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ABSTRACT 

The BLAST heuristic algorithm is one of the widely used 

algorithms for finding similar sequences in sequence 

databases.  The paper acquires importance as traditional 

approaches to sequence homology searches using BLAST 

have proven to be too slow to keep up with the current rate of 

sequence acquisition.   The use of the BLAST application on a 

single processor has become too costly, inefficient, and time-

consuming for many life science laboratories.  An obvious 

improvement that has already been suggested is the use of 

database segmentation to speedup BLAST.  A two master 

method to improve the performance of the parallel BLAST 

algorithm is presented here.  It is found that the two master 

method has performed better than the single master method. 
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1. INTRODUCTION 
This paper aligns the letters of the sequences belonging to two 

classes of biological sequence: a nucleotide sequence in which 

each letter represents one of the four DNA bases namely A, T, 

G, and C, and a peptide or a protein sequence, in which each 

letter represents one of the twenty amino-acid residues.   The 

important types of sequence comparison problems are global 

and local.  To solve the global alignment problem, one has to 

find the best match between entire sequences. In local 

alignment algorithms, one must find the best match (matches) 

between parts of sequences.  The papers considers pairwise 

alignment involving only two sequences.  Biological 

sequences are known to mutate as they evolve from one 

generation to the next, and a useful algorithm that gives a 

measure of similarity between two sequences should consider 

changes like substitution, deletion, and insertion of residues.  

Given a pair of sequences, there are many possible 

alignments, and each one can be assigned a score using a 

matrix which rewards exact letter matches and also penalizes 

substitution (i.e., where a letter in one sequence is mapped to 

a different letter in the other sequence) and gaps (i.e., where 

aligned letters are the same, but they occur in different 

relative positions due to insertions or deletions in the 

sequences).  The match score is usually specified by a matrix 

called the substitution matrix whose entries reflect the 

biological significance of the corresponding matches or 

substitutions.  Gaps are penalized using a formula that 

depends on the number, position, and length of each gap.  

Given an alignment between two sequences X and Y with 

length m and n respectively, a score is associated for them as 

follows:  For each column, we associate +1 if the two letters 

are identical, -1 if the letters are different, and -2 if one of 

them is a space.  The score is the sum of the values computed 

for each column.  The maximum score is the similarity 

between the two sequences.  There can be many alignments 

with maximum score.  Figure 1 shows one such alignment of 

sequence X and Y, with scores for each column.  In this case, 

there are two columns with identical characters; one with 

distinct character and two columns with a space, giving a total 

score of -3. 

X G A C G -  

Y - A T G C  

Score -2 +1 -1 +1 -2 = -3 

Figure 1: Alignment of the sequences X= GACG and Y= 

ATGC. 

Various algorithms have been developed for Sequence 

alignment. They include Smith-Waterman [19], Needleman-

Wunch [17], BLAST [1], [2], FASTA [18], MUMmer [7], [8], 

REPuter [14], BLAT [13], PatternHunter [15].  

1.1 The BLAST Algorithm 
The BLAST search heuristic [1], [2], [3] indexes both the 

query and target sequence into words of chosen size (11 

nucleotides or 3 residues by default).  It then searches for 

matching word pairs (hits) with a score of at least T and 

extends the match along the diagonal.  Gapped BLAST 

consists of several modifications to the previous algorithm 

that results in both increased sensitivity and decreased 

execution time.  Gapped BLAST moves down the sequences 

until it has found two hits, each with a score of at least T, 

within A letter of each other.  An ungapped extension is 

performed on the second hit, generating a high-scoring 

segment pair (HSP).  If the HSP score exceeds a second 

cutoff, a gapped extension is triggered simultaneously forward 

and backward.  Standard BLAST output consists of a set of 

local gapped alignments found within each query sequence, 

the alignment’s score, an alignment of the query and database 

sequence, and a measure of the likelihood that the alignment 

is a random match between the query and database (e-value).  

Factors such as query length, number of queries, total 

database size, length of database entries, and sequence 

similarity between the query and database entries affect the 

amount of time consumed by the BLAST algorithm [6]. 

