
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

8

Parallel Two Master Method to Improve BLAST
Algorithm’s Performance

Muralidhara B L

Department of Computer
Science

Bangalore University

 Bangalore - 560056

ABSTRACT

The BLAST heuristic algorithm is one of the widely used

algorithms for finding similar sequences in sequence

databases. The paper acquires importance as traditional

approaches to sequence homology searches using BLAST

have proven to be too slow to keep up with the current rate of

sequence acquisition. The use of the BLAST application on a

single processor has become too costly, inefficient, and time-

consuming for many life science laboratories. An obvious

improvement that has already been suggested is the use of

database segmentation to speedup BLAST. A two master

method to improve the performance of the parallel BLAST

algorithm is presented here. It is found that the two master

method has performed better than the single master method.

General Terms

Bioinformatics, Parallel Processing.

Keywords
Sequence alignment, BLAST, Database segment, Query

segment, Efficiency, Speedup

1. INTRODUCTION
This paper aligns the letters of the sequences belonging to two

classes of biological sequence: a nucleotide sequence in which

each letter represents one of the four DNA bases namely A, T,

G, and C, and a peptide or a protein sequence, in which each

letter represents one of the twenty amino-acid residues. The

important types of sequence comparison problems are global

and local. To solve the global alignment problem, one has to

find the best match between entire sequences. In local

alignment algorithms, one must find the best match (matches)

between parts of sequences. The papers considers pairwise

alignment involving only two sequences. Biological

sequences are known to mutate as they evolve from one

generation to the next, and a useful algorithm that gives a

measure of similarity between two sequences should consider

changes like substitution, deletion, and insertion of residues.

Given a pair of sequences, there are many possible

alignments, and each one can be assigned a score using a

matrix which rewards exact letter matches and also penalizes

substitution (i.e., where a letter in one sequence is mapped to

a different letter in the other sequence) and gaps (i.e., where

aligned letters are the same, but they occur in different

relative positions due to insertions or deletions in the

sequences). The match score is usually specified by a matrix

called the substitution matrix whose entries reflect the

biological significance of the corresponding matches or

substitutions. Gaps are penalized using a formula that

depends on the number, position, and length of each gap.

Given an alignment between two sequences X and Y with

length m and n respectively, a score is associated for them as

follows: For each column, we associate +1 if the two letters

are identical, -1 if the letters are different, and -2 if one of

them is a space. The score is the sum of the values computed

for each column. The maximum score is the similarity

between the two sequences. There can be many alignments

with maximum score. Figure 1 shows one such alignment of

sequence X and Y, with scores for each column. In this case,

there are two columns with identical characters; one with

distinct character and two columns with a space, giving a total

score of -3.

X G A C G -

Y - A T G C

Score -2 +1 -1 +1 -2 = -3

Figure 1: Alignment of the sequences X= GACG and Y=

ATGC.

Various algorithms have been developed for Sequence

alignment. They include Smith-Waterman [19], Needleman-

Wunch [17], BLAST [1], [2], FASTA [18], MUMmer [7], [8],

REPuter [14], BLAT [13], PatternHunter [15].

1.1 The BLAST Algorithm
The BLAST search heuristic [1], [2], [3] indexes both the

query and target sequence into words of chosen size (11

nucleotides or 3 residues by default). It then searches for

matching word pairs (hits) with a score of at least T and

extends the match along the diagonal. Gapped BLAST

consists of several modifications to the previous algorithm

that results in both increased sensitivity and decreased

execution time. Gapped BLAST moves down the sequences

until it has found two hits, each with a score of at least T,

within A letter of each other. An ungapped extension is

performed on the second hit, generating a high-scoring

segment pair (HSP). If the HSP score exceeds a second

cutoff, a gapped extension is triggered simultaneously forward

and backward. Standard BLAST output consists of a set of

local gapped alignments found within each query sequence,

the alignment’s score, an alignment of the query and database

sequence, and a measure of the likelihood that the alignment

is a random match between the query and database (e-value).

