
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

13

Procedural Steps for Knowledge Mining in Time Series

Kaustuva Chandra Dev

Dept. of MCA

Trident Academy of Creative Technology

BPUT, Odisha, India.

Sibananda Behera
Dept. of MCA

TACT, BPUT

Bhubaneswar, Odisha, India

ABSTRACT

Symbolic intervals which form temporal patterns are usually

formulated through Allen’s interval relations that originate in

temporal reasoning. But this representation is not advantages

for knowledge discovery. The Hierarchical Time series

Knowledge Representation (HTKR) is the hierarchical

language which expresses the temporal aspects of coincidence

and partial order, for interval patterns. We present mining

procedural steps which are more efficient, effective and based

on item set techniques. Pruning of the search space minimizes

the mining result size considerably, thereby speeding up the

procedural steps and easing the interpretations. When applied

on the real data set, HTKR can provide the explanation of

underlying temporal phenomena, but whereas the numerous

Allen’s relation patterns only explains fragmented data.

General Terms

Algorithms.

Keywords

Data mining, time series, knowledge mining, temporal

relations, phrases.

1. INTRODUCTION
Temporal information is related to changes and the times of

the changes [13].An important data format which discovers

temporal knowledge is symbolic interval time series. Various

methods used for converting numerical time series to

symbolic interval time series are segmentation, discretization

and clustering. Patterns extracted from symbolic interval data

can explain the underlying temporal behavior.

Allen’s interval relations [1] forms the main basis for the

unsupervised pattern discovery in interval time series.

Originally theses relations were developed in the temporal

reasoning context, where the incomplete exact data and the

temporal constraints are usually the inputs to the process.

Typical problems include answering scenario queries which

satisfy all the constraints. But in the context of data mining,

incorrect and noisy interval data are inputted to search for

understandable and meaningful patterns. Winarko [14]

proposed an algorithm named ARMADA which is based on

an efficient sequential pattern mining algorithm, MEMISP

[15], to mine frequent temporal patterns.

We think that Allen’s relations are not fit for interval time

series pattern discovery due to their severe limitations. As an

alternative we proposed the Hierarchical Time series

Knowledge Representation (HTKR), the hierarchical language

for creation of interval times series based temporal

knowledge, which extends the Unification based Temporal

Grammar (UTG) [9], [10]. We present efficient procedural

steps for pattern mining expressed with HTKR using item set

techniques.

2. RELATED WORK AND

MOTIVATION
The temporal patterns from interval data are usually framed

through using the 13 interval relations of Allen [1], such as

before, after, starts, startedby, meets, metby, contains, during,

overlaps, overlappedby, finishedby, finishes and equals.

Variants of the Apriori algorithm usually perform the

unsupervised rule mining with using Allen’s relations. The

combination of two intervals or existing patterns along with a

single relation, constructs the required interval pattern [3], [6].

All the pair wise interval relations contained within a pattern

are listed through a representation [5]. Allen’s relations are

not advantageous for pattern discovery from interval time

series, as shown by the following examples.

(i) Patterns extracted from the noisy interval data expressed

through Allen’s interval relations lack robustness:

Most of Allen’s relations require two or more interval end

points to be equal. It creates patterns where a similar

relationship between intervals is fragmented into different

relations due to small disturbances in interval end points.

Several almost equal intervals are shown in Figure 1.

 X X X

 Y Y Y

(1) X During Y (2) X Overlaps Y (3) X Finishes Y

Figure 1: Different patterns which are fragments of same

approximated relation almost equal.

(ii) Patterns extracted and expressed with Allen’s interval

relations show ambiguity:

Various different situations can be visually and intuitively

represented through Allen’s same relation. Different versions

of overlaps relation are shown in Figure 2.

 X X X

 Y Y Y

(1) Negligible (2) Medium (3) Prominent

Figure 2: Different patterns of Allen’s overlaps relation.

