
International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

30

The Multi-Tier Architecture for Developing
Secure Website with Detection and Prevention

of SQL-Injection Attacks

Praveen Kumar
Department of Software Systems,

Samrat Ashok Technological Institute, Vidisha, M.P. INDIA

ABSTRACT

SQL injection is an attack methodology that targets the data

residing in a database. The attack takes advantage of poor input

validation in code and website administration. SQL Injection

Attacks occur when an attacker is able to insert a series of SQL

statements into a ‘query’ by manipulating user input data into a

web-based application, an attacker can take advantages of web

application programming security flaws and pass unexpected

malicious SQL statements through a web application for

execution by the back-end database. This paper proposes a

novel specification-based methodology for the prevention of

SQL injection Attacks. The two most important advantages of

the new approach against existing analogous mechanisms are

that, first, it prevents all forms of SQL injection attacks;

second, Current technique does not allow the user to access

database directly from the database server.

Our proposed framework for building secure and anti-theft web

applications is consisting of four stages. In each stage we

analyze the inputted data taken from the user and make a

decision, whether that is suspected or not.

Keywords: SQL Injection, Avoidance, SQLIA Prevention,

SQLIA Detection, SQL Attacks.

1. INTRODUCTION
For past years many organizations provide their services on the

Internet. For that they keep the information regarding their

customers, their partners which is quite sensitive in that they

maintain the database driven web application. SQL Injection is

a type of injection or attack in a Web application, in which the

attacker provides Structured Query Language (SQL) code to a

user input box on a Web form to gain unauthorized and

unlimited access. The attacker’s input is transmitted in an SQL

query in such a way that it will form an SQL code [1], [2].

SQL injection is a type of security attack, which attacks web

applications that are using database services. There are three

forms of SQL injections:

1. Incorrectly filtered escape characters

2. Incorrect type handling

3. Blind SQL injection

The first form of SQL injection is incorrectly filtered escape

characters which occur when user input is not filtered for

escape characters and then transferred to the SQL statements.

This results in the possible manipulation of the statements

made on the database end-user applications.

The second form of SQL injection is the incorrect type

handling. This form of SQL injection occurs when a user

supplied field is not strongly typed or not to control the type

constraints. This would occur when a numeric field is to be

used in SQL instruction, but the programmer does not check to

confirm that the user input is numeric.

The third form of SQL injection is the Blind SQL injection, a

blind SQL injection is used when a web application is

vulnerable to SQL injection, but the results of the injections are

not visible to the attacker. About the vulnerability cannot be

one that displays the data, but will appear differently depending

on the outcome of legal logic is injected into the SQL

statements called from this page.

Aim of SQL injection is to query the database a manner that

was not the intent of the application programmer. There are

several techniques used in SQL injection. Most of them use

SQL statement in different SQL injection techniques. Increased
dependence on web applications significantly and use in the

activities of our daily lives grows in the number and level of

attacks that target them.

2. SECURITY ISSUES: THREATS TO

WEBSITE
Due to the increased use of online and automated processes,

huge bulks of sensitive and critical data are being handled by

the web applications. As the stakes on the information and data

stored by the portals become higher, so does the sophistication

of hackers. Developers and hackers are racing against each

other. Developers try to make the web application secure from

the threats and the hacker wish to find the loophole, so that it

can steal or damage the application or data. Security threats

could be with the intent of stealing confidential information,

causing deliberate damage, prove capability or simply for the

thrill of doing something which most others cannot do.

In today’s scenario, IT enabled services are very common in

commercial as well as in the government sector, which results

number of eCommerce websites. These websites helps the

users to make personal account there for online transactions, or

to store their confidential data. Almost all the organization

builds their personal servers to which all the organizational

records and data are managed. In this way, the data and other

web content become very precious to any organization or

individual.

Therefore, a developer needs to take all the precautions to

secure the organization's data by avoiding or preventing all the

security threats to the website. Usually following are the most

common threats to a website:

1. Brute Force: the attacker simply keeps on guessing and

trying various combinations, most often using an

automated script, to gain unauthorized access to a system.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

31

2. Cross-Site Scripting: Cross-site scripting (XSS) is a type

of website security vulnerability which allows attackers to

inject client-side script in web pages viewed by users of

the website. Various input controls like Rich Text Editor,

etc. which allow users to add html tags as part of input,

from the root cause behind these attacks.