Factors such as query length, number of queries, total

database size, length of database entries, and sequence

similarity between the query and database entries affect the

amount of time consumed by the BLAST algorithm [6].

BLAST searches a query sequence containing nucleotides

(DNA) or peptide (amino acids) against a database of known

nucleotide or peptide sequences. Since peptide sequences

result from ribosomal translations of nucleotides, comparisons

can be made between nucleotide and peptide sequences.

BLAST provides the capability to compare all possible

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

9

combinations of query and database sequence types by

translating sequences on the fly, as shown in Table. 1 [9].

The BLAST programs essentially consist of three parts:

preparatory calculations, the sequence comparison, and the

combination of the individual results. The second part, where

the database search is performed, is the most time consuming

piece of the program. The comparison between the query

sequence and a database sequence is completely independent

of the comparison of the query sequence to other database

sequences; therefore, this part of the BLAST programs is very

well suited for parallelization. The first and the third part of

the programs do not benefit from parallelization. The time

spent for the database search is directly proportional to the

size of the database; therefore, the comparison part becomes

an ever increasing portion of the overall program. Also the

BLAST programs are highly scalar codes with very few

floating point instructions [12]. The BLAST runs fastest

when its databases remain cached in memory, and further

acceleration is achieved by threading, which allows more than

one CPU at a time to process the data [10].

Table 1: BLAST search types

Search

Name

Query Type Database

Type

Translation

blastn Nucleotide Nucleotide None

blastp Peptide Peptide None

blastx Nucleotide Peptide Query

tblastn Peptide Nucleotide Database

tblastx Nucleotide Nucleotide Query and

Database

Query segmentation provides the most natural parallelization

of BLAST by splitting up a query such that each compute

node in a cluster searches a fraction of the sequence database.

Thus, multiple BLAST searches can execute in parallel on

different queries. However, such an approach typically

requires that the entire database be replicated on each compute

nodes local storage system [5]. If the database to be searched

is larger than core memory, then query-segmented searches

suffer from the same adverse effects of disk I/O as in

traditional BLAST. When the database fits in core memory,

however, query segmentation can achieve nearly linear

scaling for all BLAST types [9]. Local BLAST program is

one of the programs which use query segmentation approach

[5].

Database segmentation is an orthogonal approach to query

segmentation. Database segmentation keeps the query intact

and distributes individual database segments to each node for

the query to be searched upon. Database segmentation

performance is better than query segmentation as database

segmentation eliminates the high overhead of disk I/O.

Database segmentation permits each node to search a smaller

portion of the database, thus reducing extraneous disk I/O [6].

One of the biggest challenges of this approach is to ensure

that the statistical scoring is properly produced as it depends

on the size of the database, a database that database

segmentation chops up. The programs such as Turbo BLAST

[4], mpiBLAST [6], Bioinfomagic [9], BeoBLAST [10], and

parallelBLAST [16] uses the database segmentation.

The NCBI BLAST performs best when the database contains

a small number of sequences, but NCBI BLAST performance

suffers when confronted with low memory because as the

database size exceeds the system memory, running time and

average blocks read increase. TurboBLAST, parallel

deployment of NCBI BLAST achieves speedup by reducing

the paging overhead. A speed up of 7.51 and 13.85 is

achieved for 8 and 16 processors cluster. BeoBLAST

distributes individual BLAST jobs across nodes of Beowulf

cluster can simultaneously align multiple databases with

multiple queries. Parallel BLAST can greatly improve speed

at almost no cost of sensitivity by restricting alignments to

sequence seed rather than an alignment seed. The parallel

BLAST is 14-18 times faster than single machine but Job

scheduling overhead, merge time limit its performance and

moreover it is not directly integrated with the NCBI toolkit.