 

BLAST searches a query sequence containing nucleotides 

(DNA) or peptide (amino acids) against a database of known 

nucleotide or peptide sequences.  Since peptide sequences 

result from ribosomal translations of nucleotides, comparisons 

can be made between nucleotide and peptide sequences.  

BLAST provides the capability to compare all possible 
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combinations of query and database sequence types by 

translating sequences on the fly, as shown in Table. 1 [9]. 

 

The BLAST programs essentially consist of three parts: 

preparatory calculations, the sequence comparison, and the 

combination of the individual results.  The second part, where 

the database search is performed, is the most time consuming 

piece of the program.  The comparison between the query 

sequence and a database sequence is completely independent 

of the comparison of the query sequence to other database 

sequences; therefore, this part of the BLAST programs is very 

well suited for parallelization.  The first and the third part of 

the programs do not benefit from parallelization.  The time 

spent for the database search is directly proportional to the 

size of the database; therefore, the comparison part becomes 

an ever increasing portion of the overall program.  Also the 

BLAST programs are highly scalar codes with very few 

floating point instructions [12].  The BLAST runs fastest 

when its databases remain cached in memory, and further 

acceleration is achieved by threading, which allows more than 

one CPU at a time to process the data [10].   

 

Table 1:  BLAST search types 

Search 

Name 

Query Type Database 

Type 

Translation 

blastn Nucleotide  Nucleotide None 

blastp Peptide Peptide None 

blastx Nucleotide Peptide Query 

tblastn Peptide Nucleotide Database 

tblastx Nucleotide Nucleotide Query and 

Database 

 

Query segmentation provides the most natural parallelization 

of BLAST by splitting up a query such that each compute 

node in a cluster searches a fraction of the sequence database.  

Thus, multiple BLAST searches can execute in parallel on 

different queries.  However, such an approach typically 

requires that the entire database be replicated on each compute 

nodes local storage system [5].  If the database to be searched 

is larger than core memory, then query-segmented searches 

suffer from the same adverse effects of disk I/O as in 

traditional BLAST.  When the database fits in core memory, 

however, query segmentation can achieve nearly linear 

scaling for all BLAST types [9].   Local BLAST program is 

one of the programs which use query segmentation approach 

[5].   

Database segmentation is an orthogonal approach to query 

segmentation.  Database segmentation keeps the query intact 

and distributes individual database segments to each node for 

the query to be searched upon.  Database segmentation 

performance is better than query segmentation as database 

segmentation eliminates the high overhead of disk I/O.    

Database segmentation permits each node to search a smaller 

portion of the database, thus reducing extraneous disk I/O [6].  

One of the biggest challenges of this approach is to ensure 

that the statistical scoring is properly produced as it depends 

on the size of the database, a database that database 

segmentation chops up.  The programs such as Turbo BLAST 

[4], mpiBLAST [6], Bioinfomagic [9], BeoBLAST [10], and 

parallelBLAST [16] uses the database segmentation. 

The NCBI BLAST performs best when the database contains 

a small number of sequences, but NCBI BLAST performance 

suffers when confronted with low memory because as the 

database size exceeds the system memory, running time and 

average blocks read increase.  TurboBLAST, parallel 

deployment of NCBI BLAST achieves speedup by reducing 

the paging overhead.  A speed up of 7.51 and 13.85 is 

achieved for 8 and 16 processors cluster.  BeoBLAST 

distributes individual BLAST jobs across nodes of Beowulf 

cluster can simultaneously align multiple databases with 

multiple queries.   Parallel BLAST can greatly improve speed 

at almost no cost of sensitivity by restricting alignments to 

sequence seed rather than an alignment seed.  The parallel 

BLAST is 14-18 times faster than single machine but Job 

scheduling overhead, merge time limit its performance and 

moreover it is not directly integrated with the NCBI toolkit.   