3. Insufficient Anti-Automation: when a web site permits an

attacker to automate a process that should only be

performed manually. A certain web site functionalities

should be protected against automated attacks. Left

unchecked, automated robots (programs) or attackers

could repeatedly exercise web site functionality

attempting to exploit or defraud the system. An automated

robot could potentially execute thousands of requests a

minute, causing potential loss of performance or service.

4. Denial of Service: In a denial-of-service attack, an attacker

may block access of a website to its legitimate users. Most

of the times, this is done by flooding the web server

hosting the website with repeated requests for Web pages,

through script automation.

5. Network Sniffers: Network sniffer can list all of the

network packets in real-time from multi network card

(Include modems, ISDN, ADSL, etc.) and can support

capturing packets based on the applications (Socket, TDI,

etc.). An attacker can observe the traffic of the application.

It is easy to learn and simple to use. Network sniffer has

plug-ins for different protocols such as Ethernet, IP, TCP,

UDP, PPPOE, HTTP, FTP, WINS, PPP, SMTP, POP3

and so on. Network sniffers can be used to identify

sensitive information like credit card information and

details about the systems involved in processing credit

card transactions.

6. SQL Injections: SQL injection is an attack in which

malicious code is inserted into strings, which are later

passed to the database server for parsing and execution.

This attack can be applies to any page which accepts user

input to capture data or query parameters to dynamically

render the content on the web page.

3. VULNERABILITIES DUE TO

DATABASE
All know it that, websites and internet are the cheapest and

easiest way for promotion and publicity. It provides an

international platform, to convey our message to all viewers.

Other than this, the websites also used for its incredible

business capabilities, like shopping websites and social

websites. Therefore, Most of the website is driven by their

databases, which enables them to show the dynamic data

content on the user requests. Hence, the database is very

precious for any organization, as it contains the valuable and

confidential data. While, the website is non-other than a

medium that represent the data contents in a presentable form

and allows the web users to communicate with the database in

a legal way.

One of the major vulnerabilities to a website is the vulnerability

due to the databases. This may be the loss of data, damage to

the database, unauthorized access, bypassing the authentication

mechanisms or denial of services. These actions can be done in

the following ways:

Injection through cookies: Cookies are those files that contain

state information that are generated by Web applications and

stored on the client machine. When a client returns to a Web

application, cookies can be used to restore the client state

information. Since the client has control over the storage of the

cookie, a malicious client could tamper with the cookie's

contents. If a Web application uses the cookie's contents to

build SQL queries, an attacker could easily submit an attack by

embedding it in the cookie [3].

Injection through user input: The attackers inject SQL

commands by providing suitably crafted user input. In most

SQLIAs that target Web applications, user input typically

comes from a form

Submissions that are sent to the Web application via HTTP

GET or POST requests [8]. Web applications are generally able

to access the user input contained in these requests as they

would access any other variable in the environment.

Injection through server variables: Server variables are a

collection of variables that contain HTTP, network headers,

and environmental variables. Web applications use these server

variables in a variety of ways, such as logging usage statistics

and identifying browsing trends. If these variables are logged to

a database without sanitation, this could create an SQL

injection vulnerability.

Second-order injection: Second-order injections are not trying

to cause the attack to occur when the malicious input initially

reaches the database. Instead, attackers rely on knowledge of

where the input will be subsequently used and craft their attack

so that it occurs during that usage.

4. SQL INJECTIONS CLASSIFICATION
Database applications have become a core component in

control systems and their associated record keeping utilities.

Traditional security models attempt to secure systems by

isolating core software components and concentrating security

efforts against threats specific to those computers or software

components.

Type of

Attack
Attack Intent

Tautologies

 Authentication

 Identifying Injectable

Parameters

 Extracting Data

Logically

Incorrect

Queries

 Identifying Injectable

Parameters

 Performing Database

Fingerprinting

 Extracting Data

Union Query

 Bypassing Authentication

 Extracting Data

Piggy Backed

Queries

 Extracting Data

 Adding or Modifying Data

 Performing Denial of

Service

 Executing Remote

Commands

Stored

Procedures
 Performing Privilege

Escalation

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

32

 Performing Denial of

Service

 Executing Remote

Commands

Blind Injection

 Identifying Injectable

Parameters

 Extracting Data

 Determining Database

Schema

Timing

Attacks

 Identifying Injectable

Parameters

 Extracting Data

 Determining Database

Schema

Alternate

Encodings
 Evading detection

5. PROBLEM DEFINITION
The SQL injections are the major threats to any website as it is

concerned to the database, which is the valuable to any

organization. The SQL injections are the top most of the threats

for web applications security and database is the most valuable

asset for any organization. The problems of SQL injection

attacks are increasing very rapidly because they are easy to

employ by putting the malicious code etc.