mpiBLAST achieves superlinear speedup for multiple nodes

even when the database is larger than the core memory of a

single node. mpiBLAST does not produce heavy

intercommunication between nodes, allowing it to continue

achieving super-linear speedup over hundreds of nodes. But

mpiBLAST efficiency decreases as the number of workers

increases, contradictory to the theoretical results. One reason

could be its load imbalance. One possible solution would be

to segment the database into a equal sized large number of

small fragments, and then all workers can complete the job

almost at the same time, resulting in load balancing. Across

four nodes Bioinfomagic’s efficiency is 2.31 and drops all the

way down to 1.33 with 128 nodes. Even though the

efficiency decreases as the nodes increase, Bioinfomagic still

achieves super-linear speed-up. The other advantages are that

(1) Bioinfomagic is an open source, and (2) it directly

interfaces with the NCBI development library to provide an

output format of NCBI-BLAST.

 It is found that the Database segmentation performs better

than query segmentation as query segmentation suffers from

paging activity when the local nodes can not hold the entire

database in its memory. Among the models investigated, the

Bioinfomagic’s performance is relatively more impressive.

2. A CASE FOR TWO MASTERS
Parallel BLAST pairwise sequence alignment algorithms can

be divided into the following stages: (1) Loading

Query/Database sequence into processors, depending on the

segmentation technique used: Query or Database (2) Slicing

the Query/Database (depending on the segmentation

techniques used) into small size sequences sending it to the

participating nodes for computation (3) Aligning the

sequences using NCBI BLAST program by the participating

processors (4) Receiving the aligned sequences from the

participating nodes (5) Merging the received alignments into a

final alignment. Step (3) and Step (5) have little scope for

parallelization. But Step (1), (2) and (4) can be parallelized

for improving the performance.

If is the length of the database sequence and is the length

of the query sequence, and if and the word size for

computation is , the query segmentation suffers from page

faults. It can be observed in the query segmentation technique

that the database sequence of size has to be loaded into the

memory of all the processors and a search tree data structure

has to be created for elements each with size .

The space complexity is and the time taken to create the

search tree is of the complexity . The

computational time to compare the sliced query sequence with

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

10

the large database sequence also increases. It is therefore

recommended that for better use of space and time, Database

Segmentation Technique is a better technique than Query

Segmentation Technique. In Database Segmentation

Technique, Query Sequence is loaded to all the processors, a

search tree is created for the query sequence and the database

is sliced into a size of which is the Slice_Size. The

comparison is between this small with a reasonably sized

Query Sequence. The page faults can be reduced using

Database Segmentation since very small size sequences are

loaded into memory and these perhaps can be loaded into the

cache as well. Database Segmentation Technique is used for

the experiments. The programmmes were written in C High

Level Language using MPICH [11]. The programs were

executed on Mobile Intel(R) Pentium(R) 4 CPU 3.20GHz,

700MB Memory, 1MB Cache On Linux Operating System.

Let be the length of the length of the database sequence,

be the length of the query sequence, be the Slice_Size and

Machine Size . The Input for the BLAST algorithm can be

defined by 4-tuple .

 (1)

The total number of database Slices, of the database

sequence can be defined as:

 (2)

Let be the number of participating nodes participating in

aligning two sequences: for Single Master

Method and for Two Master Method.

Let

 be the Number of database Slice per participating

node, .

 is defined by

 (3)

In the existing parallel method a single master is used to

broadcast sequences to participating slaves and collect the

local alignments from slaves: Master broadcasts to slaves,

sequences to be aligned and West-Vectors for computing a

Partial Similarity Matrix (SM). The master collects from

slaves, local alignments and the best alignment score. The

many number of tasks computed by the master “stall” the

slave processors. The slave processors have to wait for the

west-vectors to be received by them before computing the

Partial Similarity Matrix. To overcome these “stalls”, the

tasks performed by the master can be split into two, (1) the

broadcasting job and (2) the results collection job. These two

tasks can then be independently handled by two different

masters; we can call these masters, the collection master and

the broadcasting master.

