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ABSTRACT 

Sequence comparison is a basic operation in DNA sequencing 

projects, and most of sequence comparison methods are based 

on heuristics, which are fast but not sensitive.  The Dynamic 

Programming Algorithm, Smith-Waterman, obtains the best 

alignment, but at the expense of computational time.  

Unfortunately, the inefficiency in the performance of the 

Smith-Waterman algorithm limits its applications in the real 

world. A possible way out of this is to use parallelization 

methods for decreasing the time taken to execute the 

algorithm.  In this paper, we present a two master method and 

a novel parallel technique called staircase method to improve 

the performance of the Smith-Waterman algorithm.  
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1. INTRODUCTION 
Sequence alignment is the procedure of comparing two or 

more DNA or protein sequences by searching for a series of 

individual characters or character patterns that are in the same 

order in the sequence.  If the sequence comparison process 

involves more than two sequences the process is called 

multiple sequence alignment. Otherwise, it is called pairwise 

alignment. For the purpose of this paper, pairwise alignment 

involving only two sequences is considered.  Two sequences 

are aligned by writing them across a page in two rows, 

identical or similar characters are placed in the same column, 

and non-identical characters are placed either in the same 

column as a mismatch or opposite a gap in the other sequence.  

In an optimal alignment, non-identical characters and gaps are 

placed to bring as many identical or similar characters as 

possible into vertical registers.  Sequence alignment of 

biological sequences is useful for discovering functional, 

structural, and evolutionary relationship information in DNA 

or protein sequences.   

The important types of sequence comparison problems are 

global and local.  To solve the global alignment problem, one 

has to find the best match between entire sequences. In local 

alignment algorithms, one must find the best match (matches) 

between parts of sequences.  In local alignment, stretches of 

sequences with the highest density of matches are aligned, 

thus generating one or more islands of matches or 

subalignments in the aligned sequences.  There is also a third 

kind of sequence alignment where the alignment is not on 

arbitrary substrings, but prefixes and suffixes of the given 

sequences [21].  Figure 1 compares the Global alignment and 

Local alignment process.   
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Figure 1: Difference between Local Alignment and Global 

Alignment (the top diagram is the global alignment and 

the bottom is the local alignment).  

 

Biological sequences are known to mutate as they evolve 

from one generation to the next, and a useful algorithm that 

gives a measure of similarity between two sequences should 

consider changes like substitution, deletion, and insertion of 

residues.  Given a pair of sequences, there are many possible 

alignments, and each alignment of residues can be assigned a 

score using a matrix which rewards exact letter matches and 

also penalizes substitution (i.e., where a letter in one sequence 

is mapped to a different letter in the other sequence) and gaps 

(i.e., where aligned letters are the same, but they occur in 

different relative positions due to insertions or deletions in the 

sequences).   

Given an alignment between two sequences X and Y with 

length m and n respectively, a score is associated for them as 

follows:  For each column, we associate +1 if the two letters 

are identical, -1 if the letters are different, and -2 if one of 

them is a space.  The score is the sum of the values computed 

for each column.  The maximum score is the similarity 

between the two sequences.  There can be many alignments 

with maximum score.  Figure 2 shows one such alignment of 

sequence X and Y, with scores for each column.  In this case, 

there are two columns with identical characters; one with 

distinct character and two columns with a space, giving a total 

score of -3. 

X G A C G -  

Y - A T G C  

Score -2 +1 -1 +1 -2 = -3 

Figure 2: Alignment of the sequences X= GACG and Y= 

ATGC. 

Sequences that are very much alike, or “similar” in the 

parlance of sequence analysis, probably have the same 

function.  If two sequences from different organisms are 

similar, there may have been a common ancestor sequence, 

and the sequences are then defined as being homologous. 

Various algorithms have been developed for Sequence 

alignment. They include Smith-Waterman [22], Needleman-
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Wunch [15], BLAST [1],[2], FASTA [18], MUMmer [5], [6], 

REPuter [11], BLAT [10], PatternHunter [13], Bayer block 

aligner [24], PipMaker [20], SIM [8], SIM4 [7], and 

GeneSeqer [23].  