1- To detect and prevent the SQL injection attacks, we

need an intelligent mechanism. That must be easily

deployable, and provide good performance in

analyzing the malicious code.

2- To Implement a sanitizer tool that decides whether to

send the data to database manager or not.

3- To have a mechanism that does not affect the system

performance by engaging the CPU for more time.

4- To propose an architecture that must follow by the

web developers for the building of a secured website.

5- To propose the hierarchy to classify the inputs that

helps to identify in sanitizations process. Improper

Neutralization of Special Elements used in an SQL

Command.

6. RELATED WORK
Although the SQL injection is not a new field of research but it

is one of the most popular fields for researchers, Contribution

to this field such as filtering, information flow analysis,

penetration testing, and defensive coding, can detect and

prevent a subset of the vulnerabilities that lead to SQL

Injections Attacks. Some of the researches we studied for our

references are shown below:

William G. J. Halfond et al.’s Scheme- [2] - This approach

works by combining static analysis and runtime monitoring

while SAFELI – [5] proposes a Static Analysis Framework in

order to detect SQL Injection Vulnerabilities. SAFELI

framework aims at identifying the SQL Injection attacks during

the compile-time. This static analysis tool has two main

advantages. Firstly, it does a White-box Static Analysis and

secondly, it uses a Hybrid-Constraint Solver. For the White-

box Static Analysis, the proposed approach considers the byte-

code and deals mainly with strings. For the Hybrid-Constraint

Solver, the method implements an efficient string analysis tool

which is able to deal with Boolean, integer and string variables.

Thomas et al.’s Scheme - Thomas et al., in [6] suggest an

automated prepared statement generation algorithm to remove

SQL Injection Vulnerabilities. They implement their research

work using four open source projects namely: (i) Net-trust, (ii)

trust, (iii) WebGoat, and (iv) Roller. Based on the experimental

results, their prepared statement code was able to successfully

replace 94% of the SQLIVs in four open source projects.

Ruse et al.’s Approach - In [7], Ruse et al. Propose a technique

that uses automatic test case generation to detect SQL Injection

Vulnerabilities. The main idea behind this framework is based

on creating a specific model that deals with SQL queries

automatically. Adding to that, the approach identifies the

relationship (dependency) between sub-queries. Based on the

results, the methodology is shown to be able to specifically

identify the causal set and obtain 85% and 69% reduction

respectively while experimenting on few sample examples.

Ali et al.’s Scheme - [8] adopts the hash value approach to

further improve the user authentication mechanism. They use

the user name and password hash values SQLIPA (SQL

Injection Protector for Authentication) prototype was

developed in order to test the framework. The user name and

password hash values are created and calculated at runtime for

the first time the particular user account is created.

SQL-IDS Approach - Kemalis and Tzouramanis in [10] suggest

using a novel specification-based methodology for the

detection of exploitations of SQL injection vulnerabilities. The

proposed query-specific detection allowed the system to

perform focused analysis at negligible computational overhead

without producing false positives or false negatives.

SQLIA Prevention Using Stored Procedures - Stored

procedures are subroutines in the database which the

applications can make call to[12] . The prevention in these

stored procedures is implemented by a combination of static

analysis and runtime analysis. The static analysis used for

commands identification is achieved through the stored

procedure parser and the runtime analysis by using a SQL

Checker for input identification.

Similarly various works like SQLrand Scheme - SQLrand

approach [11], Parse Tree Validation Approach - Buehrer et al.

[13] adopt the parse tree framework, Dynamic Candidate

Evaluations Approach - In [14], Bisht et al. Propose CANDID

and Roichman and Gudes’s Scheme – [9]. All these approaches

tried to solved out the problems associated with the SQL

injections and other vulnerablilites.

7. PROPOSED ARCHITECTURE
The proposed technique consists of four-stage security

mechanism, which are as follows:-

1. Validations stage: - This stage works on client side “web

page at browser”; it detects the use of special characters

with the help of regular expressions. This technique is

called validations. With this mechanism, we are able to

protect the web page controls like (text boxes) from any

kind of special character, which is meaningful to the SQL.

