
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

1

Staircase Method: A Novel Method for
Parallelizing S-W Algorithm

Muralidhara B L

Department of Computer
Science

Bangalore University
Bangalore - 560056

ABSTRACT

Sequence comparison is a basic operation in DNA sequencing

projects, and most of sequence comparison methods are based

on heuristics, which are fast but not sensitive. The Dynamic

Programming Algorithm, Smith-Waterman, obtains the best

alignment, but at the expense of computational time.

Unfortunately, the inefficiency in the performance of the

Smith-Waterman algorithm limits its applications in the real

world. A possible way out of this is to use parallelization

methods for decreasing the time taken to execute the

algorithm. In this paper, we present a two master method and

a novel parallel technique called staircase method to improve

the performance of the Smith-Waterman algorithm.

General Terms

Bioinformatics, Parallel Processing.

Keywords
Sequence alignment, Efficiency, Load balance, Speedup,

staircase method

1. INTRODUCTION
Sequence alignment is the procedure of comparing two or

more DNA or protein sequences by searching for a series of

individual characters or character patterns that are in the same

order in the sequence. If the sequence comparison process

involves more than two sequences the process is called

multiple sequence alignment. Otherwise, it is called pairwise

alignment. For the purpose of this paper, pairwise alignment

involving only two sequences is considered. Two sequences

are aligned by writing them across a page in two rows,

identical or similar characters are placed in the same column,

and non-identical characters are placed either in the same

column as a mismatch or opposite a gap in the other sequence.

In an optimal alignment, non-identical characters and gaps are

placed to bring as many identical or similar characters as

possible into vertical registers. Sequence alignment of

biological sequences is useful for discovering functional,

structural, and evolutionary relationship information in DNA

or protein sequences.

The important types of sequence comparison problems are

global and local. To solve the global alignment problem, one

has to find the best match between entire sequences. In local

alignment algorithms, one must find the best match (matches)

between parts of sequences. In local alignment, stretches of

sequences with the highest density of matches are aligned,

thus generating one or more islands of matches or

subalignments in the aligned sequences. There is also a third

kind of sequence alignment where the alignment is not on

arbitrary substrings, but prefixes and suffixes of the given

sequences [21]. Figure 1 compares the Global alignment and

Local alignment process.

A C G G C A T C A G C T G G A

 | | | | | | | |

A G C G C A A T A G C C T G T

- - - G C A - - A G C - - - -

 | | | | | |

- - - G C A - - A G C - - - -

Figure 1: Difference between Local Alignment and Global

Alignment (the top diagram is the global alignment and

the bottom is the local alignment).

Biological sequences are known to mutate as they evolve

from one generation to the next, and a useful algorithm that

gives a measure of similarity between two sequences should

consider changes like substitution, deletion, and insertion of

residues. Given a pair of sequences, there are many possible

alignments, and each alignment of residues can be assigned a

score using a matrix which rewards exact letter matches and

also penalizes substitution (i.e., where a letter in one sequence

is mapped to a different letter in the other sequence) and gaps

(i.e., where aligned letters are the same, but they occur in

different relative positions due to insertions or deletions in the

sequences).

Given an alignment between two sequences X and Y with

length m and n respectively, a score is associated for them as

follows: For each column, we associate +1 if the two letters

are identical, -1 if the letters are different, and -2 if one of

them is a space. The score is the sum of the values computed

for each column. The maximum score is the similarity

between the two sequences. There can be many alignments

with maximum score. Figure 2 shows one such alignment of

sequence X and Y, with scores for each column. In this case,

there are two columns with identical characters; one with

distinct character and two columns with a space, giving a total

score of -3.

X G A C G -

Y - A T G C

Score -2 +1 -1 +1 -2 = -3

Figure 2: Alignment of the sequences X= GACG and Y=

ATGC.

Sequences that are very much alike, or “similar” in the

parlance of sequence analysis, probably have the same

function. If two sequences from different organisms are

similar, there may have been a common ancestor sequence,

and the sequences are then defined as being homologous.

Various algorithms have been developed for Sequence

alignment. They include Smith-Waterman [22], Needleman-

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

2

Wunch [15], BLAST [1],[2], FASTA [18], MUMmer [5], [6],

REPuter [11], BLAT [10], PatternHunter [13], Bayer block

aligner [24], PipMaker [20], SIM [8], SIM4 [7], and

GeneSeqer [23].