mpiBLAST achieves superlinear speedup for multiple nodes 

even when the database is larger than the core memory of a 

single node.  mpiBLAST does not produce heavy 

intercommunication between nodes, allowing it to continue 

achieving super-linear speedup over hundreds of nodes.  But 

mpiBLAST efficiency decreases as the number of workers 

increases, contradictory to the theoretical results.  One reason 

could be its load imbalance.  One possible solution would be 

to segment the database into a equal sized large number of 

small fragments, and then all workers can complete the job 

almost at the same time, resulting in load balancing.  Across 

four nodes Bioinfomagic’s efficiency is 2.31 and drops all the 

way down to 1.33 with 128 nodes.   Even though the 

efficiency decreases as the nodes increase, Bioinfomagic still 

achieves super-linear speed-up.  The other advantages are that 

(1) Bioinfomagic is an open source, and (2) it directly 

interfaces with the NCBI development library to provide an 

output format of NCBI-BLAST.    

 It is found that the Database segmentation performs better 

than query segmentation as query segmentation suffers from 

paging activity when the local nodes can not hold the entire 

database in its memory.   Among the models investigated, the 

Bioinfomagic’s performance is relatively more impressive. 

2. A CASE FOR TWO MASTERS 
Parallel BLAST pairwise sequence alignment algorithms can 

be divided into the following stages: (1) Loading 

Query/Database sequence into processors, depending on the 

segmentation technique used: Query or Database (2) Slicing 

the Query/Database (depending on the segmentation 

techniques used) into small size sequences sending it to the 

participating nodes for computation (3) Aligning the 

sequences using NCBI BLAST program by the participating 

processors (4) Receiving the aligned sequences from the 

participating nodes (5) Merging the received alignments into a 

final alignment.    Step (3) and Step (5) have little scope for 

parallelization.  But Step (1), (2) and (4) can be parallelized 

for improving the performance.  

If   is the length of the database sequence and   is the length 

of the query sequence, and if     and the word size for 

computation is  , the query segmentation suffers from page 

faults.  It can be observed in the query segmentation technique 

that the database sequence of size   has to be loaded into the  

memory of all the processors and a search tree data structure 

has to be created for       elements each with size  .  

The space complexity is      and the time taken to create the 

search tree is of the complexity           .  The 

computational time to compare the sliced query sequence with 
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the large database sequence also increases.  It is therefore 

recommended that for better use of space and time, Database 

Segmentation Technique is a better technique than Query 

Segmentation Technique.  In Database Segmentation 

Technique, Query Sequence is loaded to all the processors, a 

search tree is created for the query sequence and the database 

is sliced into a size of    which is the Slice_Size.  The 

comparison is between this small    with a reasonably sized 

Query Sequence.  The page faults can be reduced using 

Database Segmentation since very small size sequences are 

loaded into memory and these perhaps can be loaded into the 

cache as well.  Database Segmentation Technique is used for 

the experiments.  The programmmes were written in C High 

Level Language using MPICH [11].  The programs were 

executed on Mobile Intel(R)  Pentium(R) 4 CPU 3.20GHz, 

700MB Memory, 1MB Cache On Linux Operating System.       

Let   be the length of the length of the database sequence,   

be the length of the query sequence,    be the Slice_Size and 

Machine Size  .  The Input for the BLAST algorithm can be 

defined by 4-tuple           . 

                      (1) 

The total number of database Slices,     of the database 

sequence can be defined as:  

                  (2) 

Let    be the number of participating nodes participating in 

aligning two sequences:        for Single Master 

Method and        for Two Master Method.   

Let   
  

 be the Number of database Slice per participating 

node,   .    
  

 is defined by 

  
  

         (3) 

In the existing parallel method a single master is used to 

broadcast sequences to participating slaves and collect the 

local alignments from slaves:  Master broadcasts to slaves, 

sequences to be aligned and West-Vectors for computing a 

Partial Similarity Matrix (SM).  The master collects from 

slaves, local alignments and the best alignment score.  The 

many number of tasks computed by the master “stall” the 

slave processors.  The slave processors have to wait for the 

west-vectors to be received by them before computing the 

Partial Similarity Matrix.  To overcome these “stalls”, the 

tasks performed by the master can be split into two, (1) the 

broadcasting job and (2) the results collection job.  These two 

tasks can then be independently handled by two different 

masters; we can call these masters, the collection master and 

the broadcasting  master.       

