
International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

37

Using Container Architecture to Detect Intrusion for

Multitier Web Application

Manoj E. Patil
Associate Professor

SSBT’s COE,
Bambhori, Jalgaon

Rakesh D. More
Student

SSBT’s COE,
Bambhori, Jalgaon

ABSTRACT

An intrusion detection system is a computer-based

information system designed to collect information about

malicious activities in a set of targeted IT resources, analyze

the information, and respond according to a predefined

security policy. The most common computer intrusion

detection systems detect signatures of known attacks by

searching for attack-specific keywords in network traffic.

Intrusion-detection systems aim at detecting attacks against

computer systems and networks or in general, against

information systems. This strategy is mainly focus on to

detect intrusion in multitier web applications. Multitier web

application include two ends that is front end as well as back

end of the applications. The front end include web server

which can responsible to run the application and gives that

output to back end i.e. file server. This strategy is useful to

identify the intrusion at both front end and back end of web

application.

General Terms
Intrusion Detection System, Multitier Architecture,

Pattern Mapping.

Keywords

Container Architecture, Session ID.

1. INTRODUCTION
The attention of attackers has shifted from attacking the front

end to exploiting vulnerabilities of the web applications [1],

[2], [3] in order to corrupt the back end database system [4]

(e.g., SQL injection attacks [5], [6]). However, there is very

little work being performed on multi-tier Anomaly Detection

(AD) systems that generate models of network behavior for

both web and database network interactions. In such multi-tier

architectures, the back-end database server is often protected

behind a firewall while the web servers are remotely

accessible over the Internet. Unfortunately, though they are

protected from direct remote attacks, the back-end systems are

susceptible to attacks.

Intrusion detection systems have been widely used to protect

multitier web services, such as to detect known attacks by

matching misused traffic patterns or signatures [7-10].

Individually, the web IDS and the database IDS can detect

abnormal network traffic sent to either of them. However,

these IDSs cannot detect cases wherein normal traffic is used

to attack the web server and the database server. For example,

if an attacker with non admin privileges can log in to a web

server using normal-user access credentials, he/she can find a

way to issue a privileged database query by exploiting

vulnerabilities in the web server. Neither the web IDS nor the

database IDS would detect this type of attack since the web

IDS would merely see typical user login traffic and the

database IDS would see only the normal traffic of a privileged

user. This type of attack can be readily detected if the

database IDS can identify that a privileged request from the

web server is not associated with user-privileged access.

Unfortunately, within the current multithreaded web server

architecture, it is not feasible to detect or profile such causal

mapping between web server traffic and DB server traffic

since traffic cannot be clearly attributed to user sessions.

In this approach [11], it presents container based approach as

shown in Fig 1.1 which is used to detect attacks in multi-tier

web services. This approach can create normality models of

isolated user sessions that include both the web front-end

(HTTP) and back-end (File or SQL) network transactions.

There is use of the container ID to accurately associate the

web request with the subsequent DB queries. Thus, this

guarding can build a causal mapping profile by taking both

the web server and DB traffic into account.

Fig 1.1: Container Architecture

In addition to this static website case, there are web services

that permit persistent back-end data modifications. These

services, which we call dynamic, allow HTTP requests to

include parameters that are variable and depend on user input.

Therefore, the ability to model the causal relationship between

the front end and back end is not always deterministic and

depends primarily upon the application logic. For instance, the

backend queries can vary based on the value of the parameters

passed in the HTTP requests and the previous application

state. Sometimes, the same application’s primitive

functionality (i.e., accessing a table) can be triggered by many

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

38

different web pages. Therefore, the resulting mapping

between web and database requests can range from one to

many, depending on the value of the parameters passed in the

web request.

To address this challenge while building a mapping model for

dynamic web pages, I will first generate an individual training

model for the basic operations provided by the web services.

2. PROPOSED WORK

The breakdown structure mainly focuses on following areas –

1. Module 1: Responsible for user control;

restricts unauthorized users.

2. Module 2: Creates and monitors user

session.

3. Module 3: Checks and filters users query.

4. Module 4: Maps HTTP queries with

equivalent SQL queries.

5. Module 5: Generates a log showing log of

attacks.

Fig 2.1 Work Breakdown Structure

2.1 Module 1: User Control

Input: Registration details with username and password as

input.

Output: Successful or unsuccessful login.