The Smith-Waterman dynamic programming algorithm which

can find the match between two remotely related sequences

consists of two parts: calculation of the total score indicating

the similarity between the two given sequences, and the

identification of the optimal alignment(s) with traces left by

the highest scores along the matrix. Given two sequences,

 and for and ,

the Similarity Matrix is built by applying the

following recurrence relation:

 (1)

The task of parallel pairwise sequence alignment of biological

sequences can be divided into the following stages: (1)

Broadcasting two sequences by the master to participating

slaves, (2) Computation of the Partial Similarity Matrix by

each processor at the local node using the sequential Smith-

Waterman algorithm, (3) collection of local alignment and

scores by the master from participating slaves, and (4) final

Alignment of sequences by the master. In the four stages,

there is little scope for stages (1), (2) and (4) for

parallelization. The Partial Similarity Matrix can be

computed in parallel. Stage (2), computation of Partial

Similarity Matrix, is a potential stage for parallelization. Each

processor may be assigned a set of rows and columns, called

as band, which is a Partial Similarity Matrix. This Partial

Similarity Matrix is computed by the process at the local node

using the Sequential Smith-Waterman Algorithm,

sequentially. Processors can compute a Partial Similarity

Matrix in parallel. But the order of computation of a Partial

Similarity Matrix is strict and this order of computation has to

be maintained by all processors. The order of computation is

strict because for computing each Partial Similarity Matrix,

the north-vector (north values of a Partial Similarity Matrix),

west-vector (west values of a Partial Similarity Matrix) and

the north-west values of a Partial Similarity Matrix are

required.

2. TWO MASTER METHOD AND

STAIRCASE METHOD
Several attempts have been made to increase the performance

of Smith-Waterman algorithms performances [3], [4], [9],

[12], [14], [16], [17], [19]. In the existing parallel methods, a

single master is used to broadcast sequences to participating

slaves and collect the local alignments from slaves: Master

broadcasts to slaves, sequences to be aligned and West-

Vectors for computing a Partial Similarity Matrix (SM). The

master collects from slaves, local alignments and the best

alignment score. The many number of tasks computed by the

master “stall” the slave processors. The slave processors have

to wait for the west-vectors to be received by them before

computing the Partial Similarity Matrix. To overcome these

“stalls”, the tasks performed by the master can be split into

two, (1) the broadcasting job and (2) the results collection job.

These two tasks can then be independently handled by two

different masters; we can call these masters, the collection

master and the broadcasting master.

To illustrate the strategy, let the of the system, number of

processors participating in the system, be 17 (one master and

16 slaves). Let the length of the first sequence n , length of

the second sequence be 16K each, and number of columns

in the band be 64. Each processor is assigned

 i.e., 16

bands to compute. The first band (first Partial Similarity

Matrix) is assigned to the first processor, second band to the

second processor and so on, the 17th band to the first

processor, 18th band to the second processor and so on. The

order of communication is strict: the first processor to

compute the 17th band (first slave processors’ second band

for computation) has to receive the west-vector of the

sixteenth band (computed by the 16th processor, which sends

the west-vector to master). At this point, the master is also

involved in collecting local results from all sixteen slave

processors. After Master-I collect local alignments from

slaves, it uses the weighted tree method to find the final

alignment. The master has to collect local alignments from all

processors before it sends the west-vector and the north-west

value to the first slave. The master has to execute sixteen

local alignment “receive” functions, “receive” the west-vector

from the last slave processors (16th processor), and then

execute the “send west-vector” to the first slave function. The

first processor (slave) at this point is “waiting” to execute the

function, and “receive” the west-vector from the master.

Until this “receive” is complete, the first processor cannot

proceed with the computation of the next Partial Similarity

Matrix. As long as the first slave completes computation of a

Partial Similarity Matrix, the other processors cannot continue

with computation. This delay caused by the master to send

the west-vector to the first slave, stalls computation. The

delay causes load imbalance, and decreases performance of

overall computation. To overcome this problem, the two-

master strategy is suggested. In the proposed system, one

master is used for partial result collection and the other master

for broadcasting sequences and other vectors required for

computing a Partial Similarity Matrix.

In the proposed strategy, the task of initiating and collecting is

separated. The job of initiating and sending the west vectors

to the first processor is handled by Master-I and the local

alignment collection from all the processors is handled by

Master-II, who we then call the Collection Master. In this

strategy, Processor 0 is Master-I which broadcasts sequences

to all processors except to itself and processor .

