
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

39

Measuring the Quality of Software through Analytical

Design by OOAD Metrics

S.Pasupathy

Associate Professor,
Dept.of CSE, FEAT,

Annamalai University,
Tamil Nadu, India,

R.Bhavani, PhD.

Professor,
Dept.of CSE, FEAT,

Annamalai University,
Tamil Nadu, India,

ABSTRACT

Software plays an important role in today’s computerized

world. The programmer can use different languages to

develop the software. In order to develop software, it

needs several phases such as Analysis, Design,

Implementation, Testing and Maintenance. Of these

several phases, the analysis and design becomes essential,

since these are the most essential feature in the

development of the software.

Now-a-days, most of the software is object-oriented,

because the object-oriented languages provide easy way to

develop and maintain the program. This object-oriented

program consists of several divisions based upon the

purpose. Each division performs some functions

depending upon the code. All these divisions are then

integrated to provide the single program. If any error

occurred in any part of the program means, it is necessary

to change the error in whole program. To avoid this kind

of unnecessary change with long time duration, the

developer has to overview and tests the initial phase such

as analysis and design. These kinds of testing on analysis

and design for an object-oriented program is carried out by

a technology called OOAD (Object Oriented Analysis

and Design).

In this paper, a methodology has to be proposed to analysis

the design to be carried out in the development of the

program, before start to implement. The methodology also

provides many essential features that are used to automate

the process of testing on an object-oriented analysis and

design. This can be done by implementing the

configuration file for detecting the error rate. Thus this

paper provides efficient strategy for OOAD.

Keywords

Analysis, Configuration File, Design, Error Rate,

Implementation, Maintenance, OOAD, Object-Oriented,

Phases, Software, Testing.

1. INTRODUCTION
Now-a-days, everything becomes computerized. In order

to change the things computerized, all the things are

converted into software format. This software can be

developed by means of programming languages. Of these

languages, many different kinds are exists based upon the

type of complexity. Initially, the programming languages

did not follow any structure and thus it was termed as

Unstructured Programming Languages. The next step is to

overcome the unstructured drawback by means of

introducing Structured Programming Language. In this

structured programming language, as the length of the

program increases, readability becomes difficult. That

kind of languages is also termed as Procedure-Oriented

Language (POL).

To overcome this readability problem, a new and emerging

technology is introduced named as “Object-Oriented

Programming (OOP)”. In this object-oriented

programming language, based upon the difficulty and

functionality of the program, the program is divided into

multiple sub-divisions and each performs the specified

functions. All these things are grouped under a single

object named as Classes. These kind of object-oriented

programming languages are mostly used to develop the

program successfully.

To develop the program or software, it is necessary to

follow several steps as stated in the software engineering.

Software Engineering is the establishment and use of

sound engineering principles in order to obtain

economically software that is reliable and works efficiently

on real machines. Software Engineering: The application

of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that

is applicable of engineering to software.

In order to develop software, the major essential steps are

as follows:

 Analysis

 Design

 Implementation

 Testing

 Maintenance

Of these, the major care must be taken in the part of

Analysis and Design. These are the initial steps to develop

the software. If any changes held in these steps, the whole

software might be affected. In order to measure the quality

of the software from the initial phase and to validate the

software to deduce the usefulness of the software based

upon the error rate is carried out by using the new

technique called OOAD (Object-Oriented Analysis and

Design).

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

40

OOAD is a technique that consists of lot of metrics to

validate and measure the quality of the software. This

OOAD consists of several advantages over the quality

measure of the software. The key idea about OO Design:

 Much of OO design is about managing

dependencies

 It is very difficult to write OO code without

creating a dependency on something

 99.9% of lines of code contain at least one

significant design decision

 Anyone who writes a line of code is defining the

design

The OO Design goals are as follows:

 Make software easier to change when the

programmer or user wants to change.

 The programmer or user might want to change a

class or package to add new functionality,

change business rules or improve the design

 The programmer or user might have to change a

class or package because of a change to another

class or package it depends on (e.g., a change to

a method signature)

 Manage dependencies between classes and

packages of classes to minimize impact of

change on other parts of the software

 Minimize reasons that modules or packages

might be forced to change because of a change in

a module or package it depends upon.