Algorithm:

1. New user will fill a registration form.

2. Get user name and password.

3. Logs into the system.

4. Starts his new session.

5. After completion of session user logs out.

The above algorithm shows how exactly the login

module will provide security to the entire system to prevent

unauthorized access of system. If any new user is there, wants

to enter into the system then he has to fill a new user

registration form. In that registration form user has to fill his

personal information along with his username and password.

When user clicks on save button all his information get

inserted into the database.

Now this user has its own username and password. By

clicking “click here to login” link he will redirect to login

page. Here user will login into the system with his personal

username and password. If user enters correct username and

password as filled in the registration form; a “Login

Successful” message will displays else if he enters wrong

username or password then the system will displays “Invalid

username or password message”. Thus this module gives

security and provides user control to the system.

2.2 Module 2: Session Handling

Input: HTTP query r and SQL query q.

Output: Session id for r and q in the sets ARr and AQq

respectively.

Algorithm:

1. For each session separated traffic Ti do

2. Get different HTTP requests ‘r’ and DB queries ‘q’

in this session for each different r do

3. If r is a request to static file then

4. Add r into set EQS (Empty Query Set)

5. Else

6. If r is not in set REQ then

7. Add r into REQ

8. Append session ID i to the set ARr with r as the key

9. For each different q do

10. If q is not in set SQL then

11. Add q into SQL

12. Append session ID i to the set AQq with q as the key

 Session handling module is responsible for

assigning correct and unique ID to the HTTP request and

equivalent SQL request. If input HTTP query is for any static

data/file; means if the requested content is available at web

server itself then r is added into Empty Query Set. This type

of query doesn’t get any kind of ID. If r is not in the set of

REQ means the input query is new of arrives first time into

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

39

the system then r is added into REQ i.e. request query set. By

taking r as a key session ID i is appended to the set of ARr.

 Similarly for each SQL query if q is not into the set

of SQL query then it is added into the SQL set. Same as above

by taking q as key session ID i is appended to the set of AQq.

2.3 Module 3: Query Processing

Input: HTTP query r and SQL query q.

Output: Insertion of queries into different Query Sets.

Algorithm:

1. For each session separated traffic Ti do

2. Get different HTTP requests ‘r’ and DB queries ‘q’

in this session for each different r do

3. If r is a request to static file then

4. Add r into set EQS (Empty Query Set)

5. Else

6. If r is not in set REQ then

7. Add r into REQ

8. For each different q do

9. If q is not in set SQL then

10. Add q into SQL

Query Processing is the module for assigning adding

different requests into proper sets of query. If input HTTP

query is for any static data/file; means if the requested

content is available at web server itself then r is added into

EQS (Empty Query Set). If r is not in the set of REQ means

the input query is new of arrives first time into the system

then r is added into REQ i.e. request query set. Similarly for

each SQL query if q is not into the set of SQL query then it

is added into the SQL set.

2.4 Module 4: Query Mapping

Input: Set of ARr, Set of AQq and Cardinality t.

Output: HTTP query gets mapped with equivalent SQL

query.

Algorithm:

1. For each distinct HTTP request r in REQ do

2. For each distinct DB query q in SQL do

3. Compare the set ARr with the set AQq

4. If ARr =AQq and Cardinality(ARr) > t then

5. Found a Deterministic mapping from r to q

6. Add q into mapping model set MSr of r

7. Mark q in set SQL

8. Else

9. Need more training sessions

10. Return False

11. For each DB query q in SQL do

12. If q is not marked then

13. Add q into set NMR (No Matched Request)

14. For each HTTP request r in REQ do

15. If r has no deterministic mapping model then

16. Add r into set EQS (Empty Query Set)

17. Return True

The user request comes to the web server in the form of

HTTP request and a equivalent SQL query is generated by

web server. Query mapping module maps the HTTP query

with the equivalent SQL query. As we have seen the working

of session handling module and query processing module.

Mapping module use the output generated by these modules.

A HTTP query with its ID stored in ARr set and a SQL query

with its ID stored in AQq set; both are matched with each

other if both ID are equal and Cardinality of ARr is greater

than 1 then there is a deterministic map is found. q is then

added into the matched set query and it is also marked in the

set of SQL queries. After performing all training data sets if

any query from the set q is not marked then that q is moved to

the NMR (No Matched Request) set. Similarly for every

HTTP request r; if r has no deterministic mapping then that r

is added into the EQS (Empty Query Set).

2.5 Module 5: Intrusion Detection

Input: HTTP query r and SQL query q.

Output: Log showing malicious query/attacks.

