
International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

43

Modified RLE with Timestamp Storage for Slow Gradient
Variable Data

Chandan Maity

Embedded Systems Group
Centre for Development of

Advanced Computing (C-DAC)
INDIA

Ashutosh Gupta
Embedded Systems Group
Centre for Development of

Advanced Computing (C-DAC)
INDIA

Sanjat Kumar Panigrahi
Embedded Systems Group
Centre for Development of

Advanced Computing (C-DAC)
INDIA

ABSTRACT

The ultra-low power embedded devices are generally battery-

operated and have limited data memory. The efficient use of

memory is very important as the data memory of the device is

limited. Run-length encoding has attracted much attention as

an important data compression technique because of its

simplicity and potentially low complexity. The present paper

describes a Modified Run-Length Encoding (MRLE) which

has the efficient use of memory, which in turn results in

minimizing energy consumption of scarce battery of

embedded device and to extend the life as long as possible by

maximizing the time of sleep mode. The proposed encoding

method can be used in critical low power wireless sensor

networks.

General Terms

Data Compression, Embedded Systems

Keywords

Run Length Encoding; Data Compression; Timestamp storage

method

1. INTRODUCTION
Memory is one of the most precious components in existing

electronic devices. Memory stores every data related to the

concerned electronic device and therefore Memory

management is one the most important tasks, especially in low

size non-volatile memories such as the ones used in existing

embedded devices. It is crucial for such low size memories

need to store all data and commands. Over the years,

processor speeds have increased at a faster rate than that of

memory. Consequently, the gap between the speed of the

processor and memory has widened and memory access

latencies are of increasing concern. User always expects the

data processing to work fast and provide results quicker in

real time. Where, on one hand, this is possible by increasing

memory of the embedded system, on the other hand, beyond a

certain point, it is not practical to increase the memory size as

with increasing size, size of the electronic device, its power

consumption capacity, and the cost also increases.

One approach to more effective use of memory resources

involves utilizing compression. For example, lossless data

compression techniques have been used to utilize main

memory resources more effectively. To be effective, however,

these methods operate on relatively large data chunks stored

in large size non-volatile memories and do not cater to data

stored in low size non-volatile memories. For instance, taking

an example of a temperature sensor that reads temperature

data into an external memory device such as an EEPROM.

Usually, EEPROM’s have a memory capacity of 1 Mega bit

or 128 kilo bytes. In most cases, 128 kilo byte of memory is

not sufficient to store real time data at regular intervals of

time, as a result of which EEPROM’s memory exhausts after

all 128 kilo byte of memory location is stored with the data.

This situation can be analysed in two cases, worst case and

best case. In a worst case scenario, a temperature sensor reads

1 byte of temperature data at a regular interval of 1 second. As

memory capacity of EEPROM is 128 kilo byte, EEPROM

gets exhausted after 128000 seconds or 128000/3600 =35.5

hours. Thus, EEPROM gets exhausted after every 35.5 hours,

if 1 byte of temperature data is provided at the regular interval

of 1 second. In a best case scenario, temperature sensor reads

1 byte of temperature data at a regular interval of 1 hour. As

memory of EEPROM is 128 kilo byte, EEPROM gets

exhausted after 128000/60 =213.33 hours or approximately 89

days.

Thus, in both the scenarios, there is a need for a system and

method that allows compression of data being stored and

more efficient storage of the same so that less memory is

required to process tasks assigned by a user. There is also a

need for a system, which processes user tasks without

increasing memory, thereby not increasing size, power

consumption capacity and cost of the embedded system.

There is further a need for a system that performs data

compression in low size non-volatile memory in real time

thereby increasing memory capacity without making any

changes to existing system.

The rest of the paper is organized as follows: Section II

outlines related work in the area of run length encoding.

Section III details the proposed solution. Section IV details

the conclusion and future work.

2. RELATED WORK
Run-length encoding is a widely used simple form of data

compression in which runs of data are stored as a single data

value and count instead of the original run. This is most useful

on data which is repeatable in nature. The major examples of

varies from graphic images such as icons or animations to a

data logger which is generally used for measuring and logger

the environmental sensitive parameters such as temperature or

humidity.

The RLE algorithm performs a lossless compression of input

data based on sequences of identical values. It is a historical

technique, originally used in fax machine and later adopted in

image processing. The algorithm is very easy, instead of each

run represented explicitly, the encoding algorithm translates

the data in a pair (l, x) where l is the length of the run and x is

the value of the run elements. The longer the run in the

sequence to be compressed, the better is the compression

ratio. [1]

3. MODIFIED RUN LENGTH

ENCODING
The modified run length encoding is explained with respect to

a system and a method that reads real time temperature data

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

44

and stores the data along with timestamp information in a low

size non-volatile memory at a regular interval of time or on

interrupt. The system comprises a temperature sensor, a

microcontroller, and a real time clock (RTC). The

temperature sensor monitors the temperature, whereas the

microcontroller receives temperature monitored from the

sensor and saves the received data in buffer defined in the

data memory of the microcontroller. The real time clock

(RTC) is a synchronized real time clock, which is present in

the microcontroller or external to microcontroller. The real

time clock (RTC) is synchronized with a reference time stamp

Tref such as EPOCH time or any desired time.