The Smith-Waterman dynamic programming algorithm which 

can find the match between two remotely related sequences 

consists of two parts: calculation of the total score indicating 

the similarity between the two given sequences, and the 

identification of the optimal alignment(s) with traces left by 

the highest scores along the matrix.    Given two sequences, 

            and             for        and       , 

the Similarity Matrix         is built by applying the 

following recurrence relation: 

            

                   

              

                   

   (1) 

The task of parallel pairwise sequence alignment of biological 

sequences can be divided into the following stages: (1) 

Broadcasting two sequences by the master to participating 

slaves, (2) Computation of the Partial Similarity Matrix by 

each processor at the local node using the sequential Smith-

Waterman algorithm, (3) collection of local alignment and 

scores by the master from participating slaves, and (4) final 

Alignment of sequences by the master.  In the four stages, 

there is little scope for stages (1), (2) and (4) for 

parallelization.  The Partial Similarity Matrix can be 

computed in parallel.  Stage (2), computation of Partial 

Similarity Matrix, is a potential stage for parallelization.  Each 

processor may be assigned a set of rows and columns, called 

as band, which is a Partial Similarity Matrix.  This Partial 

Similarity Matrix is computed by the process at the local node 

using the Sequential Smith-Waterman Algorithm, 

sequentially.  Processors can compute a Partial Similarity 

Matrix in parallel.  But the order of computation of a Partial 

Similarity Matrix is strict and this order of computation has to 

be maintained by all processors.  The order of computation is 

strict because for computing each Partial Similarity Matrix, 

the north-vector (north values of a Partial Similarity Matrix), 

west-vector (west values of a Partial Similarity Matrix) and 

the north-west values of a Partial Similarity Matrix are 

required. 

2. TWO MASTER METHOD AND 

STAIRCASE METHOD 
Several attempts have been made to increase the performance 

of Smith-Waterman algorithms performances [3], [4], [9], 

[12], [14], [16], [17], [19]. In the existing parallel methods, a 

single master is used to broadcast sequences to participating 

slaves and collect the local alignments from slaves:  Master 

broadcasts to slaves, sequences to be aligned and West-

Vectors for computing a Partial Similarity Matrix (SM).  The 

master collects from slaves, local alignments and the best 

alignment score.  The many number of tasks computed by the 

master “stall” the slave processors.  The slave processors have 

to wait for the west-vectors to be received by them before 

computing the Partial Similarity Matrix.  To overcome these 

“stalls”, the tasks performed by the master can be split into 

two, (1) the broadcasting job and (2) the results collection job.  

These two tasks can then be independently handled by two 

different masters; we can call these masters, the collection 

master and the broadcasting  master.       

To illustrate the strategy, let the      of the system, number of 

processors participating in the system, be 17 (one master and 

16 slaves).  Let the length of the first sequence n , length of 

the second sequence   be 16K each, and number of columns 

in the band be 64.  Each processor is assigned 
   

     
 i.e., 16 

bands to compute.  The first band (first Partial Similarity 

Matrix) is assigned to the first processor, second band to the 

second processor and so on, the 17th band to the first 

processor, 18th band to the second processor and so on.  The 

order of communication is strict:  the first processor to 

compute the 17th band (first slave processors’ second band 

for computation) has to receive the west-vector of the 

sixteenth band (computed by the 16th processor, which sends 

the west-vector to master).   At this point, the master is also 

involved in collecting local results from all sixteen slave 

processors.  After Master-I collect local alignments from 

slaves, it uses the weighted tree method to find the final 

alignment.  The master has to collect local alignments from all 

processors before it sends the west-vector and the north-west 

value to the first slave.  The master has to execute sixteen 

local alignment “receive” functions, “receive” the west-vector 

from the last slave processors (16th processor), and then 

execute the “send west-vector” to the first slave function.  The 

first processor (slave) at this point is “waiting” to execute the 

function, and “receive” the west-vector from the master.  