Object-oriented technology is becoming increasingly

popular in industrial software development environments.

This technology helps in the development of a software

quality of higher quality and lower maintenance costs.

Since the traditional software metrics aims at the

procedure-oriented software development so it cannot

fulfill the requirement of the object-oriented software. As

a result, a new set of object-oriented software metrics has

been evolved.

Object-Oriented Metrics are the measurement tools

adapted to the object-oriented paradigm to help manage

and promote quality in software development.

Quality and Scope is the two essential features in each

and every product. Also in the Software development

environment, the developing software must be in good

quality to lead in this computerized world. Only the best

qualified software may exists in this world and can be used

more popularly.

The design and development of software using object

oriented paradigm is gaining popularity day by day. Object

Oriented Analysis and Design of software provide many

benefits to both the program designer and the user. This

technology promises greater programmer productivity,

better quality of software and lesser maintenance cost.

Most commonly used Object-Oriented Paradigms are Java,

C++, C sharp, and Vb.net. C sharp is Microsoft’s new

programming language for .net platform. It combines some

of the best features of modern programming language such

as java, c++ or visual basic.

In this research work, many object-oriented metrics has

been analyzed and develop a new technique to improve the

quality and scope of the software. Also through this paper,

the error rate is also defined in order to enhance the client

to determine whether they have to use or left it. The

proposed algorithm determines the features of the software

and to evaluate the quality of the software. Thus the

proposed strategy provides efficient methodology to

implement the object-oriented metrics.

2. RELATED WORK
In paper [1], Claire Le Goues and Westley Weimer stated

that Formal specifications could help with program testing,

optimization, refactoring, documentation, and, most

importantly, debugging and repair. However, they were

difficult to write manually, and automatic mining

techniques suffer from large amount of false positive rates.

To address the problem, they proposed to augment a

temporal-property miner by incorporating code quality

metrics. They measured the code quality by extracting

additional information from the software engineering

process and using information from code that was more

likely to be correct, as well as code that was less likely to

be correct.

In paper [2], Aliza et al discussed about the problems that

were faced in the IT industry to develop the best product at

reduced rate. In order to determine quality and to improve

the quality of services, the IT industry seems to be

converging towards a set of commonly used metrics,

including but not limited to, equipment availability, the

time to resolve incidents, service providers need to adopt a

consistent and continuous focus on their internal processes,

etc. They studied the tradeoff between the cost of a service

(as manifested by the staffing level) and the corresponding

quality metrics (subject to the service level agreement). In

particular, they studied the cost of service quality through

the use of an optimization model that took into account the

constraints and cost factors typically encountered in a

service provider environment.

In paper [3], Bandar Alshammari et al presented a

hierarchical model for assessing an object-oriented

program’s security. Security was quantified using

structural properties of the program code to identify the

ways in which ‘classified’ data values may be transferred

between objects. The model began with a set of low-level

security metrics based on traditional design characteristics

of object-oriented classes, such as data encapsulation,

cohesion and coupling. Finally, the entire program’s

security was summarized as a single security index value.

The model was validated via an experiment involving five

open source Java programs; using a static analysis tool

they had developed to automatically extract the security

metrics from compiled Java byte code.

In paper [4], Saad Alahmari et al discussed that Service-

Oriented Architecture (SOA) was intended to improve

software interoperability by exposing dynamic applications

as services. To evaluate the design of services in service-

based systems, quality measurements were essential to

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

41

decide tradeoffs between SOA quality attributes. In the

paper they introduced the structural attribute of service

granularity for the analysis of other internal structural

software attributes: complexity, cohesion and coupling.

Consequently, metrics are proposed for measuring SOA

internal attributes using syntax code.

In paper [5], Vishwajit Joshi discussed about the use of

performance measures in business was hardly new.

Companies had been measuring costs, quality, quantity,

cycle time, efficiency, productivity, etc., of products,

services and processes. The elements of continuous

improvement were built into the approach.

