6)

bits of the encoded vector, c. The rest of encoded vector

(c7…c14), that is the parity bits are the linear sums (XOR) of the

information bits.

Figure 4. Generator matrix for the (15, 7, 5) EG-LDPC code

Figure 5. Structure of an encoder circuit for the (15, 7, 5)

EG-LDPC code

3.2 Proposed MLDD structure
In general, the proposed version uses the same decoding

algorithm as the one in plain ML decoder version. The

advantage is that, proposed method stops intermediately in the

third cycle when there is no error in data read, [2] as illustrated

in Figure. 6, instead of decoding it for the whole codeword size

of N. The xor matrix is evaluated for the first three cycles of the

decoding process, and when all the outputs {Bj} is “0,”the

codeword is determined to be error-free and forwarded directly

to the output. On other hand, the proposed method would

continue the whole decoding process to eliminate the errors [2]

if the {Bj} contain at least a “1” in any of the three cycles.

Figure 6. Flow diagram of the MLDD algorithm.

A detailed schematic of the proposed design for 15 bit code

word is shown in Figure 7.

Figure 7. Schematic of the proposed MLDD for 15 bit code

word.

 a) Control logic b) Output tristate buffers

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.16, February 2013

14

A detailed schematic of the proposed design for 15 bit code

word is shown in Figure 7. The figure shows the basic ML

decoder with a 15-tap shift register, an XOR array to calculate

the orthogonal parity check sums and a majority logic circuit

which will decide whether the current bit under decoding is

erroneous and the need for its inversion. The plain ML decoder

[2] shown in Figure 1 is also having the same schematic

structure up to this stage. The additional hardware [2] intended

for fault detection illustrated in Figure 8 are: a) the control logic

unit and b) the output tristate buffers. The control unit triggers a

finish flag when there is no errors are detected in data read.

The output tristate buffers are always in high impedance state

until the control unit sends the finish signal so that the current

values are forwarded to the output y from the shift register.

The control logic schematic [2] is illustrated in Figure 8. The

detection process is managed by the control unit. F o r

distinguishing t h e f i r s t three iterations of the ML decoding,

a counter is used here which counts up to three cycles.

The control unit evaluates the output from xor matrix Bj by

giving it as input to the OR 1 gate. This output value is fed to

Figure 8. Schematic of the control unit.

two shift registers which has the results of the previous stages

stored in it. The values are shifted accordingly. The third

coming input is directly forwarded to the OR 2 gate and finally

all are evaluated in the third cycle in the OR 2 gate. If the result

is “0,” a finish signal is send by the FSM which indicates that

the processed word is error-free. The ML decoding process

runs until the end, if the result is “1”.

The majority logic gate is implemented by using the

conventional majority logic decoding mechanism. That is two

level logic [6].If during the memory read access an error is

detected, the xor gate will correct it, by inverting the current bit

under decoding.

4 MODIFIED MLDD

Since we are using a separate module for fault detection, there

will be a slight area overhead. This area overhead can be

overcome by using sorting network in the majority gate.

The EG LDPC code used here is only for 15 bits, it have only

outputs four outputs from xor matrix. Therefore the above

structure of sorting network in Figure 9 (a) can be used. It takes

only four input bits and the vertical lines shown here is

comparator Figure 9 (b) which has two inputs and it will

compare and larger bit is given to the top output and smaller to

bottom respectively [6].

(a) (b)

Figure 9. (a)Sorting network-four input (b) Schematic of

one comparator

This clearly provides a performance improvement respect to the

traditional method which is the existing MLD. [2]. The

proposed method mostly would only take three cycles for

decoding(five, if we consider the other two for input/output)

since most of the words would be error free and would need to

perform the whole decoding process only for those words with

errors (which should be a minority).

5 EXPERIMENTAL RESULTS
In this section the simulations results of the proposed Majority

Logic Decoder/Detector (MLDD) and the existing method Plain

MLD is presented. The front end design of the architecture, its

simulation, synthesis and comparison are done using XILINX

ISE Design Suite 12.3. The target device is Spartan 3E-

XC3S500E. The designs are coded in VHDL language. A

codeword of size 15 is chosen here for designing.

5.1 Simulation Results
The proposed MLDD and existing MLD techniques are

simulated for both error free and erroneous conditions the

during memory access, and the results are shown below in

figure 10 and 11.

Figure 10 Proposed technique MLDD without fault in

memory

5.2 Analysis of Memory Read Access Delay
For the plain MLD, the memory read access delay is directly

dependent on the code size, i.e., a code with length 15 needs 15

cycles etc. Then, for I/O two extra cycles needed. On the other

hand, for proposed MLDD the memory read access delay is

only dependent on the word error rate (WER).