Until this “receive” is complete, the first processor cannot 

proceed with the computation of the next Partial Similarity 

Matrix.  As long as the first slave completes computation of a 

Partial Similarity Matrix, the other processors cannot continue 

with computation.  This delay caused by the master to send 

the west-vector to the first slave, stalls computation.  The 

delay causes load imbalance, and decreases performance of 

overall computation.  To overcome this problem, the two-

master strategy is suggested. In the proposed system, one 

master is used for partial result collection and the other master 

for broadcasting sequences and other vectors required for 

computing a Partial Similarity Matrix. 

In the proposed strategy, the task of initiating and collecting is 

separated.  The job of initiating and sending the west vectors 

to the first processor is handled by Master-I and the local 

alignment collection from all the processors is handled by 

Master-II, who we then call the Collection Master.  In this 

strategy, Processor 0 is Master-I which broadcasts sequences 

to all processors except to itself and processor       .  

Master-I also collects the boundary values from the processor 

      .  Processor        is Master-II, which is the 

collection master.  Both the rows and columns are divided 

into equal size, which we call,          .  We assume that 

       ,       , and       , which means there are at 

least 3 processors participating in the computation, the first 

one being Master-I, the second one being Master-II and the 

third one, the slave node.  The algorithm has five modules:  

the modules for Master-I, Master-II, processor 1, processor 

      , and the one for all other processors.  Master-I, 

copies the two sequences, which are in FASTA format and 

stores those in the data structures,   and   which are of length 

  and   respectively. Master-I computes the gap penalties, 

0th row and 0th column of    and stores it in the data 

structures,       and       respectively.  All these data 

structures,   , ,      ,       and  are stored in the local 

memory of the Broadcast Master.  These data structures are 

“broadcast” to all slave processors.           , the number of 

columns and rows to be considered in the band, is accepted 

from the user.  The total number of column-bands available 

for computation then will be             and number of 

row-bands in each column will be            .  

Each processor, except the two masters, is assigned an entire 

column band for computation at a time.  Once the processor 



International Journal of Computer Applications (0975 – 8887)  

Volume 63– No.1, February 2013 

3 

completes the computation of a column band,        
         column band is assigned to the processor and the 

assignment continues till there are no column bands available 

for computation.  Within each column band, a processor 

computes one row-band at a time.  After the slave completes a 

Partial Similarity Matrix, it “sends” west-vectors, and the 

north-west value to the next process before proceeding to the 

next Partial Similarity Matrix in the column.  These vectors 

are received by the next processor through the function 

“receive” from the previous processor.  The process of 

computing the row-band is continued till all row-bands of the 

column band are computed by the processor.  Each row-band 

computed (partial   ) is of the size,                    .  

To compute this         of the size,                     , 

the processor needs the north vector of size,          , the 

west vector of size,          , and a north-west value.  For a 

total of               values received by the slave, 

                    computations are done. A processor 

after completing a band     , for some row band  , and 

column band  , aligns the partial sequences using S-W trace-

back alignment algorithm, stores the partial alignment score in 

the data structure              , and partial alignment in 

the data structure              in its local memory along with 

its similarity score.  The processor after aligning sequences of 

band       , compares the alignment score with the previous 

alignment.  The processor keeps only the best alignments and 

discards the other alignments.  After completing the column 

band, the processor sends               and               

to the Collection Master.   

2.1 Staircase Method With Two Masters 
In this section, we discuss a novel method to improve the load 

balance of the S-W parallel algorithm.  We call this method, 

the “staircase” method.  The method is called, the Staircase 

Method since the computation in this method goes like the 

steps of a staircase. Though the previous strategy, Two Master 

Method, improves the performance of the S-W parallel 

algorithm, it fails to balance the load in the system.  The last 

slave processor        ’s first computation is delayed till this 

processor receives the west-vector from processor        , 

which can happen only when the processor   completes 

       row-bands, processor    completes        row-

bands, until processor         finishes its first row-band.  The 

delayed start for processor         is roughly         .  As 

     and            increase, the delayed start also increases 

and leads to load imbalance.   We achieve better load balance 

in Staircase Strategy by decreasing the delayed start. 

