
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.11, February 2013

29

Scheduling Simulations: An Experimental Approach to

Time-Sharing Multiprocessor Scheduling Schemes

Swinky Arora
Assistant Professor

Chandigarh University
Gharuan

Ankit Arora
Assistant Professor

Lala Lajpat Rai Institute of
Engineering and Tech. Moga

Gursharanjit Singh
Cheema

Assistant Professor
Lala Lajpat Rai Institute of

Engineering and Tech. Moga

ABSTRACT

Real time systems that are logically programmed for scientific

applications involve frequent job arrivals, thus requires a

parallel architecture, so that maximum applications can be

executed simultaneously resulting in less waiting time and

maximum resource utilization. This must be achieved by

workload partitioning & characterization, directs towards the

development of Multiprocessor machines, a way to achieve

parallel effects. Today, multiprocessor systems cover H/W

replications that may replicates complete central processing

units asynchronously or multiple executional units

synchronously controlled by a different/common clock

respectively. This research deals with the multiprocessor

scheduling implemented via simulated time sharing

environment containing logically programmed virtual

processors and batch lists, each batch having its associated

arrival time along with number of jobs where each job

contains parameters such as Batch_id, Job_id and CPU

Burst_time(defined as no. of cycles required) etc. The idea

behind this theory is to distribute a number of simultaneously

occurring jobs to virtual processor list corresponding to a

scheduling algorithm. Synchronous architectures involve

SIMD based model with data parallel aspects of

computations, whereas Control parallel asynchronous MIMD

machines are the future trends leading towards Instruction

level parallel processors involving VLIW (very large

instruction word) and superscalar machines.

General Terms

Multiprocessor Scheduling Policies & Mechanisms, Time

Sharing & Space Sharing policies, Static vs Dynamic

scheduling Decisions.

Keywords

Simulated Time-Sharing Environment, Job Distribution, Load

Balancing, Workload Partitioning.

1. INTRODUCTION
Experimental studies and setups for parallel systems involve

distributed clusters and simulated environments. Process

Scheduling is the major pragmatic task over multiprocessor

hardware. Scheduling over multiprocessor involves task

placement and task adjustment. When a new job arrives and is

actually placed inside processor queue according to some

scheduling criteria or strategy, this is called task placement,

whereas when already running jobs/tasks are reassigned or

shifted among processors queue for the aim of load balancing

is referred to as task adjustment [2]. Other aspects regarding

scheduling decisions covers long-term also referred to as a

global scheduling where scheduling decisions are made

regarding how the jobs are to be allocated to the controller

processors and short-term also referred to as a local

scheduling where the decisions are made regarding how each

processor’s internal execution policy behaves. This provides

the autonomous structure i.e. each processor can have its own

different local polices along with one common global

scheduling policy. Generally, scheduling in multiprocessor

involves Time sharing and Space sharing mechanisms where

the former refers to the distribution of various jobs among

number of available processors, executing jobs at their

intended time intervals whereas the latter allocates the number

of processors to a single active job either on the basis of data

partitioning or job execution logic thus having the capacity to

run multiple jobs in parallel by partitioning them among

number of available processors. Space sharing mechanisms

require concurrent module embedded logic into the

application such that the application can be partitioned based

upon their concurrency [11]. Time sharing mechanisms are

mostly applicable where number of non-parallelized jobs is

encountered and the jobs usually have sequential logic. The

scheme covers set of available jobs and a distribution policy

& logic according to which jobs are assigned to

multiprocessors as shown in the Fig. 1

 Set of Available Batches

 Fig 1: Time-Sharing Scheduling Mechanism

Further the mechanisms can be extended to static and

dynamic policies where static scheduling considers only the

Distribution Policy

Distribution Logic

Multiple

Processing

Units

S
ch

ed
u

lin
g

Distribution Detail

D
isp

atch
er

 Dispatching

1

2

3

4

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.11, February 2013

30

guiding principles i.e. job burst_size (No. of CPU burst cycle

required), limited processor job buffer queue (ready as well as

waiting) and queue order as a distribution parameter. The

queue order may be arranged according to the shortest job like

in traditional uniprocessor scheduling. Static scheduling

policy also states that allocated processors will not relinquish

control till a particular job is in execution, whereas dynamic

policies measures the present processor’s load, maximum

percentage of the load that it can handle, their cycle speed

etc. Dynamic policies follow the rules of preemption while

encountering high priority jobs and consider ongoing job

parallelism during different states of execution; this will

provide a change in processor allocation as different jobs’