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.16, February 2013

15

Figure 11 Existing technique MLD without fault in memory

read access.

When number of errors is more, then words to fully decode

would be more. A summary of the performance of the two

different designs is given in Table I.

Table I Comparison of no. of cycles needed for proposed

and existing designs

The proposed method MLDD designs is been compared with

the existent method plain ML decoder (MLD). For the detection

of errors, MLD always needs N+2 cycles in all cases. The

proposed design just requires three cycles to detect any error

(plus two of I/O).

If an error is detected, all of the techniques need to run the

whole decoding process. For MLD this represents N+2 cycles

(N decoding cycles plus two I/O cycles).The proposed MLDD

also have same procedure, but instead of N+2 cycles, three

extra cycles are needed (for a total of N+2). In order to simplify

the multiplexing logic, these three extra cycles have been added

to the process. It has only a negligible impact on performance,

but it provides significant savings in area when code size

increases.

The Table II gives a comparison of the MLD and MLDD

techniques on the speed up of the proposed MLDD for Error

free and erroneous Codeword. It gives the idea of how much

speed-up can be obtained in an ideal situation.

Table II Speedup comparison for error free code words

A great speed up can be achieved when the code word does not

suffer from errors, (here 1099ns). When the code word does not

suffer from errors, it can come out in the next cycle itself

without further shifting. When code size increases the speed up

will be even larger and when an occurs the extra time period of

small fraction of nanoseconds are negligible since most of the

situations the memory read access does not make errors.

5.3 Delay Comparison
Proposed MLDD have less delay when compared to existing

MLD, since the proposed design detects the faults in just three

cycles. The delay comparison is shown in table III.

Table III Delay comparison

When the code word does not suffer from errors, it can come out

in the next 4th cycle itself without further shifting. Therefore this

is a great advantage for MLDD in terms of delay and

performance.

5.4 Analysis of Power
The concept of low power consumption can be achieved in case

of the proposed technique since the proposed design detects the

faults in just three cycles. Xilinx X Power Analyzer is used to

estimate the total power (dynamic power + quiescent power) for

the proposed MLDD and the existing wok of MLD is

calculated. Table IV shows the comparison of estimated power.

 When the code word does not suffer from errors, it can come

out in next 4th cycle itself without further shifting for

corrections. Therefore a large no. of clock cycles (here 12 clock

cycles) are saved and hence considerable reduction in power is

achieved. In the case that an error is detected, both the

techniques need to launch the whole decoding process. But in

this case also the extra power consumption for the proposed

technique is almost negligible.

Table IV Comparison of total estimated power consumption

Techn

ique

No. Of Cycles Needed

I/

O

Error

Detectio

n

Cycle at Which the

Output Obtained After

Detection Process

WithoutErro

r

With Error

Plain

MLD

(Existing)

2

N

(E.g

N=15)

N+2

(E.g.

N=15+2)

N+2

(E.g.N=15+2

)

Proposed

MLDD

2

3

3+2=5

N+5

(E.g.N=15+5

)

Technique
Time At Which The Output Obtained

For Error Free Codeword (ns)

Proposed

MLDD
1934

Existing MLD 3033

Technique

Delay (ns)

Gate Delay
Net

Delay

Total

Delay

Proposed MLDD 3.983 8.595 12.578

Existing MLD 3.836 9.17 14.006

Technique Total Power

Consumption

Proposed MLDD 47 mW

Existing MLD 49 mW

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.16, February 2013

16

In the proposed MLDD, there is an extra circuitry of control

logic which consists of three shift registers and an xor gate.

Therefore there will be a slight area overhead when compared

to existing MLD because of this detection logic.

5.5. Analysis of Area Utilization
In the proposed MLDD, there is an extra circuitry of control

logic which consists of shift registers and or gates. Table v

shows the comparison of total estimated power consumption.

Table V Comparison of equivalent gate count requirements

for various techniques

Therefore there will be a slight area overhead when compared

to existing MLD because of this detection logic. But this is

overcome by MLDD using sorting network.

6. CONCLUSION
The paper focuses on the design of a Majority Logic

Decoder/Detector (MLDD) for fault detection along with

correction of fault, suitable for memory applications, with

reduced fault detection time.

From the simulation results, (A codeword of size 15 is chosen

here for designing), when compared to the existing MLD, The

proposed MLDD has comparatively less delay of 12.578 ns and

can detect the presence of errors in just 3 cycles even for

multiple bit flips.

