
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

17

Layered Model to Estimate Effort, Performance and Cost
of the Software Projects

M.Pauline,
Asst.Professor,Dept. of CSE,

M.V.J. College of Engineering,
Bangalore

P.Aruna
Professor, Dept. of CSE,

Annamalai University,
Annamalainagar,

Chidambaram
Tamil Nadu, South India

B.Shadaksharappa
Professor and Head,

Dept. of CSE,
Shirdi Sai College of

Engineering,
Bangalore,Karnataka

ABSTRACT

This paper presents a layered model which determines the

software metrics in the lower layer it consists of three

primitive primary software engineering metrics; they are

person-months (PM), function-points (FP), and lines of code

(LOC). The middle layer consists of the proposed function

point which is obtained by grouping the adjustment factors.

The proposed method uses fuzzy logic for quantifying the

quality of requirements and is added as another adjustment

factor, thus a fuzzy based approach for the Enhanced General

System Characteristics to Estimate Effort of the Software

Projects is obtained in the middle layer. The top layer takes

the calculated function point from the proposed method as

input, and gives to the static single variable model

(Intermediate COCOMO and COCOMO II) for cost

estimation whose cost factors are tailored in intermediate

COCOMO and both, cost and scale factors are tailored in

COCOMO II to suite to the individual development

environment, which is very important for the accuracy of the

cost estimates. The software performances are measured with

their indicators for the software projects. A comparative

study for effort, performance measurement and cost

estimation of the software project is done between the existing

model and the proposed model.

General Terms

The Software metrics, Primary metrics, General Purpose

metrics, Special purpose metrics. Effort Estimation, Cost

Estimation and performance measurement of the software

projects using our proposed model.

Keywords

General System Characteristics (GSC), Function Point (FP),

Total effort multiplier (TEM), Scale Factors, Cost Drivers.

1. INTRODUCTION
This paper presents a model that presents the fundamental of

software metrics. In the lower layer, LOC is presented as

primarily a measurement technique for quantifying the size of

a software product. Function points as an indirect measure of

software size based on external and internal application

characteristics. Once determined, function points can be input

into empirical statistical parametric software cost estimation

equations and models in order to estimate software costs.

Person month metric are used to express the effort a personnel

devotes to a specific project. Software size estimates are

converted to software effort estimations to arrive at effort, and

then the total cost of the whole software project is calculated.

Estimating size and effort are the most important topics in the

area of software project management.

In the middle layer while discussing a proposed model for

effort estimation, a number of enhancements to adjustment

factors is introduced. One of the enhancements proposed in

this model is grouping the available 14 GSCs into three

groups. They are “System complexity”, “I/O complexity” and

“Application complexity”. Another important enhancement in

this proposed Effort Estimation model is the consideration of

the quality of requirements as an adjustment factor and this

“Quality complexity” is added as the fourth group to the

adjustment factor. There are several approaches for estimating

such efforts, this work proposes a fuzzy logic based approach

using Mat lab for quality selection.

The obtained function point is given as input to the top layer,

the top layer consist of Intermediate COCOMO and

COCOMO II model, former computes effort as a function of

program size and analysis has been done to define rating for

the cost drivers and by adding the new rating the

developmental effort is obtained while for the latter, it gets

function point as input and computes effort as a function of

program size, set of cost drivers, scale factors, Baseline Effort

Constants and Baseline Schedule Constants. Cost estimation

must be done more diligently throughout the project life cycle

so that there are fewer surprises and delays in the release of a

product.

Performance of the software projects are also measured in the

top layer. By adding the new rating the developmental effort

obtained is very much nearer to the planned effort and also a

comparative study is done between the existing and our

proposed method.

2. RELATED WORK
One of the popular functional sizing Units is function points

[1]. In function point sizing, visible external aspects of

software that can be counted consist of five items; five items

is further classified as complex, average, or simple. The

complexity weights are applied to the initial function point

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

18

count to arrive at an unadjusted function point. Second,

Function point counting passes through an adjustment phase.