To illustrate the strategy, let the of the system, number of

processors participating in the system, be 17 (one master and

16 slaves). Let the length of the first sequence n , length of

the second sequence be 16K each, and number of columns

in the band be 64. Each processor is assigned

 i.e., 16

bands to compute. The first band (first Partial Similarity

Matrix) is assigned to the first processor, second band to the

second processor and so on, the 17th band to the first

processor, 18th band to the second processor and so on. The

order of communication is strict: the first processor to

compute the 17th band (first slave processors’ second band

for computation) has to receive the west-vector of the

sixteenth band (computed by the 16th processor, which sends

the west-vector to master). At this point, the master is also

involved in collecting local results from all sixteen slave

processors. After Master-I collect local alignments from

slaves, it uses the weighted tree method to find the final

alignment. The master has to collect local alignments from all

processors before it sends the west-vector and the north-west

value to the first slave. The master has to execute sixteen

local alignment “receive” functions, “receive” the west-vector

from the last slave processors (16th processor), and then

execute the “send west-vector” to the first slave function. The

first processor (slave) at this point is “waiting” to execute the

function, and “receive” the west-vector from the master.

Until this “receive” is complete, the first processor cannot

proceed with the computation of the next Partial Similarity

Matrix. As long as the first slave completes computation of a

Partial Similarity Matrix, the other processors cannot continue

with computation. This delay caused by the master to send

the west-vector to the first slave, stalls computation. The

delay causes load imbalance, and decreases performance of

overall computation. To overcome this problem, the two-

master strategy is suggested. In the proposed system, one

master is used for partial result collection and the other master

for broadcasting sequences and other vectors required for

computing a Partial Similarity Matrix.

In the proposed strategy, the task of initiating and collecting is

separated. The job of initiating and sending the west vectors

to the first processor is handled by Master-I and the local

alignment collection from all the processors is handled by

Master-II, who we then call the Collection Master. In this

strategy, Processor 0 is Master-I which broadcasts sequences

to all processors except to itself and processor .

Master-I also collects the boundary values from the processor

 . Processor is Master-II, which is the

collection master. Both the rows and columns are divided

into equal size, which we call, . We assume that

 , , and , which means there are at

least 3 processors participating in the computation, the first

one being Master-I, the second one being Master-II and the

third one, the slave node. The algorithm has five modules:

the modules for Master-I, Master-II, processor 1, processor

 , and the one for all other processors. Master-I,

copies the two sequences, which are in FASTA format and

stores those in the data structures, and which are of length

 and respectively. Master-I computes the gap penalties,

0th row and 0th column of and stores it in the data

structures, and respectively. All these data

structures, , , , and are stored in the local

memory of the Broadcast Master. These data structures are

“broadcast” to all slave processors. , the number of

columns and rows to be considered in the band, is accepted

from the user. The total number of column-bands available

for computation then will be and number of

row-bands in each column will be .

Each processor, except the two masters, is assigned an entire

column band for computation at a time. Once the processor

completes the computation of a column band,
 column band is assigned to the processor and the

assignment continues till there are no column bands available

for computation. Within each column band, a processor

computes one row-band at a time. After the slave completes a

Partial Similarity Matrix, it “sends” west-vectors, and the

north-west value to the next process before proceeding to the

next Partial Similarity Matrix in the column. These vectors

are received by the next processor through the function

“receive” from the previous processor. The process of

computing the row-band is continued till all row-bands of the

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

11

column band are computed by the processor. Each row-band

computed (partial) is of the size, .

To compute this of the size, .

