
International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

20

A Resilient Failure Evaluation and Patch-up (R-FEP)
Algorithm for Heterogeneous Distributed Databases

Dharavath Ramesh

Indian School of Mines (ISM)
Department of CSE

Dhanbad, Jharkhand, India

Chiranjeev Kumar
Indian School of Mines (ISM)

Department of CSE
Dhanbad, Jharkhand, India

V. Vijay Kumar
SVEC, Suryapet

Dept of CSE
Andhra Pradesh, India

ABSTRACT

Blocking methodologies sometimes fail to stop malicious

things. Attacks on data oriented applications are a serious

threat as per the database management systems concern. The

required objective of such environment is to find out the mean

time attacks and patch up the failures within the stipulated

time. This manuscript represents a failure (attacked)

evaluation and patch up instances in distributed database

systems. The problems like partition, transaction commitment,

and failures state that recovery is much more challenging in

databases. This manuscript focuses on the challenges and

makes an efficient concern with respect to distributed failure

evaluation and recovery.

General Terms

Heterogeneity, Distributed Databases, Transaction, Recovery

Manager

Keywords

Distributed transaction; intrusion patch up; database security;

failure evaluation; recovery.

1. INTRODUCTION

The role of security is increasing day by day to prevent

attacks up to the extent, especially in e-government and e-

business domains. The possibility is not fulfilled to prevent

attacks completely. In fact, we must do that not all, even some

of the attacks should be ward off at the outset. Several

security techniques have been proposed to ward off the

attacks in databases such as control [2], [15], authorization

mechanisms [3], [4], [16] and distributed secure transaction

processing [5]. These are very limited bound to ward off to

attacks. And they were not modeled to recognize mean time

failures and mean time repairs.

Our approach is on a hard limit of failure tolerant databases,

which gives the methodology as failure evaluation and patch

up (FEP). The main tendency of the attacks is to disturb the

data stored at various databases and mislead the end users to

commit wrong decisions. With regard to databases the results

of one transaction (T1) instances can be read by other

transaction (T2), i.e. transaction T2 tries to read a data item ‘m’

which is updated by T1, T2 is directly inferred by T1. If a

transaction T3 is inferred by T2, but not directly inferred by

T1, T3 is indirectly inferred by T1. Now consider an instance

when a transaction T0 (old one) updates the data item ‘m’ is

found to be malevolent. This malevolent on the data item ‘m’

can spread to each data item updated by a transaction which is

inferred by T0.The responsibility of failure evaluation and

patch up (R-FEP) is to find out the malevolent transaction and

recover the database from the failures. Implementation with

respect to this event becomes more difficult because new

transactions will perform their operations continuously and

this failure case may spread to the new transactions.

Therefore, the main theme of malevolent tolerant database is

to preserve and failure spreading is controlled dynamically.

So, the database will not be disturbed.

The scenario of intrusion tolerant according to the database

systems has deeply studied and analyzed by [6], [7], [14], and

[8]. But no one has contributed mean time to repair

methodology according to distributed transaction. This paper

realizes on such methodologies to evaluate and mean time to

repair the failure in distributed database transactions. Several

algorithms have been developed to evaluate and repair the

failure instances in a centralized environment [9], [10]. But in

the case of complexity they cannot be used in distributed

database environment, novel failure evaluation and recovery

methods are needed. Why because partitioning has occurred

and data are stored at various sites, failure evaluation and

immediate patch up should be performed at various sites.

When a distributed transaction accesses a data item which is

stored at multiple sites needs to coordinate the relationship

with other transactions. Then only failure evaluation and

recovery can tolerate site failures as well as communication

failures.

1.1 Our Realistic Idea and Methodology

Some recovery techniques were proposed in the case of

centralized systems [9], [13], [11], [12] they stated their

perception in data-oriented and transaction methods, where

data methods use the read and write primitives of transactions

to recognize the failures which are spread from one data item

to another. A transaction method evaluates and recovers the

failures by recognizing the affected transactions. In this paper,

we elaborate the centralized scenario to distributed, in

particular, we propose an efficient transaction evaluation

algorithm to evaluate and patch up the failure one which is

occurred in distributed systems. The algorithm is as follows:

 It’s totally distributed. Hence, no occurrence of

single point failure and also bears malevolent

attacks at both end systems and communication

links.

 New transactions can continuously exchange their

data items during the FEP process.