This phase consists of scoring a group of general systems

characteristics (GSC) that rate the general functionality of the

application being counted, from the GSC, the value

adjustment factor (VAF) is determined, The last step is to

calculate the final adjusted function point count by

multiplying the VAF times the unadjusted function point [2].

One of the enhancements proposed in the model is grouping

the 14 GSCs into groups. The grouping not only simplifies the

counting process, but also reduces the probability of errors

while counting [3][4][5][6]. The count total is the summation

of all the Information domain value and weighing factor. The

fourteen GSC is based on responses to the following

involving a scale from 0 to 5. The scores for these

characteristics are then summed based on the following

formula to arrive at the value adjustment factor (VAF)

[3][4][5]. Incomplete requirements and changing requirements

rank as the second and third main causes of project failures

[6].

 This paper presents a Mamdani fuzzy modeling scheme

where rules are derived from multiple knowledge sources [7].

A keen mapping between input and output spaces may be

developed with the help of fuzzy logic [8][9]. Fuzzy logic

models can be easily constructed without any data [10].

Estimation using expert judgements is better than models

[11]. This model is serving as a framework for an extensive

current data collection and analysis effort to further refine and

calibrate the model’s estimation capabilities [12].To

determine the nominal person months for the Early Design

model, the unadjusted function points have to be converted to

source lines of code in the implementation language [13]. A

study accomplished by, presents the conclusion that the most

critical input to the COCOMO II model is size, so a good size

estimate is very important for any good model estimation

[14]. Estimation using expert judgements is better than

modeling techniques [15]. Existence of a consistently applied

process is an important and a prerequisite for a successful

measurement program in case of different environments [16].

In traditional software cost models, costs are derived from

effort. [17][18] The Intermediate COCOMO model computes

effort as a function of program size and a set of cost drivers

[19][20][21]. Software organizations, whether they are just

starting a measurement program or have a well-developed

program, want a way to gauge the performance of their

software projects against other organizations in their industry.

Organizations that are more experienced in measurement want

to compare their performance with competitors in their

industry [22]. Performance measurement might be referred to

as performance monitoring or performance auditing [23]. An

effective set of performance measures will provide actionable

information, on a focused set of metrics, to provide a balanced

view of project performance to improve the project

management process [24]. Organization will be interested in

monitoring and comparing the projects and project

performances. [25][26][27].

3. SYSTEM OVERVIEW
The proposed method presents a set of primary metrics and

the mode to calculate the Lines of code, Function point and

Person month are also discussed in the first layer. In the

middle layer a fuzzy based proposed model for effort

estimation is discussed, the enhancements proposed is

grouping the fourteen GSCs into groups, first group is

“System complexity” which consist of Data communication

Complexity, Distributed Data Processing Complexity,

Performance Complexity and Heavily used configuration

Complexity, the average of the four weighted scores together

gives the System complexity. Second group is “I/O

complexity” which consist of Transaction rate Complexity,

Online data entry Complexity, End user efficiency

Complexity and Online update Complexity , and the third

group is “Application complexity” which consist of Complex

processing Complexity , Reusability Complexity , Installation

Ease Complexity, Operational Ease Complexity, Multiple

Sites Complexity, Facilitate Change Complexity . The

grouping of the 14 GSC into groups simplifies the counting

process and reduces the probability of errors while counting;

this enhanced system focuses on minimizing the effort by

enhancing the adjustments made to the functional sizing

techniques. In the existing systems, the effort and cost

estimation are more concentrated on the development of

software systems and not much on the quality coverage.

Hence the quality assurance for the effort estimation is

proposed in this paper.