Master-I also collects the boundary values from the processor

 . Processor is Master-II, which is the

collection master. Both the rows and columns are divided

into equal size, which we call, . We assume that

 , , and , which means there are at

least 3 processors participating in the computation, the first

one being Master-I, the second one being Master-II and the

third one, the slave node. The algorithm has five modules:

the modules for Master-I, Master-II, processor 1, processor

 , and the one for all other processors. Master-I,

copies the two sequences, which are in FASTA format and

stores those in the data structures, and which are of length

 and respectively. Master-I computes the gap penalties,

0th row and 0th column of and stores it in the data

structures, and respectively. All these data

structures, , , , and are stored in the local

memory of the Broadcast Master. These data structures are

“broadcast” to all slave processors. , the number of

columns and rows to be considered in the band, is accepted

from the user. The total number of column-bands available

for computation then will be and number of

row-bands in each column will be .

Each processor, except the two masters, is assigned an entire

column band for computation at a time. Once the processor

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

3

completes the computation of a column band,
 column band is assigned to the processor and the

assignment continues till there are no column bands available

for computation. Within each column band, a processor

computes one row-band at a time. After the slave completes a

Partial Similarity Matrix, it “sends” west-vectors, and the

north-west value to the next process before proceeding to the

next Partial Similarity Matrix in the column. These vectors

are received by the next processor through the function

“receive” from the previous processor. The process of

computing the row-band is continued till all row-bands of the

column band are computed by the processor. Each row-band

computed (partial) is of the size, .

To compute this of the size, ,

the processor needs the north vector of size, , the

west vector of size, , and a north-west value. For a

total of values received by the slave,

 computations are done. A processor

after completing a band , for some row band , and

column band , aligns the partial sequences using S-W trace-

back alignment algorithm, stores the partial alignment score in

the data structure , and partial alignment in

the data structure in its local memory along with

its similarity score. The processor after aligning sequences of

band , compares the alignment score with the previous

alignment. The processor keeps only the best alignments and

discards the other alignments. After completing the column

band, the processor sends and

to the Collection Master.

2.1 Staircase Method With Two Masters
In this section, we discuss a novel method to improve the load

balance of the S-W parallel algorithm. We call this method,

the “staircase” method. The method is called, the Staircase

Method since the computation in this method goes like the

steps of a staircase. Though the previous strategy, Two Master

Method, improves the performance of the S-W parallel

algorithm, it fails to balance the load in the system. The last

slave processor ’s first computation is delayed till this

processor receives the west-vector from processor ,

which can happen only when the processor completes

 row-bands, processor completes row-

bands, until processor finishes its first row-band. The

delayed start for processor is roughly . As

 and increase, the delayed start also increases

and leads to load imbalance. We achieve better load balance

in Staircase Strategy by decreasing the delayed start.

It is noticed that when is small at the initial stages

(at least till the computation reaches the first principal

diagonal), the delayed start overhead can be reduced. We

have achieved this by computing the Similarity Matrix in two

stages, Stage I and Stage II. In Stage I, the computation of the

Similarity Matrix is handled by including all slave processors

in the computation till the computation reaches the first

positive slope . The size of the row-band and the

column-band is reduced to half. The size of the row-band and

column-band will be for initial computations.

We call this band_size as . In Stage II, the

computation of the Similarity Matrix is continued with the

same size, just as we have done it in the first strategy but with

a few modifications. In Stage I, processors compute half-

Similarity-Matrix . The size of the is

 . That is half the size of the

Partial we have considered in the first strategy, which is of

the size, . All the processors are

involved in the computation of h_SM. Therefore the delayed

start problem of the previous methods have been efficiently

handled. Within the first stage, since the band_size is

reduced, by half of Stage II, the delayed start for the last

processor is further reduced. In Stage I, all processors will

take one column band each except which takes two

column-bands. But the number of row-bands computed by

each processor is different. computes row-bands,

 computes two row-bands, and other processor

computes number of row-bands. The

computation of band, for some and , receives west and

north-west vectors from the previous processors. The north-

values are anyway available for them in their own local

memory. When processors complete the computation of all

row-bands, they send their last row of the last band as the

north-vectors for the next stage. The north vectors are sent to

processor . The even numbered

processors will also have to send the west-vectors as well as

the north-west values to Stage II. The last column of the last

band for some and is sent to as the

first west-vector and the last column of the previous band

 is sent to the processor as the next

west-vector. The first element of the last column’s first value

of previous band and the first element of the last column

 values are sent to the processor . Stage

I need not store the border Ghost values, as the border values

are directly sent to the processors participating in Stage II.