The only drawback of this stage is that, it cannot handle

the attacks from the query strings, cookies etc.

2. Data filtration Stage: - This stage basically works on the

code written behind the design page. This stage detects the

malicious SQL code, inject by various other techniques

like query strings, URL’s. The data filtration stage

analyzes the data before passing on to the database.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

33

3. Dynamic Guard Stage (Sanitizer): - Parameterized query

is parameterized database access API provided by

development platform such as Prepare Statement in Java

or SQL Parameter .NET. Instead of composing SQL by

concatenating string, each parameter in a SQL query is

declared using placeholder and input is provided

separately. The sanitizer classify the inputs as follows-

Figure 1 Input Classification based on their nature and

types.

4. Parameterized Check Stage: - Parameterized queries keep

the query and the data separate through the use of

placeholders known as "bound" parameters. This helps in

preventing SQLIA by not allowing the structure of the

query to be altered; rather it merely “fills in” the input

parameters into their positions and keeps the rest of the

query structure intact. Since a majority of the SQLIA

techniques relies on altering the query structure for

injection attacks, this serves as a very effective combat

technique.

In fig. 2, It is clearly seen that, how we can monitor the

data at different stages during the working on GET &

POST methods.

Figure 2 : Proposed Architecture of our plan fro SQL

Injections

Following is the algorithm, used in the proposed methodology

for the detection and prevention of SQL injections.

In fig. 3, The simple idea to implement the SQL injection

detection mechanism is to check each & every input before

passing it to the database. For this, we need to perform an

analysis that defines us the suspected inputs for different data

input fields. Therefore, Based on this analysis we can easily

identify the nature of inputs, whether it is an RTF input or non-

RTF input.

Figure 3: Algorithm for SQL Injection Detection &

Prevention

8. IMPLEMENTATION

The complete implementation of the proposed work carried out

using the Microsoft .Net framework 3.5 with Visual Studio

2008, SQL Server 2008, IIS Server and a vulnerability scanner

tool Netsparker. Through which we scan our own developed

website for any vulnerability threat and SQL attacks. The

demonstrated website works in two modes at every instance.

Whether its login or search, inserting or updating, etc.

Following are the two modes:

1. Secure Mode: - In this mode the website works under the

guidance of Sanitizer, which sanitizes the inputs and

always looking for any intrusion or malicious code in the

input. The development of sanitizer leads to a mechanism

that helps to decide whether the input data is legitimate

and does not contain any malicious code.

In this mode, the website also works in different tiers.

Each tier contains a level of attack detection. For example,

the client levels identified the input type and according to

that apply the regular expression as the input validation.

At server side, the website analyses the input data and

sends to the database stored procedure, where execution of

SQL commands performs and the desired data retrieved.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

34

At data access layer, the website received the data from

the internal web pages, and then it uses the sanitization

process to make decision on input data before sending to

the database program.

The most important feature of our proposed plan for

detecting & preventing the SQL injections is that it never

overhead the data in the database. It can be applied to any

existing web model without performing any alteration in

database schema.

Simple Login Query-

Simple Login Query- Stored Procedure

The above stated query can be easily hacked by the attackers.

As there is no mechanism for trouble shooting.

Proposed Login Query: Stored procedure

The above stated query is free from any malicious code, in-fact

if user somehow transmits malicious data to the SQL

procedure; our proposed SQL query will compute the Hash

values with “SHA” (128 Bits) then it will be compared with

database. Therefore, due to applying operation of hash values

the input values are sanitizes completely and guarantees you

solution in legal way.

Similarly, with the handling of query strings:

The QueryString collection is used to retrieve the variable

values in the HTTP query string. The HTTP query string is

specified by the values following the question mark (?), like

this:

The line above generates a variable named adm_name with the

value "prav". The Query strings are also generated by form

submission, or by a user typing a query into the address bar of

the browser.

While at the redirected page, this query string handled by the

code for further use like:

hence, it is the duty of the application programmer to check the

validity of this query string value and make sure that, there is

no malicious characters or code in the value.

The above function is uses by our proposed system, which

sanitize the admin name and help us to decide whether to send

the data to database or not.

The IsValid Code looks like:

While, the plain text sanitizer simply checks the presence of

any trouble making characters.