This paper discusses fuzzy classification techniques as a basis

for constructing quality models that can identify the quality

problems and this “Quality complexity” is added as the fourth

group in the enhancement process. From the four groups,

proposed value adjustment factor is calculated. The total

adjustment function point is the product of unadjusted

function point and the proposed value adjustment factor. In

the Upper layer COCOMO II model computes effort as a

function of program size, got from the middle layer, set of

cost drivers, scale factors, Baseline Effort Constants and

Baseline Schedule Constants. Empirical validation for

software development effort multipliers of COCOMO II

model is analyzed and the ratings for the cost drivers are

defined. By adding new ratings to the cost drivers and scale

factors and seeing that the characteristic behaviour is not

altered, the developmental person month of our proposed

model is obtained, also in the upper layer Intermediate

COCOMO model computes effort as a function of program

size, got from the middle layer and a set of cost drivers, also

the effort multipliers of Intermediate COCOMO model is

analyzed and the ratings for the cost drivers are defined. By

adding new ratings to the cost drivers the developmental

person month of our proposed model is obtained. It is

observed that the effort estimated with COCOMO II and with

Intermediate COCOMO is very much nearer to their

respective planned efforts and the last component of the upper

layer is the measures of the performance of software projects

with its measurement indicators. Thus our proposed model

predicts the Effort and Cost of the software to be developed

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

19

and performance of the software projects is measured for the

software developed, also a comparative study is done between

the existing and proposed model taking HR application as

case studies.

4. MODELING PROCEDURE
The proposed modeling procedure clearly describes the steps

to build the estimation models. The layers in this procedure

determine effort using function point and person month. From

the function point obtained, LOC is calculated taking the

Function point and the multiplication Language factor.

Having Loc as one of the input and considering the other

factors and introducing the concept of trimming to the cost

drivers and scale factors Cost Estimation is obtained. Once the

Effort and Cost are estimated, the Software is developed and

the performance of the software projects is analyzed using the

performance indicators.

5. Lower layer
The first layer consists of primitive software engineering

metrics called as primary metrics; they are person-months

(PM), function-points (FP), and lines of code (LOC). The

three metrics, PM, LOC, and FP represent measures of

personnel effort, programmer productivity, and software

functionality.

5.1 LINES OF CODES
LOC is presented as a measurement technique for quantifying

the size of a software product.

The steps for calculating Lines of codes are:

i. Each Statement is counted as one line.

ii. Comments are excluded from the count.

iii. Each delimiter corresponds to one statement.

5.2 FUNCTION POINT
The function point metric (FP) can be used to Estimate the

cost or effort required to design, code and test the software.

The steps for Calculating Function point metric are:

 Count total is calculated using Information domain

and the weighting factor.

 The Value added factor is based on the responses to

the following 14 characteristics, each involving a

scale from 0 to 5 and the empirical constants

 Function point is the product of Count total and the

Value added factor.

 Thus Function points (FP) provide a measure of the

functionality of a software product and is obtained

using the following equation:

FP = count-total X [0.65 + 0.01 X Σ Fi]

Where the count-total is a summation of weighted

input/output characteristics, and Fi is the summation of

fourteen ranked factors.

5.3 PERSON MONTHS
One PM is normally defined as the output of one person in

one month, working 40 hours/week, with one month defined

as four weeks.

The steps for calculating person months are:

For Basic COCOMO model are static single variable with

format:

PM = f (LOC)

Hence person months for organic, semidetached and

embedded are

PM = 2.4 KLOC 1.05 (organic)

PM = 3.0 KLOC 1.12 (semidetached)

PM = 3.6 KLOC 1.20 (embedded)

For intermediate COCOMO, the cost driver multiplier, F are

shown as :

 PM = 3.2 F * KLOC 1.05 (organic)

PM = 3.0 F * KLOC 1.12 (semidetached)

 PM = 2.8 F * KLOC 1.20 (embedded)

6. MIDDLE LAYER
In the middle layer our model proposes a fuzzy based model

for effort estimation, the enhancements proposed in our model

is grouping the fourteen GSCs into groups and adding quality

as one more.

6.1 PROPOSED FUNCTION POINT
In function point sizing, external aspects of software that is

counted consist of five items; they are outputs, inquiries,

inputs, files, and interfaces. Each of the functions that are

assigned one of the five items is further classified as complex,

average, or simple. The complexity weights are applied to the

initial function point count in the same way as Albrecht’s

function point metric to arrive at an unadjusted function point.

In this proposed model the Enhancements to adjustment

factors of functional size measurements is introduced. The

enhancements proposed in this model are grouping the 14

GSCs into three groups which simplify the counting process

and reduce the probability of errors while counting.