, the processor needs the north vector of size, , the

west vector of size, , and a north-west value. For a

total of values received by the slave,

 computations are done. A processor

after completing a band , for some row band , and

column band , aligns the partial sequences using S-W trace-

back alignment algorithm, stores the partial alignment score in

the data structure , and partial alignment in

the data structure in its local memory along with

its similarity score. The processor after aligning sequences of

band , compares the alignment score with the previous

alignment. The processor keeps only the best alignments and

discards the other alignments. After completing the column

band, the processor sends and

to the Collection Master.

2.1 One Master Method for BLAST Algorithm
In the existing Single Master Method out of the processors

in the system, one processor is the Master which is . The

Processor, loads the database sequence into its memory and

computes the number of slices of database sequence , builds

64 combinations of 3 letter DNA sequences into

 and computes the .

sends signals to and receives

signals from . Then, depending on the availability

of the job and signals from the participating nodes

 send signals to . To all the

processors, sends . Once the

computations are completed by the processors, the

 processors send the . The

above process is continued till all the database slices are

considered for computation. After receiving all

 from the slaves, the Master computes the final

alignment.

Algorithm for BLAST Single Master Method

Copy the Query Sequence residues from Secondary Storage

device to the Vector
Build 64 combination of 3 letter DNA sequence into

If the processor

Copy the Database sequence into the Vector
Compute and

While ()
Send signal to

Receive signal from

Depending on the availability of the job Send

 signal to

Send to the processors

Receive from

Compute and

Send to

End While

 Align the partially aligned results into the final result

End of processor

If the Processor

Receive

Send if to execute the job

Receive if Selected for execution

While ()

 Receive

 Use the BLAST algorithm for sequence alignment

and store the result in
 Send

 Receive

End While

Finalize the processing

End of Processor

Figure 2: Algorithm for Single Master Method.

2.2 Two Master Method for BLAST Algorithm
In the existing Single Master Method for BLAST that Single

Master is involved in sending Sliced database sequences to

all participating nodes and receiving the
 . The Single Master is also involved in sending

 signals and signals to processors,

receiving signals from processors, and

sending to processors. The Single

Master is also involved in processing the final alignment.

As the number of slices, to be computed increases, the

Single Master becomes the bottleneck in the computation.

When the size of the database sequence increases, the

number of slices, also increases, thus increasing the size of

the in the memory of the Single Master.

Increase in the size of the and the database

sequence would result in page faults eventually delaying the

computation process. It can be observed that if the jobs of the

Single Master are shared by two masters, the processing speed

would increase. In the Two Master Method, two masters are

used, The Slice Master and the Collection Master. The

Processor is used as the Slice Master and the Processor,

 is used as the Collection Master. The total number of

participating nodes in the system would be . The

Send Master is involved in sending the sliced database

sequences to all participating nodes, sending and

 signals to processors, receiving

signals from processors, and sending

to processors. The Receiving Master would be

involved in collecting results and processing the final

alignment.

Algorithm for BLAST Two Master Method

Copy the Query Sequence residues from Secondary Storage

device to the Vector
Build 64 combination of 3 letter DNA sequence into

If the processor

Copy the Database sequence into the Vector
Compute and

While ()
Send signal to

Receive signal from Depending

on the availability of the job Send signal

to the

Send to the

processors

Compute and

Send to

End While

End Processor

If the processor

Compute and

While ()
Receive from

Compute and

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

12

 End While

 Align the partially aligned results into the final result

 End processor

 If the Processor

 Receive

 Send if to execute the job

 Receive if Selected for execution

 While ()

 Receive

 Use the BLAST algorithm for sequence alignment

and store the result in
 Send

 Receive from

 End while

 Finalize the processing

 End of Processor

Figure 3: Algorithm for Two Master Method.