To illustrate the strategy, let the      of the system, number of 

processors participating in the system, be 17 (one master and 

16 slaves).  Let the length of the first sequence n , length of 

the second sequence   be 16K each, and number of columns 

in the band be 64.  Each processor is assigned 
   

     
 i.e., 16 

bands to compute.  The first band (first Partial Similarity 

Matrix) is assigned to the first processor, second band to the 

second processor and so on, the 17th band to the first 

processor, 18th band to the second processor and so on.  The 

order of communication is strict:  the first processor to 

compute the 17th band (first slave processors’ second band 

for computation) has to receive the west-vector of the 

sixteenth band (computed by the 16th processor, which sends 

the west-vector to master).   At this point, the master is also 

involved in collecting local results from all sixteen slave 

processors.  After Master-I collect local alignments from 

slaves, it uses the weighted tree method to find the final 

alignment.  The master has to collect local alignments from all 

processors before it sends the west-vector and the north-west 

value to the first slave.  The master has to execute sixteen 

local alignment “receive” functions, “receive” the west-vector 

from the last slave processors (16th processor), and then 

execute the “send west-vector” to the first slave function.  The 

first processor (slave) at this point is “waiting” to execute the 

function, and “receive” the west-vector from the master.  

Until this “receive” is complete, the first processor cannot 

proceed with the computation of the next Partial Similarity 

Matrix.  As long as the first slave completes computation of a 

Partial Similarity Matrix, the other processors cannot continue 

with computation.  This delay caused by the master to send 

the west-vector to the first slave, stalls computation.  The 

delay causes load imbalance, and decreases performance of 

overall computation.  To overcome this problem, the two-

master strategy is suggested. In the proposed system, one 

master is used for partial result collection and the other master 

for broadcasting sequences and other vectors required for 

computing a Partial Similarity Matrix. 

In the proposed strategy, the task of initiating and collecting is 

separated.  The job of initiating and sending the west vectors 

to the first processor is handled by Master-I and the local 

alignment collection from all the processors is handled by 

Master-II, who we then call the Collection Master.  In this 

strategy, Processor 0 is Master-I which broadcasts sequences 

to all processors except to itself and processor       .  

Master-I also collects the boundary values from the processor 

      .  Processor        is Master-II, which is the 

collection master.  Both the rows and columns are divided 

into equal size, which we call,          .  We assume that 

       ,       , and       , which means there are at 

least 3 processors participating in the computation, the first 

one being Master-I, the second one being Master-II and the 

third one, the slave node.  The algorithm has five modules:  

the modules for Master-I, Master-II, processor 1, processor 

      , and the one for all other processors.  Master-I, 

copies the two sequences, which are in FASTA format and 

stores those in the data structures,   and   which are of length 

  and   respectively. Master-I computes the gap penalties, 

0th row and 0th column of    and stores it in the data 

structures,       and       respectively.  All these data 

structures,   , ,      ,       and  are stored in the local 

memory of the Broadcast Master.  These data structures are 

“broadcast” to all slave processors.           , the number of 

columns and rows to be considered in the band, is accepted 

from the user.  The total number of column-bands available 

for computation then will be             and number of 

row-bands in each column will be            .  

Each processor, except the two masters, is assigned an entire 

column band for computation at a time.  Once the processor 

completes the computation of a column band,        
         column band is assigned to the processor and the 

assignment continues till there are no column bands available 

for computation.  Within each column band, a processor 

computes one row-band at a time.  After the slave completes a 

Partial Similarity Matrix, it “sends” west-vectors, and the 

north-west value to the next process before proceeding to the 

next Partial Similarity Matrix in the column.  These vectors 

are received by the next processor through the function 

“receive” from the previous processor.  The process of 

computing the row-band is continued till all row-bands of the 
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column band are computed by the processor.  Each row-band 

computed (partial   ) is of the size,                    .  

To compute this         of the size,                    .  