Processors in Stage II will receive north vector values, west

vector, and north-west values from the previous stage and

starts computing bands the usual way. The band_size for

Stage II will be double that of Stage I.

3. RESULTS AND DISCUSSIONS
The Alignment Score and the Alignment was the same as

compared to the Sequential SW Algorithm. It was also

proved that the algorithm suggested had followed the “Strict

Computational Order” for computing the Similarity Matrix

and had computed the Similarity Matrix in Parallel. The Two

Master Method and the Staircase Method were executed

starting with the Sequence size, as 256, Band_Size as

4 and Processor Size as 4. Computation time ,
Communication Time , Initialization and Finalization time

 for each processor were noted for the analysis. A Graphical

Snapshot of the Communication Matrix, and a Graphical

Profile data was also recorded for analysis. The experiments

were repeated for various combinations of sequence length,

Band_Size and Processor Size. The Sequence length of 256,

512 and 1024, Band_Size of 4, 8 and 16 and Processor Size of

4, 8 and 16 were considered for experimentations. Minimum

sequence size of 256 was chosen because any sequence size

smaller than 256 for Band_Size of 16 and Processor Size of

16 would result in completion of execution in one pass. And

processors would get column band for computation. One

pass computation would not help in analyzing the

performance metrics: Speedup and Efficiency. Minimum of

Band_Size of 4 was chosen keeping in mind the execution of

the Staircase Method. In the Staircase Method, we considered

Half_Band_Size which is half the size of the Band_Size. A

Band_Size less than 4 would lead to sequential computation.

A minimum Processing size of 4 was chosen because two

processors, the Send Master, , and the Collection Master,
would not be participating in the Computing Similarity

Matrix SM. And less than 4 processors would lead to

sequential computation. The selected range of processors

size, Band_Size and Sequence length would give sufficient

and different combination of result set for analysis.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

4

Let m be a Sequence Size, bs be the Band_Size and N be the

machine size. Input Set I described by 3-tuple (m, bs, N).

 (2)

The total number of column band to be computed is defined

as:

 (3)

Where m is the size of the Sequence, the number of

participating nodes, which participate in computing SM is

total nodes of the system minus 2, because two nodes, Send

Master and Collection Master do not participate in computing

SM. is defined as follows:

 . (4)

The average number of column bands assigned for each

participating node, average column band per participating

node,

are defined as follows:

 (5)

N is the total number of Processors involved in the

computation. is the Computation Time, is the

Communication Time, is the Initialization and Finalization

Time and is the Total Time Taken. is defined as:

 . (6)

Experiments were conducted on Two Master Method for 27

different combinations of Processors Size, Band_Size and

Sequence Size. For all Methods in the experiments, the time

spent for MPI_Comm_Rank() and MPI_Comm_Size()

functions were ignored. These two functions consume

significantly less time. The following equations are used for

computing , and .

 = Average time spent in executing user defined functions,

main() and maximum() (7)

 = Average time spent in executing MPI_Bcast(),

MPI_Ssent() and MPI_Recv() (8)

 = Average time spent in executing MPI_Init() and

MPI_Finalize() (9)

For , =6.42. When N is doubled, theoretical

expectations were that Total Computation Time, would be

reduced by half and would be 3.21. For ,
 =3.45. was reduced almost close to half. The

Computation time and communication time, would also

be reduced by half when the processor size was doubled. But

there was marginal increase in the Initialization and

Finalization Time, . The increase in is understandable as

N increases. The performance was achieved as the Band_Size

was also doubled from 4 to 8. Had the Band_Size been kept

at 4 and the Processor size doubled, results would not have

been good. Reasons for these phenomena are the following:

Increase in the processors size with the same band_size, and

sequence size would delay the starting of the later half of the

processors and this would result in load imbalance. The

increase in was more when the sequence size was small.

The significant reduction in was noted for m=512 and

m=1024 as well. A notable decrease in could be found in

the following cases: For , =94.01. And for

 , =36.94. The performance of Two Master

Method for various I is shown in Figure 3.

Figure 3: Graph showing the performance of Two Master

Method for various processor size and Sequence length.

For all the three cases of sequence size 256, 512 and 1024 the

Total Time taken was almost reduced by half as N was

doubled from 4 to 8, but the same kind of reduction in was

not observed when N was doubled from 8 to 16.

