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ABSTRACT 

In data mining, the k-means algorithm is among the most 

commonly and widely used method for solving clustering 

problems because of its simplicity and performance. However, 

one of the main drawback of this algorithm is that its accuracy 

and performance are sensitive to the initial choice of 

clustering centers, which are generated randomly. To 

overcome this drawback, we propose a simple deterministic 

method based on nearest neighbor search and k-means 

procedure in order to improve clustering results. Experimental 

results on various data sets reveal that the proposed method is 

more accurate than standard K-means algorithm.  
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INTRODUCTION 

Cluster analysis is widely used in various fields, including 

data analysis, biology, image processing, pattern recognition 

and machine learning. Clustering is the process of organizing 

data vectors into disjoint set called clusters such that the 

similarities among data members within the same cluster are 

maximal while similarities among data members from 

different clusters are minimal. The optimization of this 

criterion is a computationally NP hard problem in general 

Euclidean space d, even when the clustering process involves 

only two clusters [1]. 

Thus, many heuristic algorithms are generally used to find 

near optimal solution in reasonable computational time. One 

of the most widely used clustering methods is k-means 

clustering algorithm [2]. It is a relatively simple and efficient 

algorithm, but usually it converges to local optimum 

depending on  initial cluster centroids, which are randomly 

generated. To overcome this drawback, authors proposed  

many initialization methods to improve the quality of   

clustering results. Bradley and Fayyad  [3] proposed a  

refinement algorithm that builds a set of small random sub-

samples of the data, then groups data in each sub-samples by 

K-means.  Centroids of all sub-samples are then clustered 

together by K-means using the K centroids of each sub-

sample as initial centers.  Khan and Ahmad [4] described 

cluster center initialization algorithm (CCIA) based on 

considering values for each attribute of the given data set. 

This provided some information leading to a good initial 

cluster center. Arthur and Vassilvitskii [5] proposed k-

means++, a careful seeding for initial cluster centers to 

improve clustering results. Recently, an initialization method 

for K-means algorithm using reverse nearest neighbor search 

and coupling degree was proposed by Ahmed and Ashour [6]. 

In [7], Zhang and Fang described an improved K-means 

clustering algorithm based on some core data point and a 

density threshold.   

This paper suggests a  deterministic approach (called KMNN) 

using nearest neighbor search for computing suitable initial 

clusters centroids instead of random ones, then apply k-means 

procedure to refine the clusters. Experiments are conducted on 

several data sets from UCI machine learning repository,  in 

order to evaluate its performance.  

In the following section we start with a brief description of the 

k-means algorithm and a formal definition of the clustering 

SSE error, then we describe the proposed  KMNN algorithm. 

Section 3 describes a variant of the basic KMNN method 

which is slightly more accurate at the expense of requiring 

more computation. Section 4 reports our experimental results 

and comparisons with the original k-means algorithm. Finally 

section 5 provides conclusions and suggests directions for 

future research. 

2.1. Brief review of K-Means clustering 

algorithm 

Given a data set X ={x1 ,..., xn }, xi ∈  Rd  where each data 

point xi corresponds to a vector of d attributes. The k-

clustering problem aims at partitioning this data set into M 

disjoint subsets (or clusters) C1 ,..., Ck , such that clustering 

criterion is optimized. The most widely used clustering 

criterion is the sum of the squared Euclidean distances 

between each data point xi and the centroid mj (cluster center) 

of the subset Cj which contains xi . This criterion is called 

clustering error and depends on the cluster centers c1 ,..., ck : 

              k 

SSE =  ∑  ∑║ x i − m j ║ 2 

            j=1   xi ∈  Cj 

Where ║.║2  denotes the Euclidean norm in Rd , 

 cj =∑x i /│Cj│     

        xi ∈  Cj 

denotes the centroids of cluster Cj and │Cj│ denotes the 

number of instances in Cj. 
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The K-means algorithm has the following steps: 

Algorithm KM 

Input: data set X={x1 ,..., xn }, xi ∈  Rd  

            a positive integer k<n                                                                                                                                    

Output: k  mutually disjoint clusters  C1 ,..., Ck   such that      

C1 ,...,Ck=X 

Step 1: Select k initial cluster centers c1, c2,...,ck randomly 

from the given n points X. 