It is noticed that when            is small at the initial stages 

(at least till the computation reaches the first principal 

diagonal), the delayed start overhead can be reduced.  We 

have achieved this by computing the Similarity Matrix in two 

stages, Stage I and Stage II.  In Stage I, the computation of the 

Similarity Matrix is handled by including all slave processors 

in the computation till the computation reaches the first 

positive slope       .  The size of the row-band and the 

column-band is reduced to half.  The size of the row-band and 

column-band will be             for initial computations. 

We call this band_size as                 .  In Stage II, the 

computation of the Similarity Matrix is continued with the 

same size, just as we have done it in the first strategy but with 

a few modifications.  In Stage I, processors compute half-

Similarity-Matrix     .  The size of the      is 

                       .  That is half the size of the 

Partial    we have considered in the first strategy, which is of 

the size,                    .  All the processors are 

involved in the computation of h_SM.  Therefore the delayed 

start problem of the previous methods have been efficiently 

handled.  Within the first stage, since the band_size is 

reduced, by half of  Stage II, the delayed start for the last 

processor is further reduced.   In Stage I, all processors will 

take one column band each except         which takes two 

column-bands.  But the number of row-bands computed by 

each processor is different.     computes        row-bands, 

       computes two row-bands, and other processor 

computes            number of row-bands.  The 

computation of band,      for some   and  , receives west and 

north-west vectors from the previous processors.  The north-

values are anyway available for them in their own local 

memory.  When processors complete the computation of all 

row-bands, they send their last row of the last band as the 

north-vectors for the next stage.  The north vectors are sent to 

processor                  .  The even numbered 

processors will also have to send the west-vectors as well as 

the north-west values to Stage II.  The last column of the last 

band      for some   and   is sent to               as the 

first west-vector and the last column of the previous band 

       is sent to the processor                as the next 

west-vector.  The first element of the last column’s first value 

of previous band        and the first element of the last column 

     values are sent to the processor              .  Stage 

I need not store the border Ghost values, as the border values 

are directly sent to the processors participating in Stage II.  

Processors in Stage II will receive north vector values, west 

vector, and north-west values from the previous stage and 

starts computing bands the usual way.  The band_size for  

Stage II will be double that of  Stage I.   

3. RESULTS AND DISCUSSIONS 
The Alignment Score and the Alignment was the same as 

compared to the Sequential SW Algorithm.  It was also 

proved that the algorithm suggested had followed the “Strict 

Computational Order” for computing the Similarity Matrix 

and had computed the Similarity Matrix in Parallel.  The Two 

Master Method and the Staircase Method were executed 

starting with the Sequence size,         as 256, Band_Size as 

4 and Processor Size as 4. Computation time   , 
Communication Time   , Initialization and Finalization time 

   for each processor were noted for the analysis.  A Graphical 

Snapshot of the Communication Matrix, and a Graphical 

Profile data was also recorded for analysis.  The experiments 

were repeated for various combinations of sequence length, 

Band_Size and Processor Size.  The Sequence length of 256, 

512 and 1024, Band_Size of 4, 8 and 16 and Processor Size of 

4, 8 and 16 were considered for experimentations.  Minimum 

sequence size of 256 was chosen because any sequence size 

smaller than 256 for Band_Size of 16 and Processor Size of 

16 would result in completion of execution in one pass.  And 

processors would get    column band for computation.  One 

pass computation would not help in analyzing the 

performance metrics: Speedup and Efficiency.  Minimum of 

Band_Size of 4 was chosen keeping in mind the execution of 

the Staircase Method.  In the Staircase Method, we considered 

Half_Band_Size which is half the size of the Band_Size.  A 

Band_Size less than 4 would lead to sequential computation.  