execution states may demand different parallelism

requirements or parallelism may vary during job execution

life cycle [3][4]. Scheduling of jobs among processors and

vice versa can be done through the use of multiprocessor

scheduling algorithms which are based on scheduling policies

such as static and dynamic scheduling. Static scheduling also

states that processors are not effectively utilized in case the

variability in system load is quite high while dynamic

scheduling lies in its ability to adapt itself to changing system

conditions. The parameters such as processor load and speed

are not calculated in static scheduling algorithms thus making

their implementation easier with low scheduling overhead

while the calculation of these parameters in dynamic

scheduling algorithms makes them complex but highly

effective [1].

2. SCHEDULING STRATEGIES
Static scheduling provides few algorithms such as critical long

term queue distribution (CLD) with fixed buffer size where

number of batches of jobs is either encountered periodically at

different time intervals or at same time interval. Now the idea

is to distribute these jobs chronologically among number of

available processors till the processors have free space in their

job buffer queue, as in this approach, the variable processor

buffer size has been taken. Whenever the processors’ buffer

queue gets full, the CLD stops its further distribution until an

empty space is created in the buffer queue of any of the

available processors and re-continues its distribution logic

[5][6]. Each processor individually runs its own round-robin

scheduling by calculating time quantum as an average of total

no. of computation cycles of its current job queue. Long term

queue order can be like first come first serve where batches

are allocated as they arrived or queue can be ordered with

shortest batch first (SBF) where batches are sorted first i.e. the

batch having minimum no. of jobs will be allocated first, note

that in this policy only batches are sorted not their jobs. So the

batch having smallest job set will be distributed first. Other

approach where batches as well as their jobs are sorted and

then distributed is referred to as a shortest batch shortest job

first (SBSJF). It is the responsibility of the long-term

scheduler to sort the batches as well as job queue. Other

approach, where each processor can have at most single job

for execution without having a processor buffer, is referred to

as an effective single job execution policy (ESJE). Each

processor’s short-term scheduler picks a ready job in front of

the long-term queue. No more jobs are allocated until there is

an I/O operation or the processor finishes its last job

execution. Whenever the processor finishes its current job

execution its short-term scheduler immediately assigns it, the

next ready job. ESJE long-term queue can be organized as

FCFS, SBF, and SBSJF. The benefit from this scheme is that

processors are lightly loaded as they have only single job for

execution, this has the advantage over CLD where most of the

times, the processor buffers are fully loaded. Dynamic

scheduling policy requires parameters such as processor load

and processor speed to be measured where processor load can

be measured as number of processes in the processor’s ready

queue, also referred to as a processor’s job queue length, jobs

are scheduled according to the processor having minimum job

queue length (MJQL). Here, if the round robin method is

applied as local processor scheduling, then there will be two

further selection process either the total no. of pending jobs

are calculated in the processor’s ready queue regardless of the

current running job index of the round robin cycle. Other way

of selection is to measure the remaining round robin cycle

length, which is measured from current running job index to

the end of the ready queue. This will provide quicker access to

recent incoming jobs and is referred to as QRA (quicker

round-robin access). Other policies for homogeneous

processors consider remaining processor computation cycles,

where jobs are scheduled according to the minimum

processor’s remaining computation cycles (MPRC).Here,

again the remaining computation cycles are computed either

by considering total number of pending jobs in the queue or

by computing cycles of remaining round robin cycle length.