In operation, temperature sensor of the proposed system reads

temperature continuously. The proposed system also defines a

customizable upper and lower threshold value for difference

in temperature being sensed with respect to the previously

sensed temperature. In an implementation and for illustration

purposes, the upper threshold value and the lower threshold

value of the temperature sensor is set to +/- 1, wherein in case

the difference in two successive temperature readings is more

than 1 or less than -1, the temperature measured later is said to

be beyond defined threshold. The upper threshold value and

lower threshold value of the temperature sensor can therefore

be set to different values based on user needs. In an

implementation, the temperature sensor generates an alarm

signal through an interrupt to the microcontroller if the

temperature sensor senses temperature difference between two

consecutive temperature readings to be either above the upper

threshold value or below the lower threshold value. Further,

the temperature sensor provides temperature data to the

microcontroller in real time. The microcontroller performs

calculations related to time and temperature and performs data

compression at a regular interval of time such that time

difference and temperature difference is represented in bits in

a memory efficient manner

The microcontroller remains in idle mode or sleep mode and

only wakes up or comes in active mode when the

microcontroller receives any interrupt signal or wakes up after

a defined time interval. The microcontroller executes a

method that compresses data upon reception of interrupt

signal from the temperature sensor. The real time clock (RTC)

is a synchronized clock present in the microcontroller or as

external component to microcontroller. All the time values

taken for data reading are with respect to the real time clock

(RTC) and it runs 24 hours and 7 days. The device real time

clock (RTC) is synchronized with a reference time stamp,

wherein the reference time stamp is a base time stamp, based

on which all other time stamps and difference between the

time stamps are calculated. The reference time stamp is set to

EPOCH time, wherein EPOCH time is a reference point for

time measurement in time measurement devices. However the

reference time can also be reconfigured. The current standard

of EPOCH is J2000.0, which is exactly noon time of January

1, 2000, according to Gregorian calendar. Real time clock

(RTC) is set to a reference time stamp Tref, wherein the

reference time Tref is set to EPOCH time or configured time.

In working, the microcontroller reads current time and stores

it in a variable called current time Tp. The microcontroller

then calculates an initial time Tinitial by calculating the

difference between current time Tp and reference time stamp

Tref and stores the initial time Tinitial through minimum

number of bits needed to represent the difference. For

instance, in case the time difference is less than 60 seconds, 6

bits are enough to represent the time difference. The

microcontroller further receives an initial temperature data

from the temperature sensor and stores the received data in a

variable Dinitial and stores the initial temperature through

minimum number of bits needed to represent the temperature.

In an embodiment, instead of an interrupt being generated by

the temperature sensor, the microcontroller can also

continuously or periodically poll the temperature sensor and

read the temperature value read thereby, and then compute the

difference with the previously stored temperature reading.

Get the present time stamp

Tref

Obtain current time Tp

Calculate initial time

Tinitial = Tp - Tref

Obtain Initial Temperature,

Dinitial

Get next current time Tp

Calculate time difference

Tfinal = Tp - Tinitial

Obtain final temperature

Dfinal

Calculate temperature

difference, Dd = Dfinal-

Dinitial

Store representation of

temperature difference Dd

and time difference Tfinal

STOP

START

Fig 1: Algorithm flow

The microcontroller goes into sleep mode after storing the

initial time Tinitial and the initial temperature Dinitial. The

microcontroller remains in sleep mode and wakes up from the

sleep mode when it gets an interrupt signal from the

temperature sensor or at fixed time interval for calculating

next time value and temperature value. The microcontroller

then switches from sleep mode to wake up mode. As the

process is continuous, the initial time Tinitial, stored in the

memory, becomes the previous time and the next time

becomes the current time Tp. The microcontroller reads the

current time value Tp and calculates final time as a difference

between the current time Tp and the initial time Tinitial i.e.

Tfinal = Tp - Tinitial. The final time difference Tfinal is then

stored in memory of the microcontroller depending on the

value of the time difference Tfinal. For instance, in case time

difference Tfinal is less than or equal to 60 seconds, six bits of

a byte can represent the time difference Tfinal. Similarly, in

case time difference Tfinal is more than 60 seconds but less

than/equal to 5 minutes, 14 bits of two byte are needed

represent the time difference Tfinal.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

45

During the step of calculating the time difference, the

microcontroller also calculates difference between the new

temperature, also referred to final temperature Dfinal, and the

initial temperature Dinitial. The difference is illustrated as Dd

= Dfinal – Dinitial. In an implementation, this temperature

difference can be stored in bit sequence in the memory of the

microcontroller as a representation of the extent of difference.