In Paper [6], Douglas et al stated that Open-source

development processes had emerged as an effective

approach to reduce cycle-time and decrease design,

implementation, and quality assurance costs for certain

types of software, particularly systems infrastructure

software, such as operating systems, compilers and

language processing tools, editors, and distribution

middleware. In this paper, Douglas et al presented two

contributions to the study of open-source software

engineering. First, they described the key challenges of

open-source software, such as controlling long-term

maintenance and evolution costs, ensuring acceptable

levels of quality, sustaining end-user confidence and good

will, and ensuring the coherency of system-wide software

and usability properties. Second, they presented the goals

and methodology of the Skoll project, which focused on

developing and empirically validating novel open-source

software quality assurance and optimization techniques to

resolve key open-source challenges.

In paper [7], Chen et al tested the hypothesis that generic

recovery techniques, such as process pairs, can survive

most application faults without using application-specific

information. They examined in detail the faults that occur

in three, large, open-source applications: the Apache web

server, the GNOME desktop environment, and the My

SQL database.

In paper [8], Nair et al. described a case study of

combinatorial testing for a small subsystem of a screen-

based administrative database. The system was designed to

present users with input screens, accept data, then process

it and store it in a database. The study was extremely

limited in that only one screen of a subsystem with two

known faults was involved, but pair wise testing was

sufficient to detect both faults. In paper [9], Wallace and

Kuhn reviewed 15 years of medical device recall data

gathered by the US Food and Drug Administration (FDA)

to characterize the types of faults that occur in the

application domain. These applications include any

devices under FDA authority, but are primarily small to

medium sized embedded systems, and would range from

roughly 104 to 105 lines of code.

In paper[10], Kuhn and Reilly analyzed reports in bug

tracking databases for open source browser and server

software, the Mozilla web browser and Apache server.

Both were early releases that were undergoing incremental

development. In paper [11], Richard stated that Exhaustive

testing of computer software was intractable, but empirical

studies of software failures suggested that testing can in

some cases be effectively exhaustive.

In paper[12], Edgar Gabriel et al pointed that a large

number of MPI (Multiple Programming Interface- like

Multitasking) implementations are currently available,

each of which emphasize different aspects of high-

performance computing or are intended to solve a specific

research problem. It also presented a high-level overview

the goals, design, and implementation of Open MPI.

In paper[13], Robyn stated that Open source software

systems were becoming increasingly important these days.

Many companies are investing in open source projects and

lots of them were also using such software in their own

work. This was also introduced the fact extraction process

to show what logic drives the various tools of the

Columbus framework and what steps need to be taken to

obtain the desired facts.

In paper[14], Rudolf et al. presented that one area of the

web services architecture yet to be standardized was that of

fault tolerance for services. This paper investigated the

feasibility of using WS-BPEL as an implementation

technique for fault tolerant web services. The mapping of

various fault tolerance patterns to WS-BPEL was

presented.

In this paper, the proposed method has to be developed by

consolidating the related papers and also improve with

more special features.

3. METHODOLOGY

3.1 Proposed Work
The summary of the proposed work is discussed below:

OOAD is the technique to measure the quality of the

software using different OOAD metrics. OOAD metrics

are of numerous to measure the software in different ways.

In this proposed work, it is to be developed with new

OOAD metrics to determine the quality and error rate of

the software to enhance the quality of the software.

To automate the testing on the Object-Oriented Design by

OOAD, OOAD Metrics have to be proposed in this paper.

These metrics is constructed by taking or collecting large

volume of data in order to provide the metrics suitable for

all kinds of Object-Oriented languages such as Java,

C#.Net, VB.Net, or C++. This OOAD metrics describes

about the analysis design that is to be carried out in an

object-oriented language.

Based upon the OOAD metrics, the quality of the software

is evaluated. The proposed work provides the generalized

methodology which will be termed as QMGen

(Generalized Quality Measurement) technique on the

object-oriented programming metrics and it is better to

determine the program quality.

This OOAD metrics analysis the quality of the program by

taking the program and then analysis the program by

identifying the type of language used, number of classes

used in the program and the type of the classes used in the

program. All these things are provided in the form of

Configuration files.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

42

The configuration file is the file that contains all the

necessary attributes about the metrics and it is most useful

in order to determine the quality of the program. Almost

all of the configurable items are provided in this

configuration file. This configurable item includes the

language used in the program, how many variables are

used in the program and the type of the variable. Also the

process of compilation is provided along with these

configurable items.

Apart from these items, the configuration file also contains

the information about the errors found in the program, type

of the error and the error rate. The error is also classified

into several categories based upon the type of the error.