Improvement over MPRC for dynamic distribution involve

heterogeneous processors thus care should be taken of the

overall workload as jobs are then allocated after measuring

processor cycle speed i.e. job allocation to that processor

which consumes minimum no. of computation cycles for the

completion of that particular job along with its present

workload. In other words, the processor which completes the

job quickly will take care of that job, also known as cycle

based scheduling (CBS). CBS will follow the FCFS as local

processor scheduling. During allocation, if there is a tie

among processors’ speed, then the scheduling decisions can

be made by either measuring processor job queue length or

remaining computation cycle as described earlier. One another

dynamic policy is the one in which the job may demand a

particular feature equipped processor (FEP). If found, the job

is allocated to that processor otherwise it will have to wait or

the job’s structure must be moldable to adapt itself according

to different characteristic processor. One another solution to

this is that if a busy processor is found for the same

characteristics, that processor is forced to take care of that

particular job also referred to as a feature based scheduling

(FBS). Proportionate policies having partial dynamic

characteristics involve workload partitioning based on

processor speed (PWLP), where the overall workload is

proportionally divided in advance in relevance to the

processor speed before distribution. In further section, the

simulation containing critical job distribution as well as

effective single job execution will be discussed. Future

versions of this research may consider dynamic policies

analysis as well.

3. CONNECTIVITY ARCHITECTURE
General connectivity structure for CLD and ESJE scheduling

policies is described as fig-2. Each processor has its own

short-term scheduler associated with a pre-fetch buffer. The

scheduler selects the job from the long term scheduling queue

and places it inside the prefetch buffer. The Dispatcher then

picks the job from the prefetch buffers and places it into

processors local memory. For CLD if processor buffer has

some free memory space to occupy other waiting jobs, the

dispatcher immediately allocates other pre-fetched jobs and

empties the pre-fetch buffers. For ESJE where each processor

has at most single job for execution the dispatcher monitors

the processor’s working status, if found free, immediately

allocates the pre-fetched job to its working memory. So

frequency of this scheduler is very high than long term

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.11, February 2013

31

scheduler. Scheduler requires fast access to one additional job

in advance, Some processing units may follows the hyper-

threaded architectures where each processor doubles its

working space to occupy exactly two job’s workload

simultaneously along with pre-fetch buffers to schedulers, this

hyper threaded approach is necessary to utilize the processor’s

time stayed idle when the dispatchers picks next ready job

from the pre-fetch buffers for further allocation [9].

 Front-End

 Back-End

 Fig 2: Interconnection Structure

For other dynamic policies the interconnection structure

incorporates a load analyzer and a load distributor. Load

analyzer measures the dynamic load characteristics of each

processor at each cycle, whereas load distributor allocates the

jobs according to its associated dynamic criteria. The

execution frequency of load analyzer is fast than the load

distributor, so before load distribution the current processor

load characteristics must reflect to the scheduling decisions

[10].

4. SCHEDULING MEASURES
Allocation in MJQL requires minimum queue length i.e. the

number of jobs yet not completed in the queue. So, minimum

queue length processor can be obtained as-

)

Where represents processor’s job queue length and

 represents minimum queue length processor id.

Allocation in MRPC requires minimum remaining processor

computation time; each job has its associated CPU cycle burst

required (No. of CPU cycles)

)

Cycle based scheduling requires the calculation of processor’s

cycle speed in terms of no. of cycles per second. Fastest

processors may pass many no. of cycles in a second as

compare to low speed processors. This approach basically

computes the no. of cycles elapsed by processor in one second

and then measures the amount of time required to compute

current job cycles along with the present workload cycles. The

load analyzer firstly perform the summation of pending jobs

workload cycles from each processor’s ready queue along

with the newly arrived job, and then compare it with the

processor cycle speed/sec. Processor having smallest no. of

timing requirements for the overall workload will take care of

newly arrived job. This will perform the balanced load

assignment. Consider a processor with 1 GHZ frequency

speed.