, the processor needs the north vector of size,          , the 

west vector of size,          , and a north-west value.  For a 

total of               values received by the slave, 

                    computations are done. A processor 

after completing a band     , for some row band  , and 

column band  , aligns the partial sequences using S-W trace-

back alignment algorithm, stores the partial alignment score in 

the data structure              , and partial alignment in 

the data structure              in its local memory along with 

its similarity score.  The processor after aligning sequences of 

band       , compares the alignment score with the previous 

alignment.  The processor keeps only the best alignments and 

discards the other alignments.  After completing the column 

band, the processor sends               and               

to the Collection Master.   

2.1 One Master Method for BLAST Algorithm 
In the existing Single Master Method out of the   processors 

in the system, one processor is the Master which is   .  The 

Processor,    loads the database sequence into its memory and 

computes the number of slices of database sequence   , builds 

64 combinations of 3 letter DNA sequences into 

                     and computes the              .     

sends           signals to              and receives       

signals from             .  Then, depending on the availability 

of the job and       signals from the participating nodes 

    send          signals to              .  To all the          

processors,    sends                   .  Once the 

computations are completed by the          processors, the 

         processors send the                        .  The 

above process is continued till all the database slices are 

considered for computation.  After receiving all 

              from the slaves, the Master computes the final 

alignment.   

Algorithm for BLAST Single Master Method 

 

Copy the Query Sequence residues from Secondary Storage 

device to the Vector      
Build 64 combination of 3 letter DNA sequence into 

                     
 

If the processor        

Copy the Database sequence into the Vector      
Compute                and               

While (                ) 
Send           signal to              

Receive       signal from              

Depending on the availability of the job Send 

         signal to              

Send                    to the          processors 

Receive                         from              

Compute                and               

Send               to              

End While 

  Align the partially aligned results into the final result 

End of processor        

 

If the Processor                        

Receive                   

Send            if       to execute the job 

Receive                  if Selected for execution 

While (        ) 

 Receive                            

 Use the BLAST algorithm for sequence alignment 

and store the result in                         
 Send                              

 Receive                      

End While 

Finalize the processing 

End of Processor                        

Figure 2: Algorithm for Single Master Method. 

2.2 Two Master Method for BLAST Algorithm 
In the existing Single Master Method for BLAST that Single 

Master is involved in sending  Sliced database sequences to 

all participating nodes and  receiving the                  
      .  The Single Master is also involved in sending 

          signals and          signals to        processors, 

receiving       signals from        processors, and 

sending               to        processors.  The Single 

Master   is also involved in processing the final alignment.   

As the number of slices,    to be computed increases, the 

Single Master becomes the bottleneck in the computation.  

When the size of the database sequence   increases, the 

number of slices,    also increases, thus increasing the size of 

the               in the memory of the Single Master.  

Increase in the size of the                and the database 

sequence would result in page faults eventually delaying the 

computation process.  It can be observed that if the jobs of the 

Single Master are shared by two masters, the processing speed 

would increase.  In the Two Master Method, two masters are 

used, The Slice Master and the Collection Master.  The 

Processor   is used as the Slice Master and the Processor, 

        is used as the Collection Master.  The total number of 

participating nodes in the system    would be    . The 

Send Master is involved in sending the sliced database 

sequences to all participating nodes, sending           and 

         signals to        processors, receiving       

signals from        processors, and sending               

to        processors.  The Receiving Master would be 

involved in collecting results and processing the final 

alignment.   

Algorithm for BLAST Two Master Method 

 

Copy the Query Sequence residues from Secondary Storage 

device to the Vector      
Build 64 combination of 3 letter DNA sequence into 

                    
If the processor        

Copy the Database sequence into the Vector      
Compute                and               

While  (                ) 
Send           signal to              

Receive       signal from             Depending 

on the availability of the job Send          signal 

to the              

Send                    to the          

processors 

Compute                and               

Send               to                

End While 

End Processor        

If the processor              

Compute                and               

While (                ) 
Receive                         from              

Compute                and               
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        End While 

        Align the partially aligned results into the final result 

  End processor              

  If the Processor                        

 Receive                   

 Send            if       to execute the job 

 Receive                  if Selected for execution 

         While (        ) 

 Receive                            

 Use the BLAST algorithm for sequence alignment 

and store the result in                         
 Send                                   

 Receive              from    

          End while 

          Finalize the processing 

  End of Processor                         

Figure 3: Algorithm for Two Master Method. 