These items are stored as follows:

From this configuration files, almost everything about the

program is stored by analysis the design. Based upon the

error type, the error rate is determined and the quality of

the program is calculated. The error rate is differentiated

for different types of errors such as syntax error, run-time

error and so on. Some of the error rates are defined below:

The configuration file is built as follows with all the

necessary attributes. These configuration file consists of

three sections such as <compile>, <OOAD> and <error>.

 The <compile> section is used for compiling the

programming file.

 The <OOAD> section is used to analysis the

design of the program whereas;

 The <error> section is used to determine the

error rate found in the program.

All these sections consist of generalized sub-tags to

identify the quality of the program.

From this configuration file, the quality of the program is

analysed based upon the OOAD metrics. When the

program is inputted to this methodology, the information is

retrieved from the configuration file and matches it with

the inputted program.

All the metrics are fetching from the program and the level

of inheritance is also determined. Upon completing these

actions, the error rate is determined and the quality of the

program is measured. The sample configuration file is

shown below:

This proposed methodology also consists of an algorithm

to determine the quality of the program. The algorithm is

given below with proper explanation.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

43

3.2 QMGen Algorithm

3.3 Algorithm Explanation
The algorithm process as follows: the initial step of this

methodology is to create the configuration file with all the

necessary attributes including Compilation Procedure,

OOAD Metrics and Error Information. The next step is to

get the inputted program from the user and then to analysis

the quality of the program using OOAD Metrics. The

quality of the program can be determined by compiling the

program using the compilation procedure. The result of

the compilation procedure is analyzed based upon the

compilation result. If the compilation result shows

“successfully compiled”, then there is no error occurred

and then the quality of the program is determined to be

good. Otherwise, based upon the error rate occurred, the

quality of the program is analyzed. Thus the OOAD

Metrics is used to determine the program quality.

4. EXPERIMENTAL SETUP
The Proposed methodology is very efficient that is used to

evaluate the quality of the software. To test the efficiency

of the methodology, various experimental setups are

constructed and the result is analyzed. The experimental

setup is made by taking the set of users with two categories

such as, with programming skills and without

programming skills. The user with programming skills can

able to analyze the type of program and to compile the

program. Then they use the configuration file to analysis

the OOAD Metrics and to deduce the error rate.

Also, for the users with no programming skills, can

execute the process by automate the process of analyzing

the quality of software by using the configuration file.

Finally, the result is submitted to the user announcing the

quality of the software and the usability of the software is

determined by the user based upon the error rate.

Thus this proposed methodology provides better

experimental results when it is implemented on any type of

programming software. Thus it is very useful for all kinds

of users to analysis the quality of software. The following

table-1 shows the output of the sample program developed

using this proposed methodology to evaluate the error rate

in a given program.

Table-1: Sample Output

5. RESULTS AND DISCUSSION
Based on the experimental setup, various results have been

identified. Also to ensure the quality of the proposed

methodology, many comparisons have been undertaken

with the existing techniques to analysis the rate of

performance. Some of the comparison result is discussed

below in table-2 and the comparison chart is shown in

figure-1:

Table-2: Performance Comparison

Quality Measurement Methods Rate of Performance

(%)

CMMI

(Capability Maturity Model

Integrated)

85

TQM

(Total Quality Management)

89

Liskov Substitution 80

DFT

(Design For Test)

78

QMGen

(Generalized Quality Measurement)

95

Create the Configuration file

Include the compilation procedure, OOAD Metrics,

and Error Detection

Get the Inputted Program

Analysis the Design of the program using OOAD

Metrics in the Configuration File

Detect the kind of program and compile the

program using Compilation Procedure

Get the results of the Compilation

Analysis the Error report using Configuration File

If error occurred then

Identify the error type and deduce the error rate

End if

If no error || error < threshold value then

Quality = “Good”

Else

Based upon the error rate, the quality of the

program is determined

End if

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

44

Figure-1: Performance comparison Chart

6. CONCLUSION
Thus the quality of the software is measured and the result

is automated by the proposed methodology of this

research. This methodology provides an efficient and

well-suited mechanism to measure the quality of the

software. This measurement is made by analysing the

design using the configuration file provided by the

research work. Various OOAD metrics are proposed along

with the compilation procedure for different kind of

languages and the various error mechanisms. Thus this

research work completed successfully with efficient

methodology proposed in this work.