 FEP is performed in parallel, at each site.

 It supports in all DBMS, so it can be directly

applied to construct R-FEP.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

21

2. DISTRIBUTED DATABASE MODEL

A distributed database is a collection of data which belong

logically to the same system but are spread over the sites of a

computer network. Distributed transactions are an order of

read and write primitives on the data items that either commits

or aborts [1]. The execution status of the transaction is

modeled by a distributed log history. Transactions can have

globally unique identifiers which indicate the location of the

each site. For the convenience, we treat that each participating

site has only one process of that transaction. The coordinator

process begins the execution of the distributed transaction;

each process is located at the site with the components like

transaction manager (TM), scheduler (SC), and recovery

manager (RM). A distributed transaction model is depicted in

Fig 1. And the transaction recovery mechanism is depicted in

Fig. 2 with regard to the local transaction manager (LTM)

which is interconnected with distributed transaction manager

(DTM). And the DTM takes the responsible consideration to

link its messages with the coordinator (stated as Root Agent in

Fig. 2) For the distribution.

Fig 1: Distributed transaction processing

Fig 2: Distributed transaction recovery mechanism

 We consider the particularity of distributed database system

supports transaction serializability with concern two- phase

locking (2PL) protocol. We also consider the two-phase

commit (2PC) protocol instance for the atomicity of

transactions, despite site or link failures. The scenario of

conventional 2PC protocol is managed two prepare log

records as follows. When a user decides to commit (according

to Fig 1) a transaction, the coordinator (RT Agent as in Fig 2)

comes in picture and sends PREPARE messages to

participants. Each participant wait for PREPARE message. If

it is willing to commit then, it writes READY record in the log

and sends YES message to the coordinator. If it wants to abort,

then it writes ABORT record in the log and sends NO to

coordinator. After receiving the messages from the

participants at coordinator side, if all messages were YES,

then the coordinator writes the commit log record and sends

COMMIT message to all the participants. If it has received

even one No, again it writes abort log record and sends

ABORT message to all the participants. Each participant after

receiving a COMMIT/ABORT message, it writes the log

record as COMMIT/ABORT and sends an ACK message to the

coordinator. When the coordinator receives ACK message

from all the participants in the second phase, it writes

complete/end record in the log. With regard to this our R-FEP

algorithm is specified based on the way how log records are

maintained.

2.1 Resilient Failure Evaluation and Patch

up Model

Our basic instinct on R-FEP is that only malevolent

transactions and the inferred transactions can cause problems

and should be repaired in the mean time. We first define the

problematic relationship between the transactions; the failure

can be only caused by all committed transactions. Here, we

denote the set of committed malevolent transactions by a set

M = {M1, M2, M3... Mn} and the set of good conditioned

transactions by a set C= {C1, C2, C3….Cm}.

At a site X, a committed transaction Tij is dependent upon Tjk

if a data item ‘m’ is stored at that site such that Tij reads ‘m’

after Tjk updates ‘m’, and no other transaction updates ‘m’

between the time. A committed distributed transaction Tj is

affected by transaction Ti if the pair (Tj, Ti) is transitively

dependent. To know it more precisely, consider a set {M1, C1,

C2} which is executed on two sites.

At Site X: Sx:

 M1: Read (m): Write (m): Commit;

 C1: Read (m): Read (n): Write (n): Commit;

 C2: Read (z): Write (z): Commit;

At Site Y: SY:

 M1: Read (o): Write (o): Commit;

 C1: Read (p): Write (p): Commit;

 C2: Read (p): Read (q) Write (q) Commit;

According to SX, we came to know that the transaction C1 is

dependent to M1, because it is reading the same data item ‘m’

so C1 is inferred by M1, and the data items ‘m’ and ‘n’ are not

realistic (damaged). Again we know that C2 is either

dependent to M1 or C1. However, this is not incurred that, C2

will not be affected by M1.

According to SY, we came to know that the transaction C2 is

dependent to C1 (although C2 is not dependent to M1). Hence,

C2 is dependent to C1, since C1 is dependent to M1, so (C2, M1)

is in the form of transitive closure dependent. Therefore, C2 is

caused by M1 and the data item ‘q’ is damaged.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

22

3. THE R-FEP ALGORITHM

3.1 Description of R-FEP

Several commercially distributed systems were developed by

the vendors of centralized database management systems.