6.2 QUALITY OF EFFORT
The quality of requirements is rated and this Quality

complexity is added as the fourth group among the adjustment

factors in our proposed model. The standard identifies six key

quality attributes.

Functionality is the degree to which the software satisfies the

stated needs as indicated by the following sub-attributes

namely suitability, accuracy, interoperability, compliance and

security. Reliability is the amount of time the software is

available for use as indicated by the following sub-attributes

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

20

namely maturity, fault tolerance, and recoverability. Usability

is the degree to which the software is easy to use as indicated

by the following sub-attributes namely understandability,

learnability, and operability. Efficiency is the degree to which

the software makes optimal use of system resources as

indicated by the following sub-attributes namely time

behavior and resource behavior. Maintainability is the ease

with which repair may be made to software as indicated by

the following sub-attributes namely analyzability,

changeability, stability, and testability. Portability is the ease

with which the software can be moved from one environment

to another as indicted by the following sub-attributes namely

adaptability, installability, conformance and replaceability.

The above six key quality attributes are taken to quantify the

quality of requirements using fuzzy logic and is added as the

fourth group to the enhancement of the adjustment factor The

scores (ranging from 0 to 5) for these characteristics in each

group are then summed based on the following formula to

arrive at the Enhanced value adjustment factor.

Thus Proposed VAF = 0.65 + 0.01 ∑ proposed four groups,

Where 0.65 and 0.01 are empirically derived constants.

6.3 FUZZIFICATION OF INPUTS
Our proposed model considers all the six key quality

attributes (for Quality Complexity), they are Functionality,

Reliability, Usability, Efficiency, Maintainability and

Portability as inputs and provides a crisp value of Quality

efforts using the Rule Base. All the six quality attributes,

which is taken as inputs can be classified into fuzzy sets viz.

Low, Medium and High. The output Quality Efforts is

classified as Very High, High, Medium, and Low. In our

proposed model to fuzzify the inputs, the triangular

membership functions are chosen namely Low, Medium and

High. Also the quality effort which is the output variable in

our model has four membership functions they are very high,

high, medium and low. All the inputs and outputs are

fuzzified and all possible combination of inputs were

considered in our model which leads to 34 i.e. 81sets. Quality

Effort in case of all 81 combinations is classified as Very

High, High, Medium, and Low by expert opinion in our

proposed model

7. UPPER LAYER
The Intermediate COCOMO model computes effort as a

function of program size and a set of cost drivers, COCOMO

II has some special features, which distinguish it from other

ones.

7.1 INTERMEDIATE COCOMO
The Intermediate COCOMO equation is given by E =

aKLOC^ b * EAF. Where ‘a’ and ‘b’ are the domain

constants of the intermediate cocomo model. These formulae

link the size of the system, domain constants and Effort

Multipliers (EM) to find the effort to develop a software

system. The effort adjustment factor/ Total adjustment factor

has been calculated using 15 cost drivers. Cost drivers are

grouped into four categories; they are Product, Computer,

Personnel and Project. Each cost driver has been rated on a

six-point ordinal scale ranging from low to high importance.

Based on the rating, an effort multiplier is determined,

Product of all effort multipliers leads to EAF. Cost drives

have a rating level; these rating can range from Extra Low to

Extra High. For the purpose of quantitative analysis, each

rating level of each cost driver has a weight associated with it.

The weight is called Effort Multiplier.

The steps involved in the proposed model for calculating

proposed Effort are:

 Count Total is calculated using Information domain

and the weighting factor. The complexity weights

are applied to the initial function point count to

arrive at an unadjusted point total.

 The Value adjustment factor is based on the

responses to the following 14 general system

characteristics, each involving a scale from 0 to 5

and the empirical constants. Grouping the fourteen

general system characteristics into three groups are

used .

 The fourth group is the quality factor, which is the

set off quality characteristics, they are Functionality,

Reliability, Usability, Efficiency Maintainability

and Portability.