A minimum Processing size of 4 was chosen because two 

processors, the Send Master,   , and the Collection Master,    
would not be  participating in the Computing Similarity 

Matrix SM.  And less than 4 processors would lead to 

sequential computation.  The selected range of processors 

size, Band_Size and Sequence length would give sufficient 

and different combination of result set for analysis. 
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Let m be a Sequence Size, bs be the Band_Size and  N  be the 

machine size.  Input Set  I described by 3-tuple (m, bs, N).   

              (2)  

The total number of column band to be computed   is defined 

as: 

                 (3)   

Where m is the size of the Sequence, the number of 

participating nodes,   which participate in computing SM is 

total nodes of the system minus 2, because two nodes, Send 

Master and Collection Master do not participate in computing 

SM.      is defined as follows: 

      .   (4)  

The average number of column bands assigned for each 

participating node, average column band per participating 

node,   
  

are defined as follows: 

  
  

         (5) 

N is the total number of Processors involved in the 

computation.     is the Computation Time,    is the 

Communication Time,    is the Initialization and Finalization 

Time and   is the Total Time Taken.     is defined as: 

           .   (6)   

Experiments were conducted on Two Master Method for 27 

different combinations of Processors Size, Band_Size and 

Sequence Size.  For all Methods in the experiments, the time 

spent for MPI_Comm_Rank() and MPI_Comm_Size() 

functions were ignored.  These two functions consume 

significantly less time.  The following equations are used for 

computing   ,    and   . 

   = Average time spent in executing user defined functions, 

main() and maximum()  (7) 

  = Average time spent in executing MPI_Bcast(), 

MPI_Ssent() and MPI_Recv() (8) 

  = Average time spent in executing MPI_Init() and 

MPI_Finalize()   (9) 

For            ,   =6.42.  When N is doubled, theoretical 

expectations were that Total Computation Time,    would be 

reduced by half and     would be 3.21.  For             ,  
  =3.45.    was reduced almost close to half.  The 

Computation time    and communication time,    would also 

be reduced by half when the processor size was doubled.  But 

there was marginal increase in the Initialization and 

Finalization Time,   .  The increase in    is understandable as 

N increases.  The performance was achieved as the Band_Size 

was also doubled from 4 to 8.  Had the Band_Size been kept 

at 4 and  the Processor size doubled, results would not have 

been good.  Reasons for these phenomena are the following:  

Increase in the processors size with the same band_size, and 

sequence size would delay the starting of the later half of the 

processors and this would result in load imbalance. The 

increase in    was more when the sequence size was small.    

The significant reduction in    was noted for m=512 and 

m=1024 as well.  A notable decrease in    could be found in 

the following cases: For             ,   =94.01.  And for 

            ,   =36.94.  The performance of Two Master 

Method for various I is shown in Figure 3.      

 

Figure 3: Graph showing the performance of Two Master 

Method for various processor size and Sequence length. 

 

For all the three cases of sequence size 256, 512 and 1024 the 

Total Time taken    was almost reduced by half as N was 

doubled from 4 to 8, but the same kind of reduction in    was 

not observed when N was doubled from 8 to 16.      

Second set of observed results was noted.  The difference 

between second set of observed values with the first set is that 

in the later set   ,   ,   and    were recorded when 

Band_Size was the same as the Number of Processors but in 

the former set Band_Size was 2 times N.  The Total 

Computation time,   , did not show a significant reduction 

when the Band_Size and N were doubled for sequence size 

256 and 512, but for             ,   =22.01, when N and 

Band_Size were doubled,   ,=10.10, a reduction of more than 

half.  

The experiments were conducted on the following 

environment: Mobile Intel(R)  Pentium(R) 4 CPU 3.20GHz, 

700MB Memory, 1MB Cache On Linux Operating System.  

Because experiments were conducted on a single machine, the 

communication overhead   and Initialization and Finalization 

time    could be ignored for computing Total Computing 

Time,   .  Only    is considered for computing the total time 

  .   