They contain additional components which extend the

capabilities of several DBMSs by supporting communication

and cooperation between several instances which are installed

at different sites of a network. Here we consider two types of

processes to perform distributed resilient FEP: a Local

Transaction Manager (LTM) on each site and a FEP module

at each site. The architecture of our components is shown in

Fig. 3.

The methodology of R-FEP is implemented through local

operations. The FEP module instructs the LTM to perform

some critical operations with respect to the transactions. At a

particular site, the FEP is responsible for knowing the local

log to (i) locate the sub transactions that are affected by a

malevolent transaction and (ii) perform the cleaning process

for these kinds of transactions; the LTM is responsible for

only coordinating the FEP process for the distributed

transactions which are having their coordinators at the sites.

For each transaction T, the LTM will create the coordinator

for its cleaning process, and instructs the FEP module at the

sites where T’s participants were located, and also evaluates

the problem spread by T and mean time to repair. Repaired

transactions are executed just like a normal transaction. Why

because according to the distributed transaction property

global coordination among sites is necessary (as depicted in

Fig. 2). Our algorithm works according to that by making the

LTM and FEP modules collaborating with each other.

Recalling the example of section 2, after a malevolent

transaction M is identified, it will be sent in parallel, to LTM

at the sites where its coordinator were located. The LTM then

send an evaluation message to ask each of the FEP modules at

all the sites where M’s participants are located to evaluate the

mislead case caused by M on their location. Then the each

mislead transaction found by the FEP module then will be

sent in parallel, to the LTM at each sites where the

coordinators of these disturbed transactions were located.

Now, LTM sends an evaluation message to ask each of the

local FEP at the sites where the other participants of these

disturbed transactions were located. This kind of

communication between LTM and FEP will continuously

perform until all the damage is found.

The patch up process is quite simpler. The problem caused by

malevolent transaction is recovered by a distributed cleaning

transaction. The LTM managers are responsible for doing this

kind of favor for creating the coordinators. The local FEP is

responsible for composing the cleaning sub transactions. It is

not guarantee that, a cleaned sub transaction will really clean

each data item.

3.2 Data Variables

Our algorithm is completely based on log maintenance at each

site with respect to the coordinator. Each log contains the

record types like, read, write, abort, commit, prepare and end

records. The others like checkpoints and save points are not

counted here because they were no suitable for consideration.

We also assume that each site is having a type (prepare, read,

write, commit, etc.) of the record.

According to the log records (shown as pseudo code for major

data variables), our algorithm R-FEP uses some data

variables; such as VT (verified table) which contains the data

items at each site, each data item is tagged with WDR, which

indicates the failed (problem caused) transactions, and VDR,

which indicates recovered data items with respect to the

transaction.

3.3 Distributed FEP Algorithm

 Input: All logs with regard to M1

Output: When the FEP terminates, all transactions in M1 are

recovered from malevolent situation.

Initialization:

Create a pointer p, which is pointed to the header of the log

record.

Evaluation_list :={}, undo_list :={}, t_undo_list :={},

Prob_item_list :={}, redo_list :={}, reco_item_list :={};

VT: array[ID] of record /*verified table */

WDR;

 /* The WDR records failures during write operation */

VDR;

 /* The VDR records of the log record when the data

item is verified */

end;

LR: constant array [WDR] of record /* Stable Log

Record */

RecType: (Read,Write,Abort,Commit, Prepare, End);

LRcontenets: array of char;

TransacID: Int;

CoordinatorID: Int;

end;

Pseudo code for major data variables

The FEP Process: It elaborates the relationship among the

FEP and LTM and also gives the methodology of global

commit of a transaction in the distributed environment.

At the local LTM:

While (1) /* Boolean: 1 – true, 0 – false */

 If an E msg comes /* E – evaluation */

 If T is in E_list ; /* T –Transaction for evaluation */

 do: normal operation;

 If T is not in E_list;

 add TransacID E_list;

 Run: Coordinator to verify the sub transactions

 If E_msg! = EAP

 Send E_msg (CoordinatorID, TransacID);

 else

 E_msg is sent out by FEP (CoordinatorID,

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

23

TransacID);

 Send: verified Coord_msg (CoordinatorID,

TransacID);

end While;

Pseudo code for the primitives at LTM

At the local FEP with verified Transac_coordinator:

Send: verified sub_transac to Coordinator with

CoordID

While (1)

 if a verified sub_transac comes

 if a verified sub_transac != free

Send : sub_transac original Transaction

else

 do normal execution

 if (all verified transactions are arrived)

 exit;

end While;

Pseudo code for the primitives at FEP

After performing the various operations according to the

above pseudo codes, run the 2PC protocol as usually. Now we

can find the verified and recovered transactions at both the

coordinator and participants without blocking. Why because

all sub transactions are evaluated and patched up at the

coordinator level. The following is the primitive which

occurred at 2PC protocol.