Second set of observed results was noted. The difference

between second set of observed values with the first set is that

in the later set , , and were recorded when

Band_Size was the same as the Number of Processors but in

the former set Band_Size was 2 times N. The Total

Computation time, , did not show a significant reduction

when the Band_Size and N were doubled for sequence size

256 and 512, but for , =22.01, when N and

Band_Size were doubled, ,=10.10, a reduction of more than

half.

The experiments were conducted on the following

environment: Mobile Intel(R) Pentium(R) 4 CPU 3.20GHz,

700MB Memory, 1MB Cache On Linux Operating System.

Because experiments were conducted on a single machine, the

communication overhead and Initialization and Finalization

time could be ignored for computing Total Computing

Time, . Only is considered for computing the total time

 .

 It was observed that for , ,
 , , , and
 average column band per participating node,

 is a whole number. When

 is a whole number, all

the processors are assigned equal number of column bands to

be computed and the system achieves a perfect load balance.

For other values of I, the average column band per

participating node,

 is a fractional number. The

percentage of processors participating in computing in the last

pass of Computing SM is the fractional part. When

 , , and

 , which shows that for

the 5 passes, all the participating nodes are participating in

computing SM, but in the 6th pass, which is the last pass, only

33% of participating nodes are assigned column bands for

computation. Only 2 participating nodes are assigned column

bands in the last pass resulting in load imbalance in the last

pass. It could be assumed that if there was load balance in the

system, the system would perform better than otherwise.

Let us consider Input Sets, I where perfect load balance was

achieved. When , N-node Speedup, ,

and N-node Efficiency, . But when bs was doubled

keeping and N as the same as in the previous case, i.e.,

when , the N-node Speedup, , and N-

node Efficiency, . A Superliner Speedup was

achieved. The N-node Efficiency was also increased. A

speedup of more than 4 for a 4 node Machine size and

efficiency of more than 1 was an encouraging result. It was

0

50

100

150

4 8 16 Ti
m

e
 in

 S
e

co
n

d
s

Number of Processors

1
0

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

5

observed that for any and N, increasing the bs resulted in a

better performance. The better performance was not by

chance. It was also observed for the other I as well. When

When , , and and when

 , , and . Better results were

achieved by doubling bs. The phenomenon was observed for

m=1024 as well, i.e., for , , and

 and for , , and .

It was observed that as bs was doubled for some N and m,

there was a perfect load balance in the system and better

 and were achieved. It could be concluded that load

balance alone would not contribute to the achievement of

better performance, Band_Size, bs plays an important role.

Reasons for better performance as bs was doubled by keeping

 and N was that for greater values of bs, the average column

band assigned for a processor,

 was low i.e less number of

column bands were assigned to processors. By assigning less

number of column bands, elements of the column band to be

accessed by the process was available in the cache itself and

the page fault in each process was decreased because of

locality of reference. This decrease in the access time of an

element resulted in increase of the performance of the

computation. The other reason could be that when the

processor switches computation from one column band to the

other column band, the operating system had to load the

column band from the memory to the cache, which resulted in

delayed computation. If

 was more, there could be an

increase in time for loading of columns by the Operation

System from memory to cache. The superliner speedup and

the good efficiency achieved when could be

because the sequence size was small,

 was low, there was

perfect load balance and perhaps all the data structure needed

was available in the cache itself. But as N was increased for

some m and bs, the performance was decreasing. Reasons for

the low performance could be attributed to the memory size

and cache size, locality of reference and the amount of

message passed from one processor to the other. When the

size of the sequence increases, memory requirement for the

data structures: , ,
 , ,
 , ,and

a increases. The experiments were

conducted on a single processor, and allocation of memory for

these data structures, and loading the required data structures

into cache could have caused delay. This high paging activity

could have resulted in increase of page fault rate thereby

increasing the accessing time resulting in reduced

performance.

In summary, the Two Master Method was proposed to

separate Sending jobs and collection jobs to the Smith-

Waterman Wavefront method. Separation was proposed as

Wavefront Method suffered from load imbalance. In the SW

Wavefront method, the master was involved in both sending

(or broadcasting) and in the collection of results from the

participating processors, . In Two Master method, a

separate Send Master, and a separate Receiving Master,
were assigned the job of Sending and Receiving.