 It was observed that for             ,            , 
           ,            ,             , and    
                average column band per participating node, 

  
  

 is a whole number.  When    
  

 is a whole number, all 

the processors are assigned equal number of column bands to 

be computed and the system achieves a perfect load balance.  

For other values of I, the average column band per 

participating node,    
  

 is a fractional number.  The 

percentage of processors participating in computing in the last 

pass of Computing SM is the fractional part.  When   

         ,      , and   
  

     , which shows  that for 

the 5 passes, all the participating nodes are participating in 

computing SM, but in the 6th pass, which is the last pass, only 

33% of participating nodes are assigned column bands for 

computation.  Only 2 participating nodes are assigned column 

bands in the last pass resulting in load imbalance in the last 

pass.  It could be assumed that if there was load balance in the 

system, the system would perform better than otherwise.   

Let us consider Input Sets, I where perfect load balance was 

achieved.  When            , N-node Speedup,        , 

and N-node Efficiency,        .  But when bs was doubled 

keeping   and N as the same as in the previous case, i.e., 

when            , the N-node Speedup,        , and N-

node Efficiency,        .  A Superliner Speedup was 

achieved.  The N-node Efficiency was also increased.  A 

speedup of more than 4 for a 4 node Machine size and 

efficiency of more than 1 was an encouraging result.  It was 
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observed that for any   and N, increasing the bs resulted in a 

better performance.  The better performance was not by 

chance.  It was also observed for the other I as well.  When 

When            ,        , and         and when 

           ,        , and        .  Better results were 

achieved by doubling bs.  The phenomenon was observed for 

m=1024 as well, i.e., for            ,        , and 

        and for             ,        , and        .  

It was observed that as bs was doubled for some N and m, 

there was a perfect load balance in the system and better 

  and   were achieved.  It could be concluded that load 

balance alone would not contribute to the achievement of 

better performance, Band_Size, bs plays an important role.  

Reasons for better performance as bs was doubled by keeping 

  and N was that for greater values of bs, the average column 

band assigned for a processor,   
  

 was low i.e less number of 

column bands were assigned to processors.   By assigning less 

number of column bands, elements of the column band to be 

accessed by the process was available in the cache itself and 

the page fault in each process was decreased because of 

locality of reference.  This decrease in the access time of an 

element resulted in increase of the performance of the 

computation.  The other reason could be that when the 

processor switches computation from one column band to the 

other column band, the operating system had to load the 

column band from the memory to the cache, which resulted in 

delayed  computation.  If    
  

 was more, there could be an 

increase in time for loading of columns by the Operation 

System from memory to cache.  The superliner speedup and 

the good efficiency achieved when              could be 

because the sequence size was small,   
  

 was low, there was 

perfect load balance and perhaps all the data structure needed 

was available in the cache itself.   But as N was increased for 

some m and bs, the performance was decreasing.  Reasons for 

the low performance could be attributed to the memory size 

and cache size, locality of reference and the amount of 

message passed from one processor to the other.  When the 

size of the sequence increases, memory requirement for the 

data structures:        ,                , 
               ,              ,                          
   ,                           ,and 

a                      increases.  The experiments were 

conducted on a single processor, and allocation of memory for 

these data structures, and loading the required data structures 

into cache could have caused delay.  This high paging activity 

could have resulted in increase of page fault rate thereby 

increasing the accessing time resulting in reduced 

performance.   

In summary, the Two Master Method was proposed to 

separate Sending jobs and collection jobs to the Smith-

Waterman Wavefront method.  Separation was proposed as 

Wavefront Method suffered from load imbalance.  In the SW 

Wavefront method, the  master was involved in both sending 

(or broadcasting) and in the collection of results from the 

participating processors,   .   In Two Master method, a 

separate Send Master,    and  a separate Receiving Master,     
were assigned the job of Sending and Receiving.   