Run 2PC commit verified Transaction:

 if (verified (transact) commits)

 Send: success all participants

end if;

Pseudo code for 2PC protocol primitive

3.4 Execution Methodology of R-FEP

Let us examine how the FEP algorithm works. Consider a

scenario that the M1’s coordinator is at site X, M2’s

coordinator is at site Y, C1’s coordinator is at site Z, C2’s

coordinator is at site W, and C3’s coordinator at site Y. The

order of commit is as follows: M1, M2, C1, C2, and C3. Here

we consider the status as malevolent transactions and the

transactions deviated by malevolent transactions.

At Site X: (Sx):

 M1: Read (m): Write (m): Prepare: Commit;

 C1: Read (m): Read (n): Write (n): Prepare: Commit;

At Site Y: SY:

 M2: Read (o): Write (o): Prepare: Commit;

 C3: Read (o): Read (p): Write (p): Prepare: Commit;

At Site Z: SZ:

 M2: Read (q): Write (q): Prepare: Commit; C1: Read(r)

 || C2: Read (q): Read(s) || C1: Write(r) || C2: Write(s) ||

C1: prepare || C2: prepare || C1: Commit; || C2: Commit;

At Site W: (SW):

 M1: Read (t): Write (t): prepare: Commit; || C2: Read (u) ||

C3: Read (t): Read (v) || C2: Write (u) || C3: Write (v) || C2:

prepare || C3:prepare||C2: Commit; ||C3: Commit;

This process is shown in a simple diagrammatic instance

which is depicted in the Fig. 4. It shows how the coordinator

at the site manages the participants according to 2PC protocol.

Fig 3: The architecture of commercial recovery components

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

24

Each transaction is habituated to global commit, why because

the environment is distributed and the sub transactions are at

different sites.

Fig 4: The coordinator and participant instance in

distributed 2PCprotocol

 Now, the execution methodology starts when two evaluation

messages are transferred, in parallel to the LTM located at site

X and site Y respectively. The transaction M1’s coordinator is

located at site X receives the evaluation messages and add to

M1’s prob_item_list. Another transaction C1 is also located at

site X and transaction M1 is having impact at site W. Site X

receives the evaluation messages for M1, and adds the

variables of M1 at site X and site W to evaluation list and the

FEP process runs. After this transaction M1 at site W receives

the repaired (cleaned) sub transaction from the FEP at site X.

It executes that sub transaction as part of the repair transaction

for M1 and use the 2PC protocol to commit.

At the same time period, the FEP at site W receives the

evaluation messages for transaction M1, the FEP’s at site Y

and site Z receives evaluation messages for M2, and they

perform the similar things as what the FEP done at site X. In

this way the other transactions can be repaired in the mean

time and completes their tasks.

3.5 Characteristics of R-FEP

 An evaluation message is been sent out by a

local LTM if a transaction is deviated by a

malevolent one.

 When a normal (good conditioned) transaction

is deviated by a malevolent one (like in M), the

FEP will evaluate and patches the problematic

transaction at every site. It should be done

according to the global commit property.

 When the FEP process ends every data item

which is updated (during the process) by a

transaction M will be restored and the log

records are updated accordingly.

4. PERFORMANCE EVALUATION

We considered the distributed system with two storage

possibilities at each site in the form of queues. The first one is

the purpose of log record transactions. Second one is the

purpose of processing time of each log record with the

parameter 1, which is the density function for the probability

f(t) = 1 e -1 t . The processing time for mean time repair a

transaction is denoted by the parameter 2. The density

function for mean time to repair is f (t) = 2 e -2 t. According

to the Poisson distribution rate (), the probability for n log-

records within the time t is Pn (t) = ((t)n / n!) e-t, and the

distribution function for the log record is F (t) = 1- e-t.