Comparable results were achieved though the Two Master

Method. Two observations were noticed which could be

generalized. The first generalization was that for some
when and the Total Time, , a reduction of half of
was achieved for . The second

generalization was that for some when and the

Total Time, , a reduction of half of was achieved for

 . When, the N-node

Speedup, , and N-node Efficiency, . A

Superliner Speedup was achieved. It was also observed that

load balance alone would not contribute to the achievement of

better performance; Band_Size, bs plays an important role.

Low performance of the Two Master Method could be

attributed to larger size of sequences causing page fault, large

data structure to be loaded and accessed, and the large amount

of message passed from one processor to the other.

Experiments were conducted on Staircase Method for 27

different combinations of Processors Size, Band_Size and

Sequence Size. For analysis, the time spent for

MPI_Comm_Rank() and MPI_Comm_Size() functions were

ignored. These two functions consume significantly less time.

The equations (7), (8) and (9) were used for computing ,

and .

For , =6.62. When N was doubled, theoretical

expectations were that Total Computation Time, would be

reduced by half and would be 3.31. For ,
 =3.58. was reduced to almost close to half. The

Computation time and communication time, would also

reduced by half as the processor size was doubled. But there

was marginal increase in the Initialization and Finalization

Time, . The increase in is understandable and expected

as N increases. The performance was achieved as the

Band_Size was also doubled from 4 to 8. Had the Band_Size

been kept at 4 and the Processor size doubled, results would

not have been good. Reasons for these phenomena are the

same as discussed in the Two Master Method.

A significant reduction in was noted for m=512 and

m=1024 as well. A notable decrease in can be found in the

following cases: For , =80.83. And for

 , =36.00. The performance of Staircase

Method for the various I is shown in Figure 4.

Figure 4: Graph Showing the performance of Staircase

Method for various size of processors and Sequence

length.

For all the three cases of sequence size 256, 512 and 1024 the

Total Time taken was almost reduced by half as N was

doubled from 4 to 8, but the same kind of reduction in was

not observed when N was doubled from 8 to 16.

Second set of observed results were noted. The difference

between second set of observed values with the first set is that

in the later set , , and were recorded when
but in the former set, . The Total Computation

time, , does show a reduction by when Band_Size and

N were doubled for sequence size 256, 512, 1024. For the

Two Master Method, when , =22.01, and

when N and Band_Size were doubled, ,=10.10. A reduction

of more than half in was noticed, but for the same set of

Input, the reduction in was . Reasons for this

0

20

40

60

80

100

120

4 8 16

Number of P roc essors

T
im

e
 i

n
 S

e
c

o
n

d
s

1024

512

256

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

6

performance degradation could be due to the fact that as the

Band Size was increased for the Staircase Method, the

communication time was increasing.

It was observed that for , ,
 , , , and
 , the average column band per participating node,

 was a whole number. When

 was a whole number,

all the processors were assigned equal number of column

bands to be computed, and the system achieved a perfect load

balance. For other values of I, the average column band per

participating node,

 was a fractional number. The

percentage of processors participating in computing in the last

pass of computing SM was the fractional part. When

 , , and

 , showing that for

the first 10 passes all the participating nodes were

participating in computing SM, but in the 6th pass, which is

the last pass, only 67% of participating nodes were assigned

column bands for computation. Only 4 participating nodes

were assigned column bands in the last pass resulting in load

imbalance in the last pass. It could be assumed that if there

was load balance in the system, the system would perform

better than otherwise.

Consider Input Sets, I where perfect load balance is achieved.

When , N-node Speedup, , and N-

node Efficiency, . But when bs was doubled

keeping and N as the same as in the previous case, i.e.,

when , the N-node Speedup, , and N-

node Efficiency, . Like in the Two Master Method,

the Staircase Method also achieves A Superliner Speedup.

The n-Node Efficiency was also increasing. A speedup of

more than 4 for a 4 node Machine size and efficiency of more

than 1 was an encouraging result. It was observed that for any

 and N, increasing the bs resulted in a better performance.

The better performance was not by chance. It was also

observed for the other I as well. When When ,
 , and and When ,
 , and . Better results were achieved by

doubling bs. The phenomenon was observed for m=1024 as

well, i.e., when , , and and

for , , and . It was

observed that when bs was doubled for some,N and m, there

was a perfect load balance in the system and better and

were achieved. It could be concluded that load balance alone

would not contribute to the achievement of better

performance; Band_Size, bs plays an important role. Reasons

for better performance as bs is doubled by keeping and N

have already been discussed for the Two Master Method and

the same reasons hold good for the Staircase Method as well.