5. EXPERIMENTAL SETUP
Experimental setup for static scheduling policies (CLD and

ESJE) covers logically programmed virtual processors along

with their associated job queues. The simulation structure is

equipped with integrated synchronized thread oriented

environment. Batches of jobs are encountered arbitrarily along

with their batch ids. Each batch consists no. of jobs decided

arbitrarily during runtime, where workload of each job is

associated with a PID and its workload is described in terms

of No. of CPU cycles required (burst size). Each virtual

processor calculates the time quantum in terms of no. of

cycles given to each active job in the queue. Time quantum is

calculated periodically by each processor (when there is a

change in ready queue) as average of the total no. of burst

cycles of jobs in the processor ready queue. Time quantum

may vary during execution. The analysis from this research is

that as the round robin cycle is increased i.e. total no. of jobs

in the round robin scheduling are increased the return cycle of

the scheduling is delayed because the incoming jobs are

allocated to the virtual processors simultaneously, which

increases the length of the queue. Other analysis results

describes, as the processor has more buffer space to handle

jobs, the time quantum (no. of cycles given to each job)

decreases that results in the performance degradation because

of the bounded buffer CLD scheduling due to which several

context switches may occur. In comparison to CLD

scheduling, the ESJE scheduling is more effective because at

single point of time ESJE has at most single job for execution.

Long Term Shared
Scheduling Queue

Processor

1

Processor

n

Processor

2

Selection

Criteria

Checks

Status as
free buffer

space or

Free
processing

unit

Pre-Fetch

Buffer

Pre-Fetch

Buffer

Short-term

scheduler

n

Short-term

scheduler

1

Pre-Fetch

Buffer

Short-term

scheduler

2

Local

Memory-1
 Local

Memory-2

Local

Memory- n

Dispatcher/

Allocator

Dispatcher/

Allocator

Dispatcher/

Allocator

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.11, February 2013

32

This will give the advantage that processors are lightly loaded

as compare to CLD scheduling, where the processor’s buffer

are always full/heavily loaded. Other problem with CLD is

that the processors requires load balancing issues, predicted

results from execution scenarios shows that sometimes some

processor’s ready queues are fully empty/free and some

processors are heavily loaded thus requires some sought of

load balancing aspects to be implemented. ESJE gives the

advantage because jobs are placed only in the master queue,

not allocated to the processor until they are free. Because of

this ESJE does not require any load balancing issues. For

simulation analysis, varied samples of jobs are taken where

no. of jobs are 300, 600, 800 etc. along with their varied no. of

required burst cycles.

6. SIMULATED STRUCTURE
Simulated implementation of scheduling policies contain

inter-connected thread oriented environment, where each

thread corresponds to one virtual processor and a master

server thread controls all the child threads and performs

synchronization among them. Later the graphical

representation of simulation environment will be discussed.

 Long-Term

 Job Detail Master Queue

 Fig 3: Simulated-Thread Flow Model

Each thread T actually operates like a processing system

programmed to process simulated execution flow model as

discussed earlier in the connectivity structure. Microsoft

thread library is incorporated to perform inter-process

communication[7][8]. The problem with this type of structure

is that the long term queue defines the critical section i.e.

shared by more than one threads in execution, so this will

require some sought of thread synchronization or a locking

mechanism to avoid simultaneous read access conflicts, as

more than one thread may read the same job work space. This

behavior of multi-threading synchronization will waste much

of the crucial time for job allocation. Future versions may

discuss new architectures which will simplify job access via

2-D mesh memory units.

7. EXPERIMENTAL DATA SETS
Data set consists of batch details as well as job details. Each

batch has its associated detail like batch arrival time and total

no. of jobs encountered in that particular batch. The batch

details are dynamically edited as the simulator progresses its

execution and updates the batch status as total completed/

uncompleted jobs at one particular time barrier. Burst time is

defined as the CPU burst cycles i.e. total no. of CPU cycles

required. Data sets are arranged dynamically using arbitrary

random number generator. In this research three samples of

random data sets are considered under study with total no. of

jobs as 300, 600 and 800 respectively.

Batch Detail

Batch_ID Total_Jobs Comp. Jobs Uncomp. jobs

Job Detail

Batch Arr.