(iii) Patterns extracted and expressed with Allen’s interval

relations are difficult to understand:

The patterns represented through Allen’s relations do not

follow the suggestions of Gricean maxims representation of

knowledge discovery for humans [8]. For instance, the

suggestion regarding maxim of quantity is violated. To avoid

ambiguity due to the compact format, the list of all intervals’

pair wise relation patterns need to be expressed [5], which

grows very quickly with the number of intervals.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

14

Ultsch had proposed the UTG [9], [10], which is a

hierarchical pattern language for the temporal knowledge

discovery, and he had also implemented it [4]. Temporal

abstraction is increased through each level of the hierarchy.

Events and Sequences form the core element of the patterns.

Almost simultaneous intervals are described by Events while

the total orders of the events are described by Sequences. The

UTG is comparatively more robust than Allen’s relations, but

the later are more expressible [7],[17]. The UTG’s

hierarchical structure offers new relevant feedback

possibilities during the process of knowledge discovery and

result analysis [10]. In order obtain a temporal description of

the multivariate data, basic temporal abstractions (extracted

from each variable in the previous step) are combined to form

complex temporal patterns. For example, a domain expert

may want to describe a pattern in a time series data such as:

“an increase in variable X is followed by a decrease in

variable Y”. This is the idea behind the temporal abstraction

framework of Shahar [16]. These core ideas are extended in

HTKR to achieve greater robustness and ability to express.

3. REPRESENTING KNOWLEDGE IN

TIME SERIES
Temporal knowledge present in the interval data is expressed

through the hierarchical language HTKR. Each level describes

the duration, coincidence and partial order temporal aspects

successively.

Let Σ be a collection of finite set of symbols s.

Definition 1. A symbolic time interval is a set consisting of {s,

start, end} where s Є Σ, pair {start, end} is a time interval,

start ≤ end, {start, end} Є T X T i.e. T2 and

T = {1, 2 … n} and N ⊃ {1, 2 … n}.

Definition 2. Time interval {start, end} ⊆ {start’, end’} if

start’ ≤ start and end’ ≤ end and

time interval {start, end} = {start’, end’} if start’ = start and

end’ = end.

Definition 3. A symbolic interval duration is denoted as

duration ({start, end}) = end – start +1.

Definition 4. Two time intervals {start, end}and {start’, end’

} overlap if {start, … end } ∩ {start’, … end’ } ≠ ∅.

Tones basically represent duration in HTKR, which consists

of a label, a symbol and a symbolic interval series. Chords are

the simultaneously occurring tones, which represent

coincidence.

Definition 5. A chord pattern C describes a time interval

where t chords coincide, for t > 0.

Definition 6. Chord Ci describes a superset coincidence of

tones from Cj, then Ci ⊃ Cj.

Definition 7. The merged chord of Ci and Cj is denoted as Ci U

Cj.

Definition 8. The numbers of tones that coincide are |C|.

Definition 9. The support of a chord Supportd(C) is the

maximal observation intervals having minimum duration of d.

Definition 10. The chord Ci is marginally closed w.r.t. a

threshold tr (tr < 1) if no super chords exist with

approximately same support. ∀Cj ⊃ Ci, [Support (Cj) /

Support (Ci)] < 1 – tr.

Phrases are formed by the collection of several chords

connected through a partial order.

Definition 11. A phrase pattern is a partial order of p chords

(p > 1), starting with the first chord and ending with the last

chord and no overlapping is allowed within the chords of a

phrase.

Definition 12. Phrase Pi describes partial order of the superset

of the chords of Pj, then Pi ⊃ Pj, and the same partial order

exists for all common chords.

Definition 13. The support of a phrase Support (P) is the

number of observations.

 X X X X

 Y Y

 Z Z

 XY XYZ YZ XZ XY YZ XYZ XZ

 (1) Phrase instance (2) Similar phrase instance

Figure 3: Summarizing overlapping tones in chords

 XYZ

 XY XZ

 YZ

Figure 4: Partial order of chords within phrase.