Comparable results were achieved though the Two Master 

Method.  Two observations were noticed which could be 

generalized.  The first generalization was that for some     
when      and the Total Time,   , a reduction of half of     
was achieved for             .  The second 

generalization was that for some     when      and the 

Total Time,   , a reduction of half of    was achieved for 

              .  When,            the N-node 

Speedup,        , and N-node Efficiency,        .  A 

Superliner Speedup was achieved.  It was also observed that 

load balance alone would not contribute to the achievement of 

better performance; Band_Size, bs plays an important role.  

Low performance of the Two Master Method could be 

attributed to larger size of sequences causing page fault, large 

data structure to be loaded and accessed, and the large amount 

of message passed from one processor to the other.   

Experiments were conducted on Staircase Method for 27 

different combinations of Processors Size, Band_Size and 

Sequence Size.  For analysis, the time spent for 

MPI_Comm_Rank() and MPI_Comm_Size() functions were 

ignored.  These two functions consume significantly less time.  

The equations (7), (8) and (9) were used for computing  ,    

and   .  

For            ,   =6.62.  When N was doubled, theoretical 

expectations were that Total Computation Time,    would be 

reduced by half and     would be 3.31.  For            ,  
  =3.58.    was reduced to almost close to half.  The 

Computation time    and communication time,    would also 

reduced by half as the processor size was doubled.  But there 

was marginal increase in the Initialization and Finalization 

Time,   .  The increase in    is understandable and expected 

as N increases.  The performance was achieved as the 

Band_Size was also doubled from 4 to 8.  Had the Band_Size 

been kept at 4 and the Processor size doubled, results would 

not have been good.  Reasons for these phenomena are the 

same as discussed in the Two Master Method.     

A significant reduction in    was noted for m=512 and 

m=1024 as well.  A notable decrease in    can be found in the 

following cases: For             ,   =80.83.  And for 

            ,   =36.00.  The performance of Staircase 

Method for the various I is shown in Figure 4.      

 

Figure 4: Graph Showing the performance of Staircase 

Method for various size of processors and Sequence 

length. 

 

For all the three cases of sequence size 256, 512 and 1024 the 

Total Time taken     was almost reduced by half as N was 

doubled from 4 to 8, but the same kind of reduction in    was 

not observed when N was doubled from 8 to 16.      

Second set of observed results were noted.  The difference 

between second set of observed values with the first set is that 

in the later set   ,   ,   and    were recorded when       
but in the former set,       .  The Total Computation 

time,   , does show a reduction by     when Band_Size and 

N were doubled for sequence size 256, 512, 1024.  For the 

Two Master Method, when              ,   =22.01, and 

when N and Band_Size were doubled,   ,=10.10. A reduction 

of more than half in    was noticed, but for the same set of 

Input, the reduction in    was    .   Reasons for this 
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performance degradation could be due to the fact that as the 

Band Size was increased for the Staircase Method, the 

communication time was increasing.    

It was observed that for             ,            , 
           ,            ,             , and    
          , the average column band per participating node, 

  
  

 was a whole number.  When    
  

 was a whole number, 

all the processors were assigned equal number of column 

bands to be computed, and the system achieved a perfect load 

balance.  For other values of I, the average column band per 

participating node,    
  

 was a fractional number.  The 

percentage of processors participating in computing in the last 

pass of computing SM was the fractional part.  When 

           ,      , and   
  

      , showing that for 

the first 10 passes all the participating nodes were 

participating in computing SM, but in the 6th pass, which is 

the last pass, only 67% of participating nodes were assigned 

column bands for computation.  Only 4 participating nodes 

were assigned column bands in the last pass resulting in load 

imbalance in the last pass.  It could be assumed that if there 

was load balance in the system, the system would perform 

better than otherwise.   

Consider Input Sets, I where perfect load balance is achieved.  

When            , N-node Speedup,        , and N-

node Efficiency,        .  But when bs was doubled 

keeping   and N as the same as in the previous case, i.e., 

when            , the N-node Speedup,        , and N-

node Efficiency,        .  Like in the Two Master Method, 

the Staircase Method also achieves A Superliner Speedup.  

The n-Node Efficiency was also increasing.  A speedup of 

more than 4 for a 4 node Machine size and efficiency of more 

than 1 was an encouraging result.  It was observed that for any 

  and N, increasing the bs resulted in a better performance.  