3. Comparison of Single Master Method 

and Two Master Method 
Communication Matrix for Single Master Method for Input 

Set                    is shown in Figure 4.  In the 

example, total number of database Slices,     , the number 

of nodes participating in the computation,     , Number of 

database Slice per participating nodes   
  

     .  It is 

shown in the Communication Matrix that there is 

communication only between processors              and the 

Master Node,   .  All the participating nodes in the first four 

passes are getting equal number of database slices, but in the 

last pass of computation, only     of participating nodes will 

get the job; that is only four out of the seven processors have 

been assigned jobs in the last pass.  There is a load imbalance 

in the last pass of computation.  The amount of 

communication between various processors is shown in the 

Communication Matrix with different color band for size of 

the communication.  It is shown that the last three processors’ 

(shown as blue for sending and dark green while receiving) 

communication size is less than the first four processors 

(shown as light green while sending and dark red while 

receiving).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Communication Matrix for Single Master 

Method I = (1024, 256, 32, 8). 

 
Communication Matrix for Two Master Method for Input Set 

                   is shown in Figure 5.  In the example, 

total number of database Slices,      , the number of nodes 

participating in the computation,     , Number of database 

Slice per participating nodes   
  

     .  It is shown in the 

Communication Matrix that there is communication between 

processors              and the Master Node,    as well as 

             and the Collection Master        .  All the 

participating nodes in the first five passes are getting equal 

number of database slices, but in the last pass of computation, 

only     of participating nodes will get the job; that is only 

two out of the six processors have been assigned job in the 

last pass.  There is a load imbalance in the last pass of the 

computation.  It can be noted from the diagram that there are 

different sizes of communication between processors.  In Two 

Master Method, the communication between              and 

the Master Node,   has been reduced.  The difference in size 

in  receiving  the communication of the   and        is due to 

the load imbalance in the system.  It is to be noted that the 

amount of data received by the processor    is  minimum, and  

   is spending time sending the Sliced Vectors;        is not 

participating in sending; it is only receiving data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Communication Matrix for Two Master Method 

for I = (1024, 256, 32, 8). 

 

Experiments on BLAST Single Master and on Two Master 

Method were conducted varying the database sequence size m 

from 512 to 1024.  The sequence size n was fixed at 256.  The 

System size    was varied from 4 to 16.  The reason for  

keeping the minimum length of database sequence as 512 was 

that anything less than the size of 512 for large Slice Size    

and large system size   would result in participating 

processors being assigned very few residues for comparison.  

A database size of more than 1024 in a single processor would 

result in an increase of page faults.  The size of   was fixed at 

256 since it would not take much space in creating the search 

tree data structure and storing the string in memory.  The 

system size of   was varied from 4 to 16 to get all possible 

results.  Experiments were conducted on 18 different inputs 

for both One Master Method and Two Master Method and 

results which help in analysis are shown in the tables.     

 

Equations (1), (2), and (3) are used for computing the 

Computational Time  , Communication Time    and 

Initialization and Finalization Time   .  The total time    is 

calculated. 

 

Results for the Single Master Method is shown in Table 2. For 

Input Set,                 , the total time taken    
               .  It was observed that keeping the processor 

size the same, if the Slice_Size    is increased, the 

computational time would decrease.  For input Set,   
               ,                  .  This means a 
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reduction of time by 22%.  If     is further increased to 32,  

                           a reduction of time by 36%.  

The trend can be observed for the database sequence size 

      , and query sequence of size       .  The 

reduction in time was less than the theoretical assumptions 

because of the time spent in communication; initialization has 

not decreased much and the Single Master bottleneck could be 

the reason for this phenomenon.   

