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ABSTRACT 
In the recent years, there has been much interest in 

development of coupled Fibonacci sequences. The concept of 

coupled Fibonacci sequences was first introduced by 

Atanassov, K. T. in 1985. He deliberated multiplicative 

coupled Fibonacci sequences of second order in 1995.  

Multiplicative coupled Fibonacci sequences are less known. 

In this paper we present some identities of multiplicative 

coupled Fibonacci sequences of second order under three 

specific schemes. 
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1.  INTRODUCTION 
The concept of additive coupled Fibonacci sequence was first 

introduced by Atanassov, K. T.  [1] in 1985. He defined four 

different schemes of additive coupled Fibonacci sequences [1] 

and called them 2-Fibonacci sequence (or 2-F sequences).  

 

In 1995, Atanassov, K. T. [2] deliberated multiplicative 

coupled Fibonacci sequences of second order. He notified 

four different schemes of multiplicative coupled Fibonacci 

sequences. 

 

Let 

0}{ ii  and 


0}{ ii  

be two infinite sequences with 

initial values a, b, c and d. Then four different schemes of 

multiplicative coupled Fibonacci sequences of second order 

[2] are defined as follows: 
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Singh B. and Sikhwal [5] have studied some fundamental 

properties for scheme (1.1). Rathore, G. P. S., Jain, S. and 

Sikhwal, O. [4], presents multiplicative coupled Fibonacci 

sequences of third order under two specific schemes. Sikhwal, 

O. [6], presented some fundamental properties of coupled 

Fibonacci sequences of higher order and multiplicative 

coupled Fibonacci sequences of second order. 

 
In this paper, some identities of multiplicative coupled 

Fibonacci sequences of second order are presented under 

various schemes. 

  

2. MAIN RESULTS 
 

In this section, identities under scheme (1.2), (1.3) and (1.4) 

will be described. 

Some identities of scheme (1.2) are discussed below: 

Theorem (2.1).  If  0n  is any integer, then 

0 6 0 6( ).    . . ,n na    
              1 6 1 1 6 1( ).    . . ,n nb     

 

2 6 2 2 6 2( ).    . . ,n nc              0 6 3 0 6 3( ).    . . ,n nd       

1 6 4 1 6 4( ).    . . ,n ne     
        2 6 5 2 6 5( ).    . . .n nf     

 

Proof.  Induction method will be used to derive the identities.  

 

(a) If 0n  , then 0 0 0 0. . .        

Thus the result is true for 0.n   

 

Now assume that the result is true for some integer 

1.n  Then, 

0 6 6 0 6 5 6 4. ( . )n n n               (By scheme 1.2) 

                 0 6 4 6 3 6 4( . )n n n                (By scheme 1.2) 

                 0 6 4 6 2 6 1 6 4. ( . ) n n n n         

     (By scheme 1.2) 

                 0 6 4 6 1 6 6 1 6 4. ( . ) .n n n n n           

                                        (By scheme 1.2) 

                6 4 6 1 0 6 6 1 6 4 . ( . ) .n n n n n                    

                                                      (By scheme 1.2) 

                6 4 6 1 0 6 6 1 6 4 . ( . ) .n n n n n                

                                                       (By hypothesis) 

                0 6 4 6 1 6 2 6 4 . . . .n n n n           

                                                      (By scheme 1.2) 

 0 6 6 . n  
           

       (By scheme 2.2) 

             

Hence the result is true for all integers 0.n    
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Similar proofs can be given for remaining parts (b) to (f). 

 

Theorem (2.2).  If  0n  is an integer, then 
2

4 2 1( ).    ,n n n na      

                 2

4 2 1( ).    .n n n nb      

  

Theorem (2.3).  If  0n  is an integer, then 

1 2
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n nF F

n n ( ) .( ) .      

  
 

 

Theorem (2.4).  If  0n  is an integer, then 

1 2

1 2 0 0 1 1( ).    ( ) .( ) ,n nF F
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        

      1 2
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Theorem (2.5).  If  0n  is an integer, then 
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Theorem (2.6).  If  0n  is an integer, then 
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Theorem (2.7).  If  0n  is an integer, then 
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Theorem (2.8).  If  0n  is an integer, then 
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Some identities of scheme (1.3) are discussed below: 

 

Theorem (2.9).  If  0n  is an integer, then 

3 3 3 1 3 2( ).    ,n n na     

                           3 3 3 1 3 2( ).    .n n nb     

  

Theorem (2.10).  If  0n  is an integer, then
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Theorem (2.11).  If  0n  is an integer, then 

1 2

2 2 0 0 1 1( ) .( ) .n nF F

n n
 

         

 

Theorem (2.12).  If  0n  is an integer, then 
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Theorem (2.13).  If  0n  is an integer, then 

1

1

2 2

0 13

2 2

0 1

  is even
  . 

  is odd

n n

n n

F F

n

F F
n

. , n
( a )

. , n






  

 
  

         

1

1

22

0 13

2 2

0 1

  is even
  . 

  is odd

n

n n

FF

n

F F
n

. , n
( b )

. , n






  

 
  

 

Theorem (2.14).  If  0n  is an integer, then 
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Theorem (2.15).  If  0n  is an integer, then
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Finally, identities of scheme (1.4) are stated:  

 

 

Theorem (2.16).  If  0n  is an integer, then 
2
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                           2

4 2 1( ).    .n n n nb      

  

Theorem (2.17).  If  0n  is an integer, then 

1 2

2 2 0 0 1 1( ) .( ) .n nF F

n n
 

         

 

Theorem (2.18).  If  0n  is an integer, then 

1 22 2

1 2 0 1( ).    . ,n nF F
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      

       1 22 2
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n n nb  

      

                       

Theorem (2.19).  If  0n  is an integer, then 

12 23
0 1   n nF Fn

n

( a ) . ,
  


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12 23
0 1  n nF Fn
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
 

 

Theorem (2.20).  If  0n  is an integer, then 
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Theorem (2.21).  If  0n  is an integer, then 
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Theorem (2.22).  If  0n  is an integer, then 
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The proof of all above identities under schemes 1.2 to 1.4 can 

be given by induction method. 

 

3. CONCLUSION 
This paper describes identities of multiplicative coupled 

Fibonacci sequences of second order under various schemes. 

Many similar identities can be developed for higher order 

multiplicative coupled Fibonacci sequences. 
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