Time

Batch ID PID Sub_Time Burst Time

As discussed earlier, the problem with bounded buffered

scheme is that sometimes some processors are fully free and

some of them are heavily loaded. Solution to such inconsistent

behavior of multiprocessor requires load balancing

algorithms. One proposed solution for load balancing when

multiprocessors are in execution is that at each instance of

time, load balancing controller monitors the status of each

working processor’s ready queue and identify the processor

which is more heavily loaded and which is very lightly

loaded/free, finally, balancing the load among both with

allocation of equal no. of computation cycles. Despite of this,

one important point regarding load balancing is that it will

increase the complexity in system because reassigning jobs

from processors queue will waste vital amount of computation

time. One another proposed algorithm for load balancing for

multiprocessor environment is where each processor’s local

scheduling is implemented as round robin. Processor gives its

intended time quantum to each job in ready queue and moves

forward. At the end of round robin cycle the processor moves

backward to the start of ready queue. Sometimes the length of

round robin queue may increases. Due to this large round

robin cycle length, the jobs which are behind to the current

round robin process index may wait indefinitely for

reallocation of processor again for the start of next round

robin cycle. So the idea is to pick up those jobs and perform

their allocation to free processors in the environment.

Following is the running behavior of simulator which shows

the requirement of load balancing, as some of the processors

are fully free and some of them are heavily loaded.

Batch ID

PID

Sub-Time

CPU

Cycles
Required

S
e
rv

e
r

T
h

re
a
d

S
c
h
e
d
u
lin

g
 A

lg
o
ri
th

m

S
c
h
e
d
u
le

rs

D
is

p
a
tc

h
er

s

T
h

re
a

d
 I

n
te

rc
o

n
n

ec
ti

o
n

 N
e
tw

o
rk

T

T

T

T

T

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.11, February 2013

33

 Fig 4: Time Sharing Scheduling Simulator

 Fig 5: Inconsistent Balanced Load

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.11, February 2013

34

8. RESULTS & DISCUSSIONS
Following are the illustrations regarding Inferences deduced.

The most prominent factors behind such type simulations are

the study of system behavior under complex load

distributions. In the above scheduling where bounded buffered

schemes are employed, the results express that as the

processor has longest round robin scheduling queue, the

interaction with the system as well as overall time duration

increases. Interaction is necessary but overall computation

time should not be increased beyond the acceptable threshold

time limit. Further the policy SBSJF where firstly batches are

sorted and then jobs within the batch are sorted individually as

compared to SBF where only batches are sorted i.e. the batch

having less no. of jobs is distributed first. The illustrations

shown below is captured after distribution of a sample of 600

jobs, conveying message that efforts on sorting individual job

order within the batch after sorting batches will not be very

beneficial than SBF. Although some differences are

noticeable but, very minor because sorting efforts increases as

the quantity of jobs increases, this is useless.

Fig 6: FCFS-Batch Policy

Fig 7: SBF-Batch Policy

 Fig 8: C-Long Term-FCFS-SBF-SBSJF Batch Policy-I

 Fig 9: C-Long Term-FCFS-SBF-SBSJF Batch Policy-II

Fig 10: C-Long Term-FCFS-SBF-SBSJF Batch Policy-III

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 N
o
.
o
f

B
a
tc

h
 C

o
m

p
le

te
d

FCFS Batch Policy

Buffer
Size-10

Buffer
Size-20

Buffer
Size-30

0

10

20

30

40

50

60

1 5 9 13 17 21 25

N
o

.
o

f
B

a
tc

h
 C

o
m

p
le

te
d

SBF Batch Policy

Buffer
Size-10

Buffer
Size-20

Buffer
size-30

Time

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21

N
o
.
o
f

B
a
tc

h
 C

o
m

p
le

te
d

Critical Long Term-FCFS-

SBF-SBSJF

FCFS-
Buffer
Size-10
SBF-
Buffer
Size-10
SBSJF-
Buffer
Size-10

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25

N
o
.
o
f

B
a
tc

h
 C

o
m

p
le

te
d

Critical Long Term-FCFS-

SBF-SBSJF

FCFS-
Buffer
Size-
20
SBF-
Buffer
Size-
20
SBSJF-
Buffer
Size-
20

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28

N
o
.
o
f

B
a
tc

h
 C

o
m

p
le

te
d

Critical Long Term-FCFS-

SBF-SBSJF
FCFS-
Buffer
Size-30

SBF-
Buffer
Size-20

SBSJF-
Buffer
Size-20

Time

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.11, February 2013

35

 Fig 10: Effective Single Job Execution Policy(ESJE)