3. Comparison of Single Master Method

and Two Master Method
Communication Matrix for Single Master Method for Input

Set is shown in Figure 4. In the

example, total number of database Slices, , the number

of nodes participating in the computation, , Number of

database Slice per participating nodes

 . It is

shown in the Communication Matrix that there is

communication only between processors and the

Master Node, . All the participating nodes in the first four

passes are getting equal number of database slices, but in the

last pass of computation, only of participating nodes will

get the job; that is only four out of the seven processors have

been assigned jobs in the last pass. There is a load imbalance

in the last pass of computation. The amount of

communication between various processors is shown in the

Communication Matrix with different color band for size of

the communication. It is shown that the last three processors’

(shown as blue for sending and dark green while receiving)

communication size is less than the first four processors

(shown as light green while sending and dark red while

receiving).

Figure 4: Communication Matrix for Single Master

Method I = (1024, 256, 32, 8).

Communication Matrix for Two Master Method for Input Set

 is shown in Figure 5. In the example,

total number of database Slices, , the number of nodes

participating in the computation, , Number of database

Slice per participating nodes

 . It is shown in the

Communication Matrix that there is communication between

processors and the Master Node, as well as

 and the Collection Master . All the

participating nodes in the first five passes are getting equal

number of database slices, but in the last pass of computation,

only of participating nodes will get the job; that is only

two out of the six processors have been assigned job in the

last pass. There is a load imbalance in the last pass of the

computation. It can be noted from the diagram that there are

different sizes of communication between processors. In Two

Master Method, the communication between and

the Master Node, has been reduced. The difference in size

in receiving the communication of the and is due to

the load imbalance in the system. It is to be noted that the

amount of data received by the processor is minimum, and

 is spending time sending the Sliced Vectors; is not

participating in sending; it is only receiving data.

Figure 5: Communication Matrix for Two Master Method

for I = (1024, 256, 32, 8).

Experiments on BLAST Single Master and on Two Master

Method were conducted varying the database sequence size m

from 512 to 1024. The sequence size n was fixed at 256. The

System size was varied from 4 to 16. The reason for

keeping the minimum length of database sequence as 512 was

that anything less than the size of 512 for large Slice Size

and large system size would result in participating

processors being assigned very few residues for comparison.

A database size of more than 1024 in a single processor would

result in an increase of page faults. The size of was fixed at

256 since it would not take much space in creating the search

tree data structure and storing the string in memory. The

system size of was varied from 4 to 16 to get all possible

results. Experiments were conducted on 18 different inputs

for both One Master Method and Two Master Method and

results which help in analysis are shown in the tables.

Equations (1), (2), and (3) are used for computing the

Computational Time , Communication Time and

Initialization and Finalization Time . The total time is

calculated.

Results for the Single Master Method is shown in Table 2. For

Input Set, , the total time taken
 . It was observed that keeping the processor

size the same, if the Slice_Size is increased, the

computational time would decrease. For input Set,
 , . This means a

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

13

reduction of time by 22%. If is further increased to 32,

 a reduction of time by 36%.

The trend can be observed for the database sequence size

 , and query sequence of size . The

reduction in time was less than the theoretical assumptions

because of the time spent in communication; initialization has

not decreased much and the Single Master bottleneck could be

the reason for this phenomenon.

Table 2: Experimental Results for Single Master Method

Table 3 shows total computational Slice , Number of

Participating Nodes, and the Slice per Participating nodes

 for Single Master Method. It was evident that the slice

per participating node is a fraction in all the cases, an

indication that there was load imbalance in the final pass of

the computation. For , the

and only 33% of the participating nodes are given

computational tasks in the last pass. Only one node out of the

three nodes is given a task. The load imbalance is observed

for as well.

 for the input

sent and only 67% of the nodes are given tasks in the final

pass. The load imbalance could have also contributed to the

total computational time. Results for the Two Master Method

are shown in Table 4. For Input Set, , the

total time taken . It was observed that

keeping the processor size the same and increasing the

Slice_Size the computational time would decrease. For

input Set, , .

Table 4: Results for Two Master Method.

This means a reduction of time by 20%. If is further

increased to 32, , a reduction of time by

24%. The trend can be observed for the database sequence

size , and query sequence of size . For

all the Input Sets we had used for Single Master Method, there

was a good performance increase in the Two Master Method.