Total degree of influence = Σ system Complexity + Σ I/O

Complexity + Σ Application Complexity + Σ quality

Complexity

 Proposed Value adjustment factor is [(TDI * 0.01) +

0.65], where TDI is the total degree of influence

and, 0.01 and 0.65 are the empirical constants.

 Total adjustment function point is the product of

unadjusted function point and the proposed Value

adjustment factor.

 From the Function point, the lines of code is

calculated, which is the product of function point

and the multiplication language factor.

Intermediate COCOMO model computes effort as a function

of program size and a set of cost drivers.

The cost drivers are assigned new ratings in such a

way that the existing characteristic behavior of the

intermediate model is not altered.

 Total Effort multiplier is the product of the ratings

of the assigned cost drivers

 From the obtained TEM, the developmental person

month is calculated, which is very much nearer to

the planned effort (Table 3).

7.2 COCOMO II
In COCOMO II effort is expressed as a function of program

size, set of cost drivers, scale factors, Baseline Effort

Constants and Baseline Schedule Constants.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

21

PM = A x size E x 
n

i

EM
1

Where E = B + 0.01 x 


5

1j

jSF

The application size is exponent, is aggregated of five scale

factors that describe relative economies or diseconomies of

scale that are encountered for software projects of dissimilar

magnitude. They are Precedentedness (PREC), Development

Flexibility (FLEX), Architecture / Risk Resolution (RESL),

Team Cohesion (TEAM) and Process Maturity (PMAT)

These are the 17 effort multipliers/ cost drivers used in

COCOMO II Post-Architecture model to adjust the nominal

effort, Person Months, to reflect the software product under

development. They are grouped into four categories: product

(Required Software Reliability, Data Base Size, Developed for

Reusability, Product Complexity and Documentation Match to

Life-Cycle Needs), platform (Execution Time Constraint,

Main Storage Constraint, Platform Volatility), personnel

(Analyst Capability, Programmer Capability, Personnel

Continuity, Application Experience, Platform Experience,

Language and tool experience), and project(Use of Software

Tools, Multisite Development and Required Development

Schedule). The EM values are selected appropriately and

tailored and used to estimate the development projects. The

Driver symbol are grouped into four category, they are

Product drivers (consist of RELY,DATA,CPLX,RUSE and

DOCU),Platform drivers (consist of TIME,STOR,PVOL),

Personnel(consistofACAP,PCAP,PCON,APEX,PLEX,LTEX)

and Project drivers (consist of TOOL,SITE and SCED).

7.3 PERFORMANCE MEASURES
Performance measurement is a process of assessing the results

of a company, organization, project, or individual. In this

document a set of software project performance measures are

defined which can be used by software development projects

to make valid comparisons of performance.

7.3.1 PROJECT DURATION
Project duration is a measure of the length of a project in work

days, excluding times when the project is not active due to

work stoppages. Project duration does not include non-work

days such as weekend days and holidays. Project start is the

date when user requirements have been baselined. Project end

is the date of the first installation of the software application.

Project Duration = (number of _days - stoppage_ days)

7.3.2 SCHEDULE PREDICTABILITY

Schedule predictability is a measure of how much the original

project duration estimate differs from the actual project

duration that was achieved.

(Project Duration) - (Estimated Project Duration)

SP = ---*100

Estimated Project Duration

Schedule predictability is a positive value when there is a

schedule overrun and a negative value when there is a

schedule underrun.

7.3.3 REQUIREMENTS COMPLETION

RATIO

The requirements completion ratio measures the extent to

which planned functional requirements were satisfied in the

final product implementation.The requirements completion

ratio (RCR) is expressed as a percentage as

 Satisfied requirements

RCR = --------------------------------* 100 %

 Planned requirements

7.3.4 POST RELEASE DEFECT DENSITY

Post-release defect density is the number of unique defects per

unit size discovered during the first six months after initial

deployment of the software.

 Σ D

PRDD = ------

 Size

8. EXPERIMENTAL RESULTS

The Experimental results and tables are presented at the end.