Step 2: Assign each point xi, i =1, 2, ... , n to the cluster Cj  

corresponding to the cluster center cj, for j =1, 2, ... , k iff 

║xi - c j║ ≤ ║xi - c p║ ,  p = 1, 2, ..., k and j≠p 

Step 3: Compute new cluster centers  nc1, nc2,...,nck  as 

follows:  

nc j=∑x i /│Cj│           for j = 1, 2, ..., k. 

        xi ∈  Cj 

Step 4: If nci = ci ,  i = 1, 2, ..., k, then terminate. Otherwise 

continue from step 2. 

 

 

2.2  The proposed method 

Instead of choosing the k initial cluster centers c1, c2,...,ck 

randomly from the given data set X, the proposed KMNN 

method picks the first point in X, then computes its  n/k -1  

nearest neighbors which constitute the first cluster  C1  whose 

centroid is set to c1, then C1  is deleted from X. This process is 

repeated k times until the k initial cluster centers c1, c2,...,ck 

are assigned. After that, the K-means algorithm is applied to 

refine the clusters. The proposed KMNN algorithm is outlined 

below: 

 

Algorithm KMNN 

Input: data set X={x1 ,..., xn }, xi ∈  Rd  

            a positive integer k<n                                              

Output: k  mutually disjoint clusters  C1 ,..., Ck     such that    

C1 ...,Ck=X  

Step 1:  

For j=1 to k do 

 C j← NNsearch(x1, X , n/k  -1)  {x1} 

 cj ←∑x i / n/k            

                        xi  ∈  Cj 

                   X← X- C j 

EndFor 

Step 2: Assign each point xi, i =1, 2, ... , n to the cluster Cj  

corresponding to the cluster center cj, for j =1, 2, ... , k iff 

║xi - c j║ ≤ ║xi - c p║ ,  p = 1, 2, ..., k and j≠p 

Step 3: Compute new cluster centers  nc1, nc2,...,nck  as 

follows:  

nci=∑x i /│Cj│           for j= 1, 2, ..., k. 

      xi ∈  Cj 

Step 4: If nci = ci ,  i = 1, 2, ..., k, then terminate. Otherwise 

continue from step 2. 

 

Clearly, the performance of this method depends on the 

complexity of the NNsearch  procedure and  the complexity of 

K-Means algorithm used. Therefore, in order to speedup this 

method, one can use a fast implementation of Nearest 

Neighbor Search  algorithm like a method described in [9] and 

implement a fast version of K-Means algorithm like those 

described in [10] and [11]. 

3. A variant of the proposed method  

If the given  data set X has moderate size, one can use the 

following variant of the basic KMNN method  (called 

KMNN') which is slightly more accurate than former method, 

but requires more computation effort aiming to minimize the 

SSE clustering criterion by using an additional inner loop. 

The pseudo code of KMNN' algorithm is outlined below: 

Algorithm KMNN' 

Input: data set X={x1 ,..., xn }, xi ∈  Rd  

            a positive integer k<n                                              

Output: k  mutually disjoint clusters  C1 ,..., Ck   such that      

C1 ...,Ck=X 

Step 1:  

For j=1 to k do 

        For h=1 to | X | do 

 C h← NNsearch(xh, X , n/k  -1)  {xh} 

 ch ←∑x i / n/k            

                        xi  ∈  Ch 

 dh←∑ ║xi – c h║
2  

                       xi  ∈  Ch 

                  EndForh   

  m ← ArgMin(di) 

                                                  1≤i≤| X |  

         C j  ← C m 

  c j←  c m  

           X← X- C j 

EndForj 
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Step 2: Assign each point xi, i =1, 2, ... , n to the cluster Cj  

corresponding to the cluster center cj, for j =1, 2, ... , k iff 

║xi - c j║ ≤ ║xi - c p║ ,  p = 1, 2, ..., k and j≠p 

Step 3: Compute new cluster centers  nc1, nc2,...,nck  as 

follows:  

nci=∑x i /│Cj│           for j= 1, 2, ..., k. 

      xi ∈  Cj 

Step 4: If nci = ci ,  i = 1, 2, ..., k, then terminate. Otherwise 

continue from step 2. 

 

4 Experimental evaluation 

In order to evaluate the proposed clustering algorithm, 

experiment was conducted on several data sets from UCI 

machine learning repository [12].  The initial centroid for 

standard k-means algorithm is selected randomly. The 

experiment was conducted 10 times for different sets of 

values of the initial centroids, which were selected randomly. 

In each experiment, the SSE and  silhouette value was 

computed and taken the average of all experiments. 