 

Table 2: Experimental Results for Single Master Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 shows total computational Slice   , Number of 

Participating Nodes,    and the Slice per Participating nodes 

  
  

 for Single Master Method.  It was evident that the slice 

per participating node is a fraction in all the cases, an 

indication that there was load imbalance in the final pass of 

the computation.  For                 , the   
  

       

and only 33% of the participating nodes are given 

computational tasks in the last pass.  Only one node out of the 

three nodes is given a task.  The load imbalance is observed 

for                   as well.      
  

       for the input 

sent and only 67% of the nodes are given tasks in the final 

pass.  The load imbalance could have also contributed to the 

total computational time.  Results for the Two Master Method 

are shown in Table 4.  For Input Set,                 , the 

total time taken                  .  It was observed that 

keeping the processor size the same and increasing the 

Slice_Size     the computational time would decrease.  For 

input Set,                  ,                  .  

 

Table 4: Results for Two Master Method. 

 
 

 

 

 

 

 

 

 

This means a reduction of time by 20%.  If    is further 

increased to 32,                   , a reduction of time by 

24%.  The trend can be observed for the database sequence 

size       , and query sequence of size       .    For 

all the Input Sets we had used for Single Master Method, there 

was a good performance increase in the Two Master Method. 

The assumption of increase in the performance if worked with 

two Master Method has thud been proved. Table 5 shows total 

computational Slice   , Number of Participating Nodes,    

and the Slice per Participating nodes   
  

 for Two Master 

Method.  It was evident that the slice per participating node is 

a whole number in all the cases, an indication that there was 

load balance in the computation.   

 

 

 

 

 

 

 

 

 

 

 

For                 ,   
  

   , and all  participating 

nodes are given computational tasks in the last pass.  The load 

balance can be observed for                   as well.  For 

the input set,   
  

   , all nodes are given tasks in the final 

pass.  The load balance would have helped the total 

computational time to decrease. 

Table 3: Results for Single Master Method. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 shows the comparison of BLAST Single Master 

Method and BLAST Two Master Method. The graph is for 

      and      .  The graph is plotted with Total Time, 

   on  x-axis and the Slice_Size    on y-axis.      was 

increased from 8 to 32.  In the graph, SM stands for Single 

Master Method, TM stands for Two Master Method.  It was 

observed that  for all Input Size  , the performance of  Two 

Master Method was better than that of Single Master Method.   

                     

512 256 8 4 1059.00 663.80 2655.20 4378.00 

512 256 16 4 887.36 509.20 2036.80 3433.36 

512 256 32 4 647.48 312.40 1249.60 2209.48 

1024 256 8 4 2671.28 2023.64 8094.56 12789.48 

1024 256 16 4 1960.00 1378.40 5513.60 8852.00 

1024 256 32 4 1233.64 813.32 3253.28 5300.24 

                     

512 256 8 4 
964.18 737.11 145.97 1847.26 

512 256 16 4 
757.24 357.81 355.96 1471.01 

512 256 32 4 
585.00 265.17 270.84 1121.01 

1024 256 8 4 
2366.52 1761.74 278.47 4406.73 

1024 256 16 4 
1480.79 1047.54 247.97 2776.30 

1024 256 32 4 
1106.73 663.82 343.31 2113.86 

                         
  

 
                 4378.00 64 3 21.33 
                  3433.36 32 3 10.67 
                  2209.48 16 3 5.33 
                  

12789.48 
12
8 

3 
42.67 

                   8852.00 64 3 21.33 
                   5300.24 32 3 10.67 
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Table 5: Results for Two Master Method. 
 

 

 

Figure 6: Comparison of the two methods for 

m=512. 
It was observed that for        also the performance of 

the Two Master Method was better than the Single Master 

Method.   

4. CONCLUSION 
To conclude, the BLAST parallel algorithms were 

experimented upon.  It was observed that between the 

database segmentation and query segmentation method, the 

database segmentation method performs better since the 

method would reduce the page fault.  It was also observed that 

the existing Single Master Method for database segmentation 

suffers from Single Master choke.   Single Master Method 

was improved by using Two Master Method.  In the Two 

Master Method, as experimented with, the tasks of the Single 

Master were split  and the tasks in both Masters were 

executed in parallel.  The load balance in the system  

improved.  The performance of the Two Master Method was 

better than the performance of the  Single Master Method.  
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