The PT_Sanitizer code looks like:

 Public Function IsValid(ByVal str As String) As

Boolean

 Dim rx As New Regex

("[0-9a-zA-Z$%^&*()_+!]{3,20}")

 Dim bool As Boolean = rx.IsMatch(str)

 Return bool

 End Function

IsValid(admin_name) ‘Boolean type function

Or

PT_Sanitizer(admin_name) ‘Boolean Type Func

 Dim admin_name as String

admin_name =

Request.QueryString(“adm_name”)

Response.Redirect

(“admin.aspx?adm_name=prav”)

CREATE PROCEDURE [dbo].[spsecurelogin]

@username nvarchar(20),

@password nvarchar(20)

AS

BEGIN

SET NOCOUNT ON;

SELECT

 username, password

FROM

 tbl_user

WHERE

hashbytes('SHA',username) =

hashbytes('SHA',@username)

AND

hashbytes('SHA',password) =

hashbytes('SHA',@password);

END

CREATE PROCEDURE [dbo].[splogin]

@username nvarchar(20),

@password nvarchar(20)

AS

BEGIN

SET NOCOUNT ON;

SELECT username, password FROM tbl_user

WHERE username = @username AND

password=@password;

END

SELECT username, password FROM tbl_userinfo

WHERE name = ‘praveen’ AND pass=’praveen’

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

35

2. Un-Secure Mode:-

The unsecure mode in the demonstrating website is never uses

any SQL injection detection or prevention strategy, it simply

pass the data from the HTML input to the database.

9. EXPERIMENTAL RESULT &

ANALYSIS

Total Request
Injections

Detected

Normal

Queries

2420 1635 785

125076 32697 92379

30867 21087 9780

1086 608 478

Figure 4 : Result obtained by using the vulnerability scanner

While working with demonstrating website, by using the

vulnerability scanners and concurrent users, we successfully

generate the above number of request in four different

iterations. The proposed implemented system gives the

appropriate results by analysing the inputs provided to them

and finally output the counts of the Valid & Injected queries.

Figure 5 : Graphical representation of result

Following is comparative study of existing SQL detection techniques with the proposed technique.

Technique Tautology Illegal

Structured

Piggybacking Union Stored

Procedure

Inference Alternate

Encoding

PROPOSED Y-D-P Y-D-P Y-D-P Y-D-P Y-D-P Y-D-P Y-D-P

AMNESIA[2] Y-D Y-D Y-D Y-D - Y-D Y-D

SQL GUARD[13] Y-D Y-D Y-D Y-D - Y-D Y-D

SQL-IDS[10] Y-D Y-D Y-D Y-D Y-D Y-D Y-D

Hash + Salt[18] Y-P - Y-P - - - -

Figure 6: Comparison with existing system for SQL injections detection & prevention

Y- Yes, D- Detection, P-Prevention

10. CONCLUSION & FUTURE WORK

In this paper, we have concentrated on the specific area of SQL

injection. Though this is a narrow subject, We believe that this

area is in need of further investigation, mainly because of two

reasons: first, we can not be certain that we have compiled a

definite list of all components that could be taken into

consideration. Secondly, SQL injection attacks are most likely

to evolve and new vulnerabilities will be found, together with

new countermeasures to deal with them. Since many hacking

sites are available on the web, and since attack methods are

well described and distributed between hackers, we believe that

information about new attack methods should continuously be

surveyed and new countermeasures should be developed.

According to OWASP’s Ten Most Critical Web Application

Security Vulnerabilities [16], many SQL injection-related

issues are among the most harmful threats to web applications.

Since we have in this thesis only covered SQL injection

aspects, we would like to suggest that further studies should be

 Public Function PT_Sanitizer (ByVal Str As String) As

Boolean

 Dim sb As Byte() =

System.Text.ASCIIEncoding.ASCII.GetBytes(Str.ToC

harArray())

 Dim i As Integer = 1

 While i <= Str.Length - 1

 If (sb(i) = 32) Or (sb(i) >= 65) And

(sb(i) <= 90) Or (sb(i) >= 97) And

(sb(i) <= 122) Or (sb(i) >= 48) And

(sb(i) <= 57) Then

 i = i + 1

 If i = Str.Length - 1 Then

 Return True 'Valid Query

 Exit While

 End If

 Else

 Return False 'Injection Query

 Exit While

 End If

 End While

 End Function

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

36

made on other threats to related security issues, especially such

that relate to application security. The reason is that several

authors have mentioned that organizations spend most security

resources on operating system and

network level security [15, 16, 17], and not enough on

application layer security. If further studies will be made on

application layer security issues, and particularly on web

application, it would be possible to compile results from all of

these into general security guidelines, which could be used in

developing more secure web applications.