4. HIERARCHICAL TIME SERIES

KNOWLEDGE MINING
We discuss the procedural steps for mining the coincidence

and the partial order from a given symbolic interval data.

4.1 Coincidence mining
A set of tones, forming the chords, act as input for the

coincidence mining process. A chord is taken into

consideration only when there is a coincidence of Sizemin

different tones having a minimum duration of d. A chord is

considered as frequent only if the total duration of all the

intervals where it has been considered, is greater than the

minimum support Supportmin. Thus the mining process

involves selection of a subset from all the tones and

comparison with all the super chords to find margin closed

chords. Since it is similar to the mining of closed frequent

item sets, we therefore follow the CHARM [12] algorithm.

Algorithm 4.1 applies a depth first search method for finding

the margin closed chords. It consists of repetitive recursive

steps, involving a prefix chord Chordprefix and the set of super

chords Superchords. The algorithm is initially started by

taking an empty chord and all trivial frequent chords as

anticipated extensions. All combinations of the super chords

from Superchords extends the prefix chord Chordprefix. The

initial super chord extension by Chordi is stored in a variable

Chordi’. The minimum support factor filters the extensions

along with another chord Chordj. The idea of support

comparison between the super chord (Chordi’ U Chordj) and

both the individual sub chords Chordi’ and Chordj forms the

core calculation part of the algorithm. Its conditions are based

on the generalized view of the four item set properties [12].

The addition of the current chord Chordi’ to the set of margin

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

15

 < 1 – threshold

If ≥1- threshold

Else If ≥1- threshold

and < 1- threshold

Else If < 1- threshold

and ≥ 1- threshold

closed chords occurs, only if none of the previously found

margin closed chords subsumes it. The recursion continues

with the super chords Superchords’ of current chord Chordi’

until the maximum chord size is reached. The process stops

when set of extensions Superchords becomes empty.

CHARM algorithm [12] scales up linearly with the quantity of

transactions, and this algorithm also follows that behavior.

The minimum chord duration d has to be carefully chosen

w.r.t. the application domain and should be long enough for

the consideration of coincidence. The number of chords

retrieved is directly controlled by the minimum support

(Supportmin) and the margin closedness threshold (threshold).

Thus the upper ranges of these parameters are provided and

the algorithm tries to slowly squeeze these values, if the

previous found results need refinement.

Algorithm 4.1 Mining margin closed chords using DFS

Input

 The set of given tones Tones

 The minimum duration of the chords d

 The minimum support of the chords Upper_Supportmin

 (only upper range is provided)

 The minimum size of the chord Sizemin

 The maximum size of the chord Sizemax

 The margin closedness threshold Upper_threshold

 (only upper range is provided)

Output

 The set of margin closed chords Return

Algorithm

1. Supportmin = Upper_Supportmin

 and threshold = Upper_threshold

2. Loop

3. Update Supportmin

4. Loop

5. Update threshold

6. Superchords = {tЄTones|Supportmin ≤ Support(t)}

7. Return =Extension (∅,Superchords,∅,Supportmin, threshold)

8. If Return is already refined then

9. Output Return and Stop

10. End If

11. Decrement threshold by 0.1

12. End Loop

13. Decrement Supportmin by 0.01

14. End Loop

Algorithm

Extension (Chordprefix, Superchords, Supportmin, threshold)

1. Loop for each Chordi Є Superchords

2. Chordi’ = Concat (Chordprefix, Chordi)

 Superchords’ = ∅

3. Loop for each Chordj Є Superchords and i < j

4. If Supportd(Union(Chordi’,Chordj)) >= Supportmin

5. Supportd(Union(Chordi’, Chordj))

 Max(Supportd(Chordi’), Supportd(Chordj))

6. Chordi’ = Union(Chordi’, Chordj)

 Superchords = Diff(Superchords, Chordj)