9. CONCLUSION AND FUTURE WORK
In this research work from the perspective of Time sharing

scheduling, it has been concluded that the system with

simultaneous occurred jobs requires much effort during

applicability of scheduling/distribution policy. Inaccurate

distribution may lead to the inconsistent load allocation,

which may further requires reallocation efforts to make

effective load balancing. Other points which should be

remembered while applying round robin as a local scheduling

policy is that as the size of round robin queue increases, its

return cycle delays exponentially. In addition the multiple

running threads are accessing critical long term queue

simultaneously which may lead to concurrent processing

around actual multiprocessor implementation. So the job

access for multiple processors under uniform memory access

will be covered in future research via mesh interconnected

memory units. Further study expresses that the dynamic

policy implementation will provide more accurate job

distribution and avoids load reassignment. In addition giving

processor the long buffer for job storage is not very beneficial

as discussed in the ESJE policy system. Although interaction

with the external environment is minimum but more effective

than bounded buffer scheduling schemes.

10. REFERENCES
[1] David, L, Black. 1990. Scheduling and Resource

Management Techniques for multiprocessors. Carnegie

Mellon University Pittsburgh.

[2] Eric, W. and Kenneth, C. Sevcik 1995 Multiprocessor

Scheduling for High Variability Service Time

Distributions. University of Toronto.

[3] Nan, G. and Wang, Y. 2012. Fixed-Priority

Multiprocessor Scheduling Critical Instant, Response

Time and Utilization Bound. IEEE 26th International

Parallel and Distributed Processing Symposium

Workshops & PhD Forum. Uppsala University Sweden.

[4] Thu, D. Nguyen, Raj, V. & John, Z. 1996 Parallel

Application Characterization for Multiprocessor

Scheduling Policy Design. Department of Computer

Science and Engineering. University of Washington.

[5] Sanjoy, B. Joel, G. 2003 The Static-priority scheduling

of periodic task systems upon identical multiprocessor

platforms. University of North Carolina at Chapel Hill.

[6] Andersson, B. 2001. Static-Priority Scheduling on

Multiprocessors. Real Time System Symposium, 22nd

IEEE Conference publication.

[7] Sascha, H. Henri, C. Frederic. S. 2011 From Simulation

to Experiment : A Case Study on Multiprocessor Task

scheduling. IEEE Symposium on parallel and distributed

computing.CNRS/LIG Laboratory, University of Hawai

at manoa, Lyon-Villeurbanne, France.

[8] Shivuan, J. Guy, S. Damla, T. 2007 A Performance study

of multiprocessor task scheduling algorithms. Springer

Science+Business Media, LLC.

[9] Maciej, D. Scheduling Multiprocessor Tasks 1996.

European Journal of Operation Research Elsevier

[10] Aryabrata, B. Shelby, F. 2009 An Optimal Scheme for

multiprocessor task scheduling- A machine learning

approach. University of Georgia USA.

[11] Hsiu-Jy, H. Wei-Ming, L. 2010. Task Scheduling for

multiprocessor systems with autonomous performance

optimizing control. Journal of information science and

engineering. Department of electrical and Computer

engineering. University of Texas at san Antonio.

0

10

20

30

40

50

60

1 3 5 7 9 11 N
o
.
o
f

B
a
tc

h
 C

o
m

p
le

te
d

ESJE-Critical Long Term-

FCFS-SBF-SBSJF

ESJE-CLT-
FCFS

ESJE-CLT-
SBF

ESJE-CLT-
SBSJF