One of our goals in this paper was to increase the level of

security awareness among organizations regarding web

applications, especially towards SQL injection threats. We

hope that further surveys in this area and in related web

application subjects will help achieving that goal, so that

hopefully security standards will be implemented and

countermeasures built into applications during development.

Ultimately, organizations will use a proactive approach towards

application layer security, which will then be an indispensable

part of web applications.

11. REFERENCES

[1] A Tajpour, A., Masrom, M., Heydari, M.Z., and

Ibrahim, S., SQL injection detection and prevention

tools assessment. Proc. 3rd IEEE International

Conference on Computer Science and Information

Technology (ICCSIT’10) 9-11 July (2010), 518-522

[2] L Halfond W. G., Viegas, J., and Orso, A., A

Classification of SQL-Injection Attacks and

Countermeasures. In Proc. of the Intl. Symposium on

Secure Software Engineering, Mar. (2006).

[3] M. Dornseif. Common Failures in Internet

Applications,May2005.http://md.hudora.de/presentation

s/2005-common-failures/dornseif-common-failures-

2005-05-25.pdf.

[4] C. A. Mackay. SQL Injection Attacks and Some Tips

on How to Prevent Them. Technical report, The Code

Project, January 2005.

http://www.codeproject.com/cs/database/SqlInjectionAt

tacks.asp.

[5] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L.

Tao. A StaticAnalysis Framework for Detecting SQL

Injection Vulnerabilities,COMPSAC 2007, pp.87-96,

24-27 July 2007

[6] S. Thomas, L. Williams, and T. Xie, On automated

prepared statement generation to remove SQL

injection vulnerabilities. Information and Software

Technology 51, 589–598 (2009).

[7] M. Ruse, T. Sarkar and S. Basu. Analysis & Detection

of SQL Injection Vulnerabilities via Automatic Test

Case Generation of Programs. 10th Annual

International Symposium on Applications and the

Internet pp. 31 – 37 (2010)

[8] Shaukat Ali, Azhar Rauf, Huma Javed “SQLIPA:An

authentication mechanism Against SQL Injection”

[9] Roichman, A., Gudes, E.: Fine-grained Access Control

to WebDatabases. In: Proc. of 12th SACMAT

Symposium, France (2007)

[10] K. Kemalis, and T. Tzouramanis (2008).

SQL-IDS: A Specification-based Approach for

SQLinjection Detection. SAC’08. Fortaleza, Ceará,

Brazil, ACM: pp. 2153 2158.

[11] S. W. Boyd and A. D. Keromytis. SQLrand:

Preventing SQL Injection Attacks. In Proceedings of

the 2nd Applied Cryptography and Network Security

Conference, pages 292–302, June 2004.

[12] K. Amirtahmasebi, S. R. Jalalinia, S. Khadem, "A

survey of SQLinjection defense mechanisms," Proc. Of

ICITST 2009, vol., no., pp.1-8, 9-12 Nov. 2009

[13] G. Buehrer, B.W. Weide, P.A.G. Sivilotti, Using

Parse Tree Validation to Prevent SQL Injection

Attacks, in: 5th International Workshop on Software

Engineering and Middleware, Lisbon, Portugal, 2005,

pp. 106–113.

[14] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan.

CANDID: Dynamic Candidate Evaluations for

Automatic Prevention of SQL Injection Attacks. ACM

Trans. Inf. Syst. Secur., 13(2):1–39, 2010

[15] Matthew Levine. The importance of application

security. Technical report, @stake, jan 2003.

http://www.atstake.com/research/reports/acrobat/atstake

_application_security.pdf.

[16] The Open Web Application Security Project. A guide to

building secure web applications, Version 1.1.1. Online

Documentation, sep 2002. http://www.owasp.org/.

[17] Kevin Spett. Security at the next level - are your web

applications vulnerable? Technical report, SPI

Dynamics,

2002.http://www.spidynamics.com/whitepapers/webapp

whitepaper.pdf.

[18] Shubham Shrivastava, Rajeev Ranjan Kumar Tripathi,

Attacks Due to SQL injection & their Prevention

Method for Web-Application, International Journal of

Computer Sciecne and information technologies, Vol 3

(2), pp.3615-3618, 2012.