A better performance was achieved for the Staircase Method

compared to the Two Master Method.

It was observed that when , the Total

Computation Time, for the Staircase Method had been

reduced marginally compared to the Two Master Method.

When the was doubled i.e., when the gap

in Total Computation Time, between Two Master Method

and Staircase Method was increasing. When the sequence

length was increased from 512 to 1024, i.e., when
 , the Total Computation Time for

Two Master Method and for Staircase Method.

But when , Total Computation Time

 for Two Master Method and for

Staircase Method; the gap in had reduced. It could be

concluded that when for some and , when was

increased there was a better performance, but the performance

degrades for larger values. Reasons for the phenomenon

could be that when is small, there was better load balance

in the first pass and the computation was completed in a few

passes. As was increased, there was good load balance in

the first pass, but the computational bands, had increased,

thereby increasing the number of passes (for smaller)

resulting in the contribution of the load balance in the first

pass not contributing significantly to the overall performance

of the system.

4. CONCLUSION
In summary, the Staircase Method was proposed because in

the Two Master Method, for the first pass computation, the

last slave processor ’s first computation is delayed till

the processor receives the west-vector from processor ,

which happens only when the processor completes

row-bands, processor completes row-bands, until

processor finishes its first row-band. The delayed start

for processor is roughly . As and

 increase, the delayed start would also increase

leading to load imbalance. It was noticed that when

 was small at the initial stages (at least till the

computation reaches the first principal diagonal), the delayed

start overhead could be reduced. Delayed start was reduced

by computing the Similarity-Matrix in two stages, Stage I and

Stage II. In Stage I, Similarity Matrix was computed by

including all slave processors in the computation till the

computation reaches first positive slope . The

Algorithm, reduce both the row-band and column-band by

half. The size of the row-band and column-band would be

 for initial computations. This band was

called, . In Stage II, the computation of

Similarity Matrix was continued with the same size, as it

computed in the Two Master Method with a few

modifications. As in the Two Master Method, Send Master,

 and Receiving Master were assigned the job of Sending

and Receiving. Comparable results were achieved through

the Staircase Method. Two observations were noticed which

can be generalized. The first generalization was that for some

 and when and Total Time, , a reduction of half of

the was achieved for . The second

generalization was that for some and when and a

Total Time, , a reduction of half of the was achieved for

 . When, , the N-node

Speedup, , and N-node Efficiency, . A

Superliner Speedup was achieved. It was also observed that

load balance alone would not contribute to the achievement

of better performance; Band_Size, bs plays an important role.

The Staircase Method performance was better when for some

 and and the were increased. But the performance of

the Staircase Method compared to the Two Master Method

degrades for a larger size of . Low performance of the

Staircase Method in some cases could be attributed to the

larger size of sequences, page fault, loading overhead for the

large data structure and the large amount of message passed

from one processor to the other.

5. ACKNOWLEDGMENTS
The author acknowledges Dr.Srinivas Bhogle, Director and

Country Head, TEOCO Software Private Ltd, Bangalore and

Dr. Pradeep G Siddheshwar, Bangalore University for their

critical comments and valuable inputs.

6. REFERENCES
[1] Altschul F Stephen, Warren Gish, Webb Miller, Eugene

W. Myers & David J. Lipman. 1990. “Basic Local

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.1, February 2013

7

Alignment Search Tool”. Journal of Molecular Biology,

215, 403-410.

[2] Altschul F Stepehn, Tomas L. Madden, Alejandro A.

Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller and

David J. Lipman. 1997. “Gapped BLAST and PSI-

BLAST: a new generation of protein database search

programs”. Nucleic Acids Research, Vol.25, No.17,

3389-3402.

[3] Batista Rodolfo Bezerra, Debora Nery Silva, Alba

Cristina Magalhaes Alves de Melo, and Li Weigang.

2004. “Using a DSM Application to Locally Align DNA

Sequences”. 2004IEEE International Symposium on

Cluster Computing and the Grid, IEEE Computer

Society.

[4] Boukerche Azzedine, Alba Cristina Magalhaes Alves De

Melo, Maria Emilia Telles Walter, Renata Cristina Faray

Melo, Marcelo Nardelli Pinto Santana, Rodolfo Bezerra

Batista. 2004. “A Performance Evaluation of a Local

DNA Sequence Alignment Algorithm on a Cluster of

Workstations”. Proceedings of the 18th International

Parallel and Distributed Processing Symposium

(IPDPS’04).