Algorithm:

1. If the rule for the request is Deterministic Mapping r -> Q

(Q ≠Φ), we test whether Q is a subset of a query set of the

session. If so, this request is valid, and we mark the queries in

Q. Otherwise, a violation is detected and considered to be

abnormal, and the session will be marked as suspicious.

2. If the rule is Empty Query Set r -> Φ, then the request is not

considered to be abnormal, and we do not mark any database

queries. No intrusion will be reported.

3. For the remaining unmarked database queries, we check to

see if they are in the set NMR. If so, we mark the query as

such.

4. Any untested web request or unmarked database query is

considered to be abnormal. If either exists within a session,

then that session will be marked as suspicious.

The intrusion detection module checks every r and q with the

mapping model and then decides that whether it is from a

general user or attacker. If there is mapping found between r

and q then it is a considered as valid session, otherwise it have

to checks other query sets. If query r is found in Empty Query

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

40

Set then it not considered as abnormal and no intrusion will be

reported. For remaining unmark queries we check to see if

they are in the set NMR. If so, we mark the query as such.

Any query that comes directly to the database without any

mapping then that session is considered as abnormal.

3. FUTURE SCOPE
It is possible to make some future modifications into the

system; which can be make existing system more efficient.

The Intrusion detection systems can be installing on wide

range of machines having different operating system and

platforms. The query processing mechanism can be made

simpler by applying natural language processing (NLP); so as

to convert simple English sentences into SQL queries.

Since the this system works on the basis of signature; each

activity of intrusions is to be memorized by the system

previously. New attacks are often unrecognizable by popular

IDS. So there is continuous race going in between new attacks

and detection systems have been a challenge. Nowadays

Intrusion detection systems also work on the wireless

networks. The latest wireless devices come with its own set of

protocols for communication that break the traditional OSI

layer model. So IDS must learn new communication patterns

of the latest wireless technology.

4. CONCLUSION
This system is an intrusion detection system that builds

normality model for multitier web applications. Unlike

previous approaches this approach forms container-based IDS

with multiple input streams to produce alerts. There will be

lightweight virtualization technique to assign session ID to a

dedicated container which is nothing but isolated virtual

computing environment. Furthermore, there will specific

detection of attacks such as Privilege Escalation Attack,

Hijack Future Session Attack, SQL Injection Attack and

Direct DB Attack. Log at IDS will show the details of these

attacks. Also the requests which violate the normality model

that will be treat as an intruder. This approach will be

attempted to static and dynamic web requests with the back

end file system and database queries.

5. REFERENCES
[1] “Five Common Web Application Vulnerabilities,”

http://www. symantec.com/connect/articles/five-

common-web-applicationvulnerabilities, 2011.

[2] “Common Vulnerabilities and Exposures,”

http://www.cve. mitre. org/, 2011.

[3] SANS, “The Top Cyber Security Risks,”

http://www.sans.org/ top-cyber-security-risks/, 2011.

[4]A.Schulman,“Top10DatabaseAttacks,”http://www.bcs.org
/server.php?show=ConWebDoc.8852, 2011.

[5] C. Anley, “Advanced Sql Injection in Sql Server

Applications,” technical report, Next Generation Security

Software, Ltd., 2002.

[6] Y. Shin, L. Williams, and T. Xie, “SQLUnitgen: Test

Case Generation for SQL Injection Detection,” technical

report, Dept. of Computer Science, North Carolina State

Univ., 2006.

[7] J. Newsome, B. Karp, and D.X. Song, “Polygraph:

Automatically Generating Signatures for Polymorphic

Worms,” Proc. IEEE Symp. Security and Privacy, 2005.

[8] H.-A. Kim and B. Karp, “Autograph: Toward Automated

Distributed Worm Signature Detection,” Proc. USENIX

Security Symp., 2004.

[9] Liang and Sekar, “Fast and Automated Generation of

Attack Signatures: A Basis for Building Self-Protecting

Servers,” SIGSAC: Proc. 12th ACM Conf. Computer

and Comm. Security, 2005.

[10] B.I.A. Barry and H.A. Chan, “Syntax, and Semantics-

Based Signature Database for Hybrid Intrusion Detection

Systems”, Security and Comm. Networks, vol. 2, no. 6,

pp. 457-475, 2009.

[11] Meixing Le, Angelos Stavrou, Brent ByungHoon Kang,

“DoubleGuard: Detecting Intrusions in Multitier Web

Applications”, IEEE transactions on dependable and

secure computing, vol. 9, no. 4, july/august 2012.