The assumption of increase in the performance if worked with

two Master Method has thud been proved. Table 5 shows total

computational Slice , Number of Participating Nodes,

and the Slice per Participating nodes

 for Two Master

Method. It was evident that the slice per participating node is

a whole number in all the cases, an indication that there was

load balance in the computation.

For ,

 , and all participating

nodes are given computational tasks in the last pass. The load

balance can be observed for as well. For

the input set,

 , all nodes are given tasks in the final

pass. The load balance would have helped the total

computational time to decrease.

Table 3: Results for Single Master Method.

Figure 6 shows the comparison of BLAST Single Master

Method and BLAST Two Master Method. The graph is for

 and . The graph is plotted with Total Time,

 on x-axis and the Slice_Size on y-axis. was

increased from 8 to 32. In the graph, SM stands for Single

Master Method, TM stands for Two Master Method. It was

observed that for all Input Size , the performance of Two

Master Method was better than that of Single Master Method.

512 256 8 4 1059.00 663.80 2655.20 4378.00

512 256 16 4 887.36 509.20 2036.80 3433.36

512 256 32 4 647.48 312.40 1249.60 2209.48

1024 256 8 4 2671.28 2023.64 8094.56 12789.48

1024 256 16 4 1960.00 1378.40 5513.60 8852.00

1024 256 32 4 1233.64 813.32 3253.28 5300.24

512 256 8 4
964.18 737.11 145.97 1847.26

512 256 16 4
757.24 357.81 355.96 1471.01

512 256 32 4
585.00 265.17 270.84 1121.01

1024 256 8 4
2366.52 1761.74 278.47 4406.73

1024 256 16 4
1480.79 1047.54 247.97 2776.30

1024 256 32 4
1106.73 663.82 343.31 2113.86

 4378.00 64 3 21.33
 3433.36 32 3 10.67
 2209.48 16 3 5.33

12789.48
12
8

3
42.67

 8852.00 64 3 21.33
 5300.24 32 3 10.67

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

14

Table 5: Results for Two Master Method.

Figure 6: Comparison of the two methods for

m=512.
It was observed that for also the performance of

the Two Master Method was better than the Single Master

Method.

4. CONCLUSION
To conclude, the BLAST parallel algorithms were

experimented upon. It was observed that between the

database segmentation and query segmentation method, the

database segmentation method performs better since the

method would reduce the page fault. It was also observed that

the existing Single Master Method for database segmentation

suffers from Single Master choke. Single Master Method

was improved by using Two Master Method. In the Two

Master Method, as experimented with, the tasks of the Single

Master were split and the tasks in both Masters were

executed in parallel. The load balance in the system

improved. The performance of the Two Master Method was

better than the performance of the Single Master Method.

5. ACKNOWLEDGMENTS
The author acknowledges Dr.Srinivas Bhogle, Director and

Country Head, TEOCO Software Private Ltd, Bangalore and

Dr. Pradeep G Siddheshwar, Bangalore University for their

critical comments and valuable inputs.

6. REFERENCES
[1] Altschul F Stepehn, Tomas L. Madden, Alejandro A.

Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller and

David J. Lipman. 1997. “Gapped BLAST and PSI-

BLAST: a new generation of protein database search

programs”. Nucleic Acids Research, Vol.25, No.17,

3389-3402.

[2] Altschul F Stephen, Ralf Bundschuh, Rolf Olsen and

Terence Hwa. 2001. “The estimation of statistical

parameters for local alignment score distributions”.

Nucleic Acids Research, Vol. 29, No.2, pp.351-361.

[3] Altschul F Stephen, Warren Gish, Webb Miller, Eugene

W. Myers & David J. Lipman. 1990. “Basic Local

Alignment Search Tool”. Journal of Molecular Biology,

215, 403-410.