Based on the FEP model the performance can be analyzed in

two modes.

 Mode 1: 1 < 2

 Mode 2: 2 < 1

 Mode 1 is for queue of log records, which are updated

according to mean time repairs.

Fig 5: (a) Performance of FEP at Mode 1

Mode 2 is for completely repaired log records. These two

cases are analyzed based upon the density functions which are

processed in‘t’ time with n log records at every site. Their

performances have been shown in the Fig. 5 (a) as log record

transactions and Fig. 5 (b) processing time for each log

record.

Fig 5: (b) Performance of FEP at Mode 2

Fig 5: Performance of FEP at both Modes

Mode1 in the Fig 5(a) is with respect to evaluation of n log

records with the distribution rate () and the distributed

parameter (). Mode 2 in the Fig 5(b) is with respect to the

arriving time (n) of log records with the distribution rate ()

and parameter ().

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.9, January 2013

25

5. CONCLUSION

 To form a model like resilient failure evaluation and patch up

(R-FEP) is challenging task. We have exemplified this

problem in distributed database environment. This problem

have some novel principles like: (a) it is completely

distributed, has no failures and also bears malevolent attacks

on systems and network links. (b) The newly entered

transactions can continue their activities during this FEP

process. (c) FEP can be performed at each participating site,

where the sites are communicating with each other. (d) This

model is apparent and works with commercial DBMSs to

build resilient applications. We hope that we have given an

important methodology towards distributed transaction

applications in the context of deviated situations.

6. REFERENCES

[1] Stefano Ceri and Giuseppe, Distributed Databases

Principles and Systems. India: Tata McGraw-Hill, 2008,

pp. 176 -178.

[2] M.R. Adam, Security-control methods for statistical

database: a comparative study, ACM Computing

Surveys 21 (4) (1989).

[3] P.P. Griffiths, B.W. Wade, An authorization mechanism

for a relational database system, ACM Transactions on

Database Systems 1 (3) (September 1976) 242–255.

[4] S. Jajodia, P. Samarati, V.S. Subrahmanian, E. Bertino, A

unified framework for enforcing multiple access control

policies, Proceedings of ACM SIGMOD International

Conference on Management of Data, May 1997, pp.

474–485.

[5] V. Atluri, S. Jajodia, B. George, Multilevel Secure

Transaction Processing, Kluwer Academic Publishers,

1999.

[6] D.E. Denning, An intrusion-detection model, IEEE

Transactions on Software Engineering SE-13 (February

1987) 222–232.

[7] Teresa Lunt, Catherine McCollum, Intrusion detection

and response research at DARPA, Technical Report, The

MITRE Corporation, McLean, VA, 1998.

[8] B. Mukherjee, L.T. Habergeon, K.N. Levitt, Network

intrusion detection, IEEE Network (June 1994) 26–41.

[9] P. Ammann, S. Jajodia, P. Liu, Recovery from malicious

transactions, IEEE Transactions on Knowledge and Data

Engineering 15 (5) (2001) 1167–1185.

[10] P. Liu, P. Ammann, S. Jajodia, Rewriting histories:

recovery from malicious transactions, Distributed and

Parallel Databases 8 (1) (2000) 7–40.

[11] David Lomet, Zografoula Vagena, Roger Barga,

Recovery from “bad” user transactions, SIGMOD '06:

Proceedings of the 2006 ACM SIGMOD International

Conference on Management of Data, ACM Press, New

York, NY, USA, 2006, pp. 337–346.

[12] T. Chiueh, D. Pilania, Design, implementation, and

evaluation of a repairable database management system,

Proc. Annual Computer Security Applications

Conference, 2004.

[13] Yanjun Zuo, Brajendra Panda, Damage Discovery in

Distributed Database Systems, 2004, pp. 111–123.

[14] S.P. Shieh, V.D. Gligor, on a pattern-oriented model for

intrusion detection, IEEE Transactions on Knowledge

and Data Engineering 9 (4) (1997) 661–667.

[15] R.E. Strom, S. Yemini, Optimistic recovery in distributed

systems, ACM Transactions on Computer Systems 3 (3)

(August 1985) 204–226.

[16] F. Rabitti, E. Bertino,W. Kim, D.Woelk, A model of

authorization for next-generation database systems,

ACM Transactions on Database Systems 16 (1) (1994)

88–131.