7. Supportd(Union(Chordi’, Chordj))

 Supportd(Chordi’)

 Supportd(Union(Chordi’, Chordj))

 Supportd(Chordj)

8. Chordi’ = Union(Chordi’, Chordj)

9. Supportd(Union(Chordi’, Chordj))

 Supportd(Chordi’)

 Supportd(Union(Chordi’, Chordj))

 Supportd(Chordj)

10. Superchords’ =Union(Superchords’, Union(Chordi’, Chordj))

 Superchords = Diff (Superchords, Chordj)

11. Else
 Superchords’ = Union(Superchords’, Union(Chordi’, Chordj))

12. End If

13. End If

14. End Loop

15, If | Chordi’ | ≥ Supportmin

 and ∀Chord Є Return with Chordi’ ⊆ Chord,

 Supportd(Chord)

 Supportd(Chordi’)

16. Return = Union(Return, Chordi’)

17. End If

18. If | Chordi’ | < Supportmax then

19. Return = Extension(Chordi’, Superchords’, Supportmin, threshold)

20. End If

21. End Loop.

4.2 Partial order mining
Phrases describe the partial order of time intervals. The steps

for margin closed phrases mining are similar to the steps for

closed partial order mining [2].

Algorithm 4.2 tries to find margin closed phrases. The item

set interval series are first formed from the interval sequences.

For each interval having minimum duration dmin where no

changes of chords occur, it creates one item set, which

contains all currently active chords’ symbols. Shorter sub

series are formed by creating a sequence of intervals from a

single item set interval series. Next the standard closed

sequence mining algorithm CLOSPAN [11], can be used with

a restriction which excludes overlapping chords. This results

in obtaining pairs (CSpattern, TWindow) i.e. closed sequential

pattern CSpattern in transaction window TWindow. In the

margin closed partial orders’ mining the pairs, formed consist

of set of CSpattern and the transaction list where they all

occur, are needed to be maximal. Partial order is then

converted from each group of closed sequences. Again the

algorithm is controlled by the minimum duration (dmin) and

the margin closedness threshold (threshold). Thus the upper

ranges of these parameters are again provided and the

algorithm tries to slowly squeeze these values, if the previous

found results need refinement. The required conditions for the

conversion of the set of sequences into partial order form the

last step of the algorithm [2], which ultimately constructs the

final phrases representation.

Algorithm 4.2 Finding margin closed phrases

Input
 A set of chords Chords

 Chords’ minimum duration in phrase Upper_dmin

 (only upper range is provided)

 The minimum support of the phrase Supportmin

 (default value is 1)

 The minimum size length in phrase Sizemin

 The margin closedness threshold Upper_threshold

 (only upper range is provided)

 Transaction Window

 Window = {(CSpatterni, ei) | i=1… w}

Output

 A set of phrases

Algorithm

1. dmin = Upper_dmin and threshold = Upper_threshold

2. Loop

3. Update dmin

4. Loop

5. Update threshold

6. Chords conversion to item set interval series

 by using dmin

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

16

7. Find pairs (CSpattern, TWindow), consisting

 of closed sequential patterns CSpattern

 occurring within transaction window TWindow

 ⊆ Window, using Supportmin and Sizemin

8. Creation of margin closed maximal pairs

 (CSpatternmax, TWindow),

 CSpatternmax is set of all closed sequential

 patterns occurring in all transaction windows

 TWindow ⊆ Window, using Supportmin and

 threshold

9. If margin closed maximal pairs are already

 refined then

10. Building of partial order chords for each

 set CSpatternmax and Stop

11. End If

12. Decrement threshold by 0.1

13. End Loop

14. Reduce dmin by half

15. End Loop

5. DISCUSSION
All algorithms for mining Allen’s relations are based on the

A-priori rule. The patterns are formed following a breadth

first technique [5]. The breadth first technique is far inferior to

the depth first technique, on the basis of performance

measure. The margin closedness concept helps to reduce the

complexity by pruning the search space. The coarse results

obtained can be further refined, if required, by further

continuing that loop. Phrases and sequential patterns have a

great degree of structural similarities, involving highly

redundant data. So this conversion to item set intervals

reduces the redundancy to a great extent.