The better performance was not by chance.  It was also 

observed for the other I as well.  When When            , 
       , and         and When            ,    
    , and        .  Better results were achieved by 

doubling bs.  The phenomenon was observed for m=1024 as 

well, i.e., when            ,        , and         and 

for             ,        , and        .  It was 

observed that when bs was doubled for some,N and m, there 

was a perfect load balance in the system and better   and    

were achieved.  It could be concluded that load balance alone 

would not contribute to the achievement of better 

performance; Band_Size, bs plays an important role.  Reasons 

for better performance as bs is doubled by keeping   and N 

have already been discussed for the Two Master Method and 

the same reasons hold good for the Staircase Method as well.  

A better performance was achieved for the Staircase Method 

compared to the Two Master Method.   

It was observed that when             , the Total 

Computation Time,    for the Staircase Method had been 

reduced marginally compared to the Two Master Method.  

When the     was doubled i.e., when              the gap 

in Total Computation Time,    between Two Master Method 

and Staircase Method was increasing.  When the sequence 

length   was increased from 512 to 1024, i.e., when   
          , the Total Computation Time              for 

Two Master Method and               for Staircase Method.   

But when             , Total Computation Time 

             for Two Master Method and               for 

Staircase Method; the gap in    had reduced.  It could be 

concluded that when for some   and   , when    was 

increased there was a better performance, but the performance 

degrades for larger   values.  Reasons for the phenomenon 

could be that when   is small, there was better load balance 

in the first pass and the computation was completed in a few 

passes.  As   was increased, there was good load balance in 

the first pass, but the computational bands,    had increased, 

thereby  increasing the number of passes (for smaller  ) 

resulting in the contribution of the load balance in the first 

pass not contributing significantly to the overall performance 

of the system.    

4. CONCLUSION 
In summary, the Staircase Method was proposed because in 

the Two Master Method, for the first pass computation, the 

last slave processor        ’s first computation is delayed till 

the processor receives the west-vector from processor        , 

which happens only when the processor   completes          

row-bands, processor    completes        row-bands, until 

processor         finishes its first row-band.  The delayed start 

for processor         is roughly         .  As      and 

           increase, the delayed start would also increase 

leading to load imbalance.   It was noticed that when 

           was small at the initial stages (at least till the 

computation reaches the first principal diagonal), the delayed 

start overhead could be reduced.  Delayed start was reduced 

by computing the Similarity-Matrix in two stages, Stage I and 

Stage II.  In Stage I, Similarity Matrix  was computed by 

including all slave processors in the computation till the  

computation reaches first positive slope       .  The 

Algorithm, reduce both the row-band and column-band by 

half.  The size of the row-band and column-band would be 

            for initial computations. This band was 

called,            .  In Stage II, the computation of 

Similarity Matrix was continued with the same size, as it 

computed in the Two Master Method with a few 

modifications.  As in the Two Master Method, Send Master, 

   and  Receiving Master     were assigned the job of Sending 

and Receiving.  Comparable results were achieved through 

the Staircase Method.  Two observations were noticed which 

can be generalized.  The first generalization was that for some 

  and when      and  Total Time,  , a reduction of half of 

the     was achieved for             .  The second 

generalization was that for some   and when      and a 

Total Time,  , a reduction of half of the    was achieved for 

              .  When,           , the N-node 

Speedup,        , and N-node Efficiency,        .  A 

Superliner Speedup was achieved.  It was also observed that 

load balance alone would  not contribute to the achievement 

of better performance;  Band_Size, bs plays an important role.  

The Staircase Method performance was better when for some 

  and   and  the    were increased.   But the performance of 

the Staircase Method compared to the Two Master Method 

degrades for a larger size of  .  Low performance of the 

Staircase Method in some cases could be attributed to the 

larger size of sequences, page fault, loading overhead for the 

large data structure and the large amount of message passed 

from one processor to the other.   
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