Figure 1shows the Comparison of cost Estimation using

Albrecht’s fp and authors proposed fp in cocomo II (with and

without trimmed factors), and Table 1 shows the Effort

Estimation using existing cocomo II and the proposed model

9. CONCLUSION & FUTURE SCOPE
This paper has presented a layered model for effort, cost and

performance measure of the software projects. The primary

metrics of function points, person-months, and lines of code

are presented as Convertible primary metrics upon which

static single variable model to estimate cost and project

performance measures are built which can be used by

software development projects to make valid comparisons of

the performance. An approach for grouping the available

value adjustment factor into three groups and the quality

requirements got from the fuzzy rule based approach is added

as an another group. From the four groups, enhanced

adjustment factor is obtained and the effort is calculated

taking HR application. Based on the above results, the

proposed method for effort estimation is nearer to the result of

other estimation models. Hence this type of Estimation may

be recommended for the software development. The unique

difference between the proposed and existing estimation of

effort for the software system development is the level of

quality consideration. That is, existing estimations are using

only few quality factors for effort estimation, but the proposed

effort estimation covers the ISO 9126 quality factors, which

automatically reflects in the development of software. In this

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

22

paper ,By tailoring the value of the cost drivers, the total

effort multiplier is obtained. From the enhanced adjustment

factor, the altered rating of the cost driver, Scale Factors,

Effort and Schedule Constants, the effort of the software

project in person month is obtained. It is found that the

obtained person month is very much nearer to the planned

effort.

10. FIGURES/CAPTIONS

Figure 1 shows the Comparison of cost Estimation using

Albrecht’s fp and authors proposed fp in cocomo II (with

and without trimmed factors)

Table 1 Effort Estimation using existing cocomo II and the

proposed model

 Results obtained

Using Albrecht’s

Method

Results obtained

Using Proposed

Method

FP 480 366.1

KLOC 43.68 33.31

Scale Factor 6.32 6.32

PM 8.8 6.9

TDEV 10.9 10.1

11. REFERENCES
[1] Agarwal.R, Kumar.M, Malick.S, Bharadwaj.R.M, and

Anantwar.D, “Estimating Software projects”, ACM

SIGSOFT, Vol 26, 2001.

[2] Azath.H, Wahidabanu.R.S.D, “Function Point: A Quality

Loom for the Effort Assessment of Software Systems”,

International Journal of Computer Science and Network

Security, IJCSNS Vol.8 No12, Dec 2008.

[3] Kiumi Akingbehin and Bruce Maxim, “ A Three-Layer

Model for Software Engineering Metrics”, Proceedings

of the Seventh ACIS International Conference on

Software Engineering Artificial Intelligence,

Networking, and Parallel/Distributed Computing

(SNPD’06).

[4] Galal H. Galal-Edeen, Amr Kamel, and Hanan Moussa,

“Lessons Learned from Building an Effort Estimation

Model for Software Projects”, Int.J. Of Software

Engineering, IJSE Vol.3 No.2 July 2010.

[5] Function Point Counting Practices Manual (Release 4.1),

International Function Point User’s Group (IFPUG), May

1999.

[6] Longstreet .D, “Function Points Step by Step”,

Longstreet Consulting, Inc., January 1999.

[7] Pauline.M, Aruna.P, Shadaksharappa.B, “A Layered

Model For Software Metrics”, International Conference

on Intelligent Design and Analysis of Engineering

products, system and computation, IDAPSC10, pp.63-65.

[8] Pauline.M, Aruna .P, Shadaksharappa. B, “A Cost Model

for Estimation of the Software Developed”, International

Conference on Communication, Computation, Control

and Nanotechnology, ICN-2010, pp. 762-764.

[9] Zhendong Lun, “Software Cost Estimation”, Department

of Computer Science, Southern Illinois University

Edwardsville.

[10] Standish Group, “CHAOS Report”, Standish Group,

1994.

[11] Keshwani ET AL., “Rule-based Mamdani-type fuzzy

modeling of skin permeability”, Applied Soft

Computing, pp.285-294; doi: 10.1016/j.asoc.2007.01.007

Copyright © 2007 Elsevier B.V.