The silhouette function  [8] provides a measure of the quality 

of the separation between the clusters obtained by using the 

K-means algorithm. In an object i belonging to the cluster Ck , 

the average dissimilarity of i to all other objects of Ck is 

denoted by ak (i). Analogously, in cluster Cj, the average 

dissimilarity of i to all objects of Cj  is called dis(i,Cj ). After 

computing dis(i,Cj ) for all clusters Cj≠Ck , the smallest one is 

selected as follows, 

aj (i) = min{dis(i,Cj)}, ∀ j such that Cj ≠ Ck . 

This value represents the dissimilarity of the object i to its 

neighbor cluster. Thus, the silhouette values, silh(i) are given 

by the following equation: 

silh(i) =(ak (i) − aj  (i))/max{ ak (i), aj (i)} 

The silh(i) can vary between −1 and +1, +1 denotes clear 

cluster separation and −1 marks points with bad cluster 

assignment. The objective function is the average of silh(i) 

over the number of objects to be classified, and the best 

clustering is reached when the above mentioned function is 

maximized. 

In our experiments we used MATLAB software [13] and 

Windows 7  with Intel Core 2Duo CPU 2.8 GHZ with RAM 

4.0GB.  

The SSE results and average of silhouette values on 12 UCI 

data sets are reported in table 1 and some clustering results are 

shown in  Fig. 1 to 6. 

From these measurements we can see that the proposed 

KMNN algorithm outperform the random initialization KM 

algorithm in most cases. 

We  have also evaluated the proposed variant algorithm 

KMNN' on the same data sets, and we noticed that this variant 

performs slightly better than KMNN only on 2 data set among 

the twelve tested data sets as shown in  table 2. 

Table 1: SSE results and average silhouette values on 

various data sets using KM and KMNN respectively. 

 

Data set 

   Algorithm KM 

    SSE                SIL                  

 Algorithm KMNN 

 SSE                  SIL 

Glass  1.0967e+004 0.6771  1.0928e+004  0.6802 

S1  1.9534e+013 0.7701 1.4744e+013  0.8121 

S2 1.3279e+013 0.8008 1.3279e+013  0.8009 

S3 1.9334e+013 0.6364 1.8787e+013  0.6412 

S4 1.6740e+013 0.6268  1.5704e+013  0.6447 

Ruspini 4.8309e+004 0.7024 1.29E+004  0.9086 

DIM032  1.2973e+007 0.7342 2.3254e+005 0.9962 

R15 2.0950e+003 0.6954 109.8706 0.9361 

A1 2.0053e+010 0.6802 1.2146e+010 0.7892 

Aggregation  1.4651e+004 0.6317 1.1111e+004 0.6717 

Compound  4.9229e+003 0.5033 4.7323e+003 0.5686 

Yest 52.51 0.2431 46.1477 0.2662 

 

 

Fig. 1:  clustering results of glass data set using KM and 

KMNN respectively and their corresponding  silhouette 

plots. 
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Fig. 2: clustering results of S1 data set using KM and 

KMNN respectively. 

 

Fig. 3:  clustering results of  Ruspini data set using KM 

and KMNN respectively. 

 

Fig. 4:  clustering results of  DIM032  data set using KM 

and KMNN respectively. 

 

Fig. 5:  clustering results of  Aggregation  data set using 

KM and KMNN respectively. 

 

Fig. 6:  clustering results of  Compound  data set using 

KM and KMNN respectively. 

Table 2: SSE results and average silhouette values on two 

data sets where KMNN'  performs better than KMNN. 

 

Data set 

  Algorithm KM 

SSE                   SIL                  

  Algorithm KMNN' 

SSE                     SIL  

Aggregation   1.1111e+004 0.6717  1.1109e+004 0.6718 

Compound   4.7323e+003 0.5686  3.9290e+003 0.6018 

 

5. CONCLUSION 

In this paper a new approach for the initialization of the K-

means algorithm has been proposed which is based on the 

nearest neighbor search procedure as a preprocessing step.  

Experiments conducted on both synthetic and real data sets, 

showed improvement in accuracy of the clustering results. We  

have also evaluated a variant algorithm which spent  more 

computation time in order to minimize earlier the SSE 
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criterion, but we noticed surprisingly that this variant 

performs slightly better than KMNN only on two data sets 

among  twelve tested data sets. Thus the proposed approach is 

a good compromise between efficiency and  accuracy. Also, it 

is simple and easy to implement. 

As future work, we intend to apply  Principal Component 

Analysis on original data as a possible way to improve both 

performance and accuracy of the proposed method. We also  

intend to investigate a possible modification of  this method  

aiming at finding a parameter-free algorithm which will 

automatically detect the optimal number of clusters of a given 

data set. 
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