It has found that for error detection and correction (for

codeword of 15), when comparing to the existing technique, a

speed up of about 1100 ns is obtained when there is no errors in

data read access. It’s because the fault detection needs only

three cycles and after the detection of an error free condition,

the codeword is passed to the output without further

corrections. This is a great saving of time since most of the

situations the memory read access does not make errors.

Therefore there is a considerable reduction in the memory

access time.

The proposed MLDD have about 4% low power consumption

than the existing MLD technique, since the proposed design

detects the faults in just three cycles. Therefore a large no. of

clock cycles (here 12 clock cycles) are saved and hence

considerable reduction in power is achieved.

MLDD error detector is designed as it is independent of the

code word size and inference about area is that for large values

of code word size, the area overhead of the MLDD actually

decreases with respect to the plain MLD technique. i.e., for

large values of code word size both areas are practically the

same. Therefore the proposed MLDD will be an efficient design

for fault detection and correction.

.

7 . ACKNOWLEDGMENTS
The authors would like to thank All India Council for Technical

Education (AICTE), India, to financially support this work

under the Grant 8023/BOR/RID/RPS-48/2009-10. The authors

would also like to thank the Management and Principal of Sri

Ramakrishna Engineering College, Coimbatore for providing

excellent computing facilities and encouragement

.8. REFERENCES
[1] R. Naseer and J. Draper, “DEC ECC design to improve

memory reliability in sub-100 nm technologies,” in

Proc. IEEE ICECS, 2008, pp.586–589.

[2] Shih-Fu Liu,Pedro Revingo, and Juan Antonio Meastro

“Efficient majority fault detection with difference set

codes for memmory applications”, IEEE Trans. Very

Large Scale Integr.(VLSI) Syst., vol. 20, no. 1, pp. 148–

156, Jan. 2012.

[3] M.A. Bajura et al., “Models and algorithmic limits for an

ECC- based approach to hardening sub-100-nm

SRAMs,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 935–

945, Aug. 2007

[4] R.C.Baumann,“Radiation-induced soft errors in advanced

semiconductor technologies,” IEEE Trans. Device Mater.

Reliabil., vol. 5, no.3, pp. 301–316, Sep. 2005.

[5] C. W. Slayman, “Cache and memory error detection,

correction, and reduction techniques for terrestrial servers

and workstations,” IEEE Trans. Device Mater. Reliabil.,

vol. 5, no. 3, pp. 397–404, Sep. 2005.

[6] H. Naeimi and A. DeHon, “Fault secure encoder and

decoder for NanoMemory applications,” IEEE Trans.

Very Large Scale Integr.(VLSI) Syst., vol. 17, no. 4, pp.

473–486, Apr. 2009.

[7] S. Ghosh and P. D. Lincoln, “Low-density parity check

codes for error correction in nanoscale memory,” SRI

Comput. Sci. Lab. Tech. Rep. CSL-0703, 2007.

[8] B. Vasic and S. K. Chilappagari, “An information

theoretical frame work for analysis and design of

nanoscale fault-tolerant memories based on low-density

parity-check codes,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 54, no. 11, pp. 2438–2446, Nov. 2007.

[9] S. Lin and D. J. Costello, Error Control Coding,2nd ed

Englewood Cliffs, NJ: Prentice-Hall, 2004.

[10] T. Kuroda, M. Takada, T. Isobe, and O. Yamada,

“Transmission scheme of high-capacity FM multiplex

broadcasting system,” IEEE Trans. Broadcasting, vol. 42,

no. 3, pp. 245–250, Sep. 1996.

[11] Y Kato and T. Morita, “Error correction circuit using

difference-set cyclic code,” in Proc. ASP-DAC, 2003, pp.

585-586.

[12] Pedro Reviriego,Juan A. Maestro, and Mark F. Flanagan,

“Error Detection in Majority Logic Decoding of Euclidean

Geometry Low Density Parity Check (EG-LDPC) Codes,”

IEEE Transactions On Very Large Scale Integration (Vlsi)

Systems 1 (will be published).

[13] C.Tjhai, M. Tomlinson, M. Ambroze, and M. Ahmed,

“Cyclotomic idempotent- based binary cyclic codes,”

Electron. Lett., vol. 41, no. 6, Mar. 2005.

[14] T Shibuya and K. Sakaniwa, “Construction of cyclic codes

suitable for iterative decoding via generating

idempotents,” IEICE Trans. Fundamentals, vol. E86-A,

no. 4, pp. 928–939, 2003.

Technique Total Equivalent gate

count requirement

Existent MLD 3197

MLDD 3322

Modified MLDD 2229