[12] Kirti Seth, Arun Sharma and Ashish Seth, “Component

Selection Efforts Estimation – a Fuzzy Logic Based

Approach”, International Journal of Computer Science

and Security, (IJCSS) Vol.3 No 3.

[13] Roger Jang and Ned Gulley, “Fuzzy Logic Toolbox for

MATLAB”, User’s Guide. The Math Works Inc, USA,

1995.

[14] Stephen G. MacDonell, Andrew R. Gray, and James M.

Calvert, “FULSOME: Fuzzy Logic for Software Metric

Practitioners and Researchers”, IEEE, 0-7803-5871-6/99.

[15] SaleemBasha and Dhavachelvan.P, “Analysis of

Empirical Software Effort Estimation Models”, (IJCSIS)

International Journal of Computer Science and

Information Security, Vol. 7, No.3, 2010.

[16] Sharma.T.N, “Analysis of Software Cost Estimation

Using COCOMO II”, International Journal of Scientific

& Engineering Research Volume 2, Issue 6, June-2011,

ISSN 2229-5518.

[17] JongmoonBaik, “COCOMO II Model Definition

Manual”.

[18] Majed Al YahyaRodina Ahmad, and Sai Lee, “Impact of

CMMI Based Software Process Maturity on COCOMO

II’s Effort Estimation”, The International Arab Journal of

Information Technology, Vol.7, No. 2, April 2010.

[19] Magne Jorgensen, “Practical Guidelines for Expert-

Judgment-Based Software Effort Estimation”, IEEE

Software, Published by the IEEE Computer Society,

2005

[20] Frank Niessink and Hans van Vliet, “ Two Case Studies

in Measuring Software Maintenance Effort”, Published

in the proceedings of the International Conference on

Software Maintenance, Bethesda, Maryland,USA,

November-16-20, 1998,pp.76-85.

[21] Pressman, R.S. (1997). Software Engineering A

Practitioner’s Approach. McGraw-Hill.

[22] Boehm, B., Horowitz, E., Madachy, R., Reifer, D., Clark,

B., Steece, B., Brown,A.W., Chulani, S. and Abts, C,

“Software Cost Estimation with COCOMO II”. Prentice

Hall, 502 p., 2000.

0

5

10

15

20

25

Without
Trimming

the factors

With the
factors
defined

Cost with Albrecht
method of Fp and
COCOMO II

Cost with Proposed
FP and Cocomo II

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

23

[23] Boehm, B. and Papaccio, P. 1988. “Understanding and

controlling software costs”.IEEE Transactions on

Software Engineering 14 (10), 1462-1477,1988.

[24] Basavaraj M.J and Shet K.C, “Empirical Validation of

Software development effort multipliers of Intermediate

COCOMO Model” Journal of software, vol 3, No.5, May

2008.

[25] Samuel Lee, Lance Titchkosky and Seth Bowen,

“ Software Cost Estimation” Department of Computer

Science, University of Calgary.

[26] Mark Kasunic “A Data Specification for Software

Project performance Measures: Results of a

Collaboration on Performance Measurement”,

CMU/SEI-2008-TR-012, July 2008.

[27] Patricia Lichiello, “ Guidebook for Performance

Measurement”, University of Washington Health Policy

Analysis Program.

[28] “Basic Performance Measures For Information

Technology Project Guidance white paper”, DOE

Software Quality and Systems Engineering, pp.2-8; doi:

15 January 2002, PE-WI-V3-011502.doc.

[29] Manjul Sahay and Susheer R S, “Objective Based

Performance Measurement”, © 2001- 2004 Transversal

e Networks Pvt Ltd.

[30] Pauline.M, Aruna.P, Shadaksharappa.B, “Fuzzy-Based

Approach Using Enhanced Function Point to Evaluate

the Performance of Software Project”, The IUP Journal

of Computer Sciences, Vol. VI, No. 2, 2012.

[31] Pauline.M, Aruna.P, Shadaksharappa.B, “Software Cost

Estimation Model based on Proposed Function Point

and Trimmed Cost Drivers Using Cocomo II” (IJERT)

International Journal of Engineering Research &

Technology, Vol. 1 Issue 5,July–2012.