6. SUMMARY
We presented the unsupervised mining algorithms for HTKR,

a temporal pattern language, which were quite efficient,

effective and tailored from the item set and sequential pattern

mining. The number of patterns produced was greatly reduced

through the pruning of the search space, with the help of

margin closedness which ultimately made the mining process

faster. The mining algorithm was further enhanced by

embedding the extra features of result refinements. Mining the

patterns of HTKR was found to have deeper meaning, greater

efficiency and higher effectiveness then Allen’s relations.

7. ACKNOWLEDGMENTS
Our thanks to all the experts who have contributed towards

development of the template.

8. REFERENCES
[1] J. F. Allen. 1983 Maintaining knowledge about temporal

intervals. Communications of the ACM, 26(11):832–843,

[2] G. Casas-Garriga. 2005. Summarizing sequential data

with closed partial orders. In Proc. SDM’05, pages 380–

391.

[3] P. R. Cohen. 2001. Fluent learning: Elucidating the

structure of episodes. In Proc. IDA’01, pages 268–277.

[4] G. Guimar˜es and A. Ultsch. 1999. A method for

temporal knowledge conversion. In Proc. IDA’99, pages

369–380.

[5] F. H¨ppner. 2003. Knowledge Discovery from Sequential

Data. PhD thesis, Technical University Braunschweig,

Germany.

[6] P.-S. Kam and A. W.-C. Fu. 2000. Discovering temporal

patterns for interval-based events. In Proc. DaWaK’00,

pages 317–326.

[7] F M’’rcchen. 2006. Time Series Knowledge Mining.

PhD thesis, hilipps-university Marburg, Germany.

[8] S. G. Sripada, E. Reiter, and J. Hunter. 2003. Generating

English summaries of time series data using the Gricean

maxims. In Proc. KDD’03, pages 187–196.

[9] A. Ultsch. 1996. Eine unifikationsbasierte Grammatik zur

Beschreibung von komplexen Mustern in multivariaten

Zeitreihen. personal notes. German.

[10] A. Ultsch. 2004. Unification-based temporal grammar.

Technical Report 37, CS Dept., Philipps-University

Marburg, Germany.

[11] X. Yan, J. Han, and R. Afshar. 2003. CloSpan: Mining

closed sequential patterns in large datasets. In Proc.

SDM’03, pages 166–177.

[12] M. J. Zaki and C.-J. Hsiao. 2005. Efficient algorithms for

mining closed itemsets and their lattice structure. IEEE

TKDE, 17(4):462–478.

[13] W. Li, K. F. Wong and C. Yuan,2001. Toward automatic

Chinese temporal information extraction, JASIST,

52(9)pages 748–762.

[14] E. Winarko and J.F Roddick. 2007. ARMADA-An

algorithm for discovering richer relative temporal

association rules from interval-based data. Data &

Knowledge Engineering, vol. 3, issue 1, pp. 76-90.

[15] M. Lin and S. Lee. 2005. Fast Discovery of Sequential

Patterns by Memory Indexing and Database Partitioning.

Journal of Information Sciences and Engineering, Vol.

21, No. 1, pp. 109-128.

[16] Shahar, Y. 1997. A Framework for Knowledge-Based

Temporal Abstraction. Artificial Intelligence, 90:79-133.

[17] Buono, P., Aris, A., Plaisant, C., Khella, A.,

Shneiderman, B., Hochheiser, H. Schneiderman, B.

2005.Interactive Pattern Search in Time Series.

Proceedings of Conference on Visualizaion and Data

Analysis, VDA , SPIE. CA.