For illustration, the representation can depict, whether there is

no temperature difference, whether temperature difference is

more than 0 but below upper threshold, whether temperature

difference is less than 0 but above lower threshold, or whether

the temperature difference is above upper threshold/below

lower threshold.

Four exemplary cases would now be described to illustrate the

manner in which the bit sequence stores the time difference

and the temperature difference representation

3.1 Time difference Representation

3.1.1 Case I: if the time difference Tfinal is less than

one minute or 60 seconds.
If the time difference Tfinal is less than 60 seconds, 1 byte

length can be allocated, out of which 6 bits can be allocated

for storing the time difference. The time difference can be

stored in Least Significant Bits (LSB) of a byte allocated for

the data to be stored in the memory and remaining 2 bits can

be allocated for representation of temperature difference.

Memory storage format for the time difference is shown as:

XXYYYYYY

Wherein X represents temperature difference and Y represents

the time difference Tfinal. For instance, the representation of

temperature difference can be 00, 01, 10, and 11 depending on

whether the measured temperature difference is equal to 0

(00), more than 0 and less than equal to 1 (10), less than 0 and

more than equal to -1 (01), or is beyond the defined upper and

lower thresholds (11). Further, in case the time difference is

50 seconds, the same can be represented as 100110 as the 6-

bit sequence.

Time difference,

Tfinal < 60 seconds

1 Frame of 1 Byte

length is allocated

to store time

difference, Tfinal

Yes

No

Time difference

Tfinal >= 60 seconds

 and < 300 seconds

2 Frames of 1 Byte

length is allocated to

store time difference, Td

Yes

No

Time difference, Tfinal

>= 300 seconds and <

64800 seconds

3 Frames of 1 Byte

length is allocated to

store time difference, Td

Yes
Time difference,

Tfinal

>= 64800 seconds

No

4 Frames of 1 Byte length

is allocated to store time

difference, Td

Yes

Continue the process by

adding additional frames

No

End

Fig 2: Time difference representation flow

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

46

3.1.2 Case II: if the time difference Tfinal is greater

than or equal to 1 minute or 60 seconds and less than 5

minutes or 300 seconds.
In this case the first frame can store 60 seconds of time

difference. Thus, a second frame of 1 byte length can be

allocated for storing remaining time difference, td of 240

seconds. Therefore, 6 bits are allocated from frame 1 to store

60 seconds of time difference, Tfinal and 8 bits are allocated

from frame 2 to store 240 seconds of time difference. Hence,

upto 5 minutes or 300 seconds of time difference can be

stored in 2 frames. Frame format for storing 5 minutes of

time difference data is shown as:

XXYYYYYY YYYYYYYY

wherein X represents temperature difference and Y represents

the time difference, Tfinal.

3.1.3 Case III: if the time difference Tfinal is greater

than or equal to 5 minutes or 300 seconds and less than

18 hours or 64800 seconds.
First frame can store up to 60 seconds of time difference and

second frame can store up to 240 seconds of time difference

Tfinal. Thus first and seconds frame can store only up to 5

minutes or 300 seconds of time difference Tfinal. For storing

remaining 64500 seconds of time difference Tfinal, a third

frame of 1 byte can be allocated. Hence, first frame and

second frame can store up to 5 minutes or 300 seconds of time

difference Tfinal and third frame can store 64500 seconds of

time difference Tfinal. Frame format for storing time

difference Tfinal greater than or equal to 5 minutes and less

than 18 hours or 64800 seconds is shown as:

 XXYYYYYY YYYYYYYY YYYY

wherein X represents temperature difference and Y represents

the time difference Tfinal.

3.1.4 Case IV: if the time difference Tfinal is greater

than or equal to 18 hours or 64800 seconds.
First frame, second frame and third frame can store up to 18

hours or 64800 seconds of time difference Tfinal. For storing

time difference Tfinal of more than 18 hours, another frame is

allocated. Fourth frame can store time difference Tfinal of

more than 18 hours or 64800 seconds. Frame format for

storing time difference Tfinal for more than 18 hours or 64800

seconds is shown as:

XXYYYYYY YYYYYYYY YYYYYYYY YYYYYYYY

wherein X represents temperature difference and Y represents

the time difference, Td.

3.2 Temperature difference Representation
The microcontroller can calculate temperature difference

value Dd and store the temperature difference in memory in a

representation that illustrates the change in temperature

between initial and final readings. In an embodiment, the

microcontroller checks whether the temperature difference Dd

has reached an upper threshold value and