[4] Bjornson R.D, A.H. Sherman, S.B. Weston, N. Willard,

J. Wing. 2002. “TurboBLAST: A Parallel

Implementation of BLAST Built on the TruboHub”.

Proceedings of the International Parallel and Distributed

Processing Symposium (IPDPS’02), IEEE Computer

Society.

[5] Braun R.C, K.T. Pedretti, T.L. Casavant, T.E. Scheetz,

C.L. Birkett, C.A. Roberts. 2001. “Parallelization of

local BLAST service on workstation clusters”. Future

Generation Computer Systems, Vol. 17, pp.745-754.

[6] Darling E Aaron, Lucan Carey, Wu-dhun Feng. 2003.

“The Design, Implementation, and Evaluation of

mpiBLAST”. ClusterWorld Conference & Expo and the

4th International Conference on Linux Clusters: The

HPC Revolution 2003. LA-UR 03-2862.

[7] Delcher L Arthur, Adam Phillippy, Jane Carlton and

Steven L. Salzberg. 2002. “Fast algorithms for large-

scale genome alignment and comparison”. Nucleic

Acids Research, Vol.30, No.11, 2478-2483.

[8] Delcher L Arthur, Simon Kasif, Robert D. Fleischmann,

Jeremy Peterson, Owen White and Steven L Salzberg.

1999. “Alignment of whole genomes”. Nucleic Acids

Research, Vol.27, No.11, 2369-2376.

[9] Feng, W. “Green Destiny + mpiBLAST =

Bioinformagic”. 2003. 10th International Conference on

Parallel Computing: Bioinformatics Symposium,

PARCO, pp.653-660.

[10] Grant J.D, R.L. Dunbrack, F.J. Manion and M.F. Ochs.

2002. “BeoBLAST: distributed BLAST and PSI-BLAST

on a Beowulf cluster”. Bioinformatics. Vol. 18 no.5, pp.

765-766.

[11] Gropp William, Ewing Lusk, Anthony skjellum. 1999.

Using MPI – Portable Parallel Programming with

message-passing Interface, Second edition. London,

England, Cambridge, Massachusetts: The MIT Press.

[12] Julich Anne. 2002. “Implementations of BLAST for

Parallel Computers”. CABIOS. Vol.11, no.1, pp.3-6.

[13] Kent James. W. 2002. “BLAT – The BLAST-Like

Alignment Tool”. Genome Research, Vol. 12, pp.656-

664.

[14] Kurtz Atefan and Chris Schleiermacher. 1999.

“REPuter: fast computation on maximal repeats in

complete genomes”. Bioinformatics, Vol.15, no.5, 426-

427.

[15] Ma Bin, Joh Tromp and Ming Li. “Pattern Hunter: faster

and more sensitive homology search”. 2002.

Bioinformatics, Vol. 18, no. 3, pp. 440-445.

[16] Mathog. R David. 2003. “Parallel BLAST on split

databases”. Bioinformatics, Vol.19, no.14, 1865-1866.

[17] Needleman Saul B & Christian D. Wunsch. 1970. “A

General Method Applicable to the Search for Similarities

in the Amino Acid Sequence of Two Proteins”. Journal

of Molecular Biology, 48, 443-453.

[18] Person W R and Miller W. 1992. “Dynamic

Programming algorithm for biological sequence

comparison”. Methods Enzymol, Vol.210, pp.575-601.

[19] Smith T. F, & M.S. Waterman. 1981. “Identification of

Common Molecular Sequences”. Journal of Molecular

Biology, 147, 195-197.

0

5000

10000

8 16 32 Ti
m

e
 in

 M
ili

Se

co
n

d
s

Slice Sequence Size

S
T

 1847.26 64 2 32
 1471.01 32 2 16
 1121.01 16 2 8
 4406.73 128 2 64
 2776.30 64 2 32
 2113.86 32 2 16