7. REFERENCES
[1] Claire Le Goues and Westley Weimer “Measuring

Code Quality to Improve Specification Mining”,

IEEE Transactions on Software

Engineering,vol.38,no.1,pp. 175-190, January 2012.

[2] Nikos Anerousis, Yixin Diao, Aliza Heching, “The

Cost of Service Quality in IT Outsourcing”, IEEE IM

2011 , pp. 773-784, May 2011.

[3] Bandar Alshammari, Colin Fidge and Diane Corney,

“A Hierarchical Security Assessment Model for

Object-Oriented Programs”, Faculty of Science and

Technology, Queensland University of Technology,

Australia, 11th International Conference on Software

Quality,pp. 218-227, May 2011.

[4] Saad Alahmari, Ed Zaluska, David C De Roure,

School of Electronics and Computer Science

University Southampton, UK, “A Metrics Framework

for Evaluating SOA Service Granularity”,

International Conference on Service Computing, pp.

512-519, Jul 2011.

[5] Vishwajit Joshi, Consultant, Process and Innovation

Performance, Accenture Management Consulting,

Mumbai, India, “Metrics Center of Excellence, From

idea to implementation of a “meaningful”

measurement and analysis process”, IEEE on Joint

Conference, pp. 133-141, Nov 2011.

[6] Douglas C. Schmidt, Adam Porter, “Leveraging

Open-Source Communities To Improve the Quality

& Performance of Open-Source Software", Electrical

& Computer Engineering Department Computer

Science Department, University of California, Irvine

University of Maryland, May 2011

[7] Subhachandra Chandra and Peter, M. Chen,

Computer Science and Engineering Division,

Department of Electrical Engineering and Computer

Science, University of Michigan, “Whither Generic

Recovery from Application Faults? A Fault Study

using Open-Source Software”, pp. 97-106, June

2000.

[8] V.N. Nair, D.A. James, W.K. Erlich, and J. Zevallos,

“A Statistical Assessment of Some Software Testing

Strategies and Application of Experimental Design

Techniques,” Statistica Sinica, vol. 8, no. 1, pp. 165-

184, 1998.

[9] D.R. Wallace and D.R. Kuhn, “Failure Modes in

Medical Device Software: An Analysis of 15 Years

of Recall Data,” Int’l J. Reliability, Quality and

Safety Eng., vol. 8, no. 4,August 2001.

[10] D.R. Kuhn and M.J. Reilly, “An Investigation of the

Applicability of Design of Experiments to Software

Testing,” Proc. 27th NASA/IEEE Software Eng.

Workshop, Dec. 2002.

[11] D. Richard Kuhn, Senior Member, IEEE, Dolores R.

Wallace, Member, IEEE Computer Society, and

Albert M. Gallo Jr., “Software Fault Interactions and

Implications for Software Testing” June 2004.

[12] Edgar Gabriel, Graham E. Fagg, George Bosilca,

Thara Angskun, Jack J. Dongarra, Jeffrey M.

Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian

Barrett, Andrew Lumsdaine, Ralph H. Castain, David

J. Daniel, Richard L. Graham, Timothy S. Woodall

Innovative Computing Laboratory, University of

Tennessee, Open System Laboratory, Indiana

University, “Open MPI: Goals, Concept, and Design

of a Next Generation MPI Implementation”. Sep

2004.

[13] Robyn R. Lutz, Jet Propulsion Laboratory, “Software

Engineering for Safety: A Roadmap”,pp.213-226

June 2000.

[14] Rudolf Ferenc, Istv´an Siket and Tibor Gyim´othy,

University of Szeged, Department of Software

Engineering, “Extracting Facts from Open Source

Software”, pp 60-69, September 2004.

Performance Comparison Chart

0

20

40

60

80

100

120

C
M

M
I

T
Q
M

D
FT

L
is
ko

v
Su

bs
tit

ut
io

n

Q
M

G
en

Quality Measurement Methods

R
a

te
 o

f
P

e
r
fo

r
m

a
n

c
e
 (

%
)

Rate of

Performance

(%)