[5] Delcher L Arthur, Adam Phillippy, Jane Carlton and

Steven L. Salzberg. 2002. “Fast algorithms for large-

scale genome alignment and comparison”. Nucleic

Acids Research, Vol.30, No.11, 2478-2483.

[6] Delcher L Arthur, Simon Kasif, Robert D. Fleischmann,

Jeremy Peterson, Owen White and Steven L Salzberg.

1999. “Alignment of whole genomes”. Nucleic Acids

Research, Vol.27, No.11, 2369-2376.

[7] Florea L, Hartzell G, Zhang Z, Rubin G M, and Webb

Miller W. 1998. “A computer program for aligning a

cDNA sequence with a genomic DNA sequence”.

Genome Res. Vol.8, pp.967-974.

[8] Huang X, Hardison R C, and Miller W. 1990. “A space-

efficient algorithm for local similarities”. CABIOS,

Vol.6, 373-381.

[9] Hughey Richard. 1996. “Parallel Hardware for Sequence

Comparison and Alignment”. CABIOS, Vol.12, No.6,

pp.473-479.

[10] Kent James. W. 2002. “BLAT – The BLAST-Like

Alignment Tool”. Genome Research, Vol. 12, pp.656-

664.

[11] Kurtz Atefan and Chris Schleiermacher. 1999.

“REPuter: fast computation on maximal repeats in

complete genomes”. Bioinformatics, Vol.15, no.5, 426-

427.

[12] Liao Hsien-Yu, Meng-Lai Yin, and Yi Cheng. 2004. “A

Parallel Implementation of the Smith-Waterman for

Massive sequences Searching”. Proceedings of the 26th

Annual International Conference of the IEEE EMBS,

pp.2817-2820.

[13] Ma Bin, Joh Tromp and Ming Li. “Pattern Hunter: faster

and more sensitive homology search”. 2002.

Bioinformatics, Vol. 18, no. 3, pp. 440-445.

[14] Martins W.S, J.B. Del Cuvillo, F.J. Useche, K.B.

Theobald, and G.R. Gao. 2001. “A Multithreaded

Parallel implementation of a Dynamic Programming

Algorithm for Sequence comparison”. Int. Symposium

on Computer Architecture and HPC (SBAC-PAD), 1-8.

[15] Needleman Saul B & Christian D. Wunsch. 1970. “A

General Method Applicable to the Search for Similarities

in the Amino Acid Sequence of Two Proteins”. Journal

of Molecular Biology, 48, 443-453.

[16] Pekurovsky D, I. N. Shindyalov and P.E. Bourne. 2004.

“A Case study of high-throughput biological data

processing on parallel platforms”. Bioinformatics,

Vol.20, no.12, pp.1940-1947.

[17] Pellicer Stephen, Nova Ahmed, Yi Pan and Yao Zheng.

2005. “Gene Sequence Alignment on a Public

Computing Platform”. Proceedings of the 2005

International Conference on Parallel Processing

Workshops (ICPPW’05).

[18] Person W R and Miller W. 1992. “Dynamic

Programming algorithm for biological sequence

comparison”. Methods Enzymol, Vol.210, pp.575-601.

[19] Rognes Torbjorn & Erling Seeberg. 1981. “Six-fold

speedup of Smith-Waterman sequence database searches

using parallel processing on common microprocessors”.

Bioinformatics. Vol.16, no.8, 699-706.

[20] Schwartz S, Zhang Z, Frazer K A, Smith A, Riemer C,

Bouck J, Gibbs R, Hardison R, and Miller W. 2000.

“PipMaker – A web server for aligning two genomic

DNA sequences”. Genome Res., Vol 10, pp. 577-586.

[21] Setubal and Meidanis. 1997. Introduction to

Computational Molecular Biology. Brooks/Cole

Publishing Company.

[22] Smith T. F, & M.S. Waterman. 1981. “Identification of

Common Molecular Sequences”. Journal of Molecular

Biology, 147, 195-197.

[23] Usuka J, Zhu W, and Brendel V. 2000. “Optimal spiced

alignment of homologous cDNA to a genomic DNA

template”. Bioinformatics, Vol.16, pp.203-211.

[24] Zhu J, Liu J S, and Lawrence C E. 1998. “Bayesian

adaptive sequence alignment algorithms”.

Bioinformatics, Vol.14, pp.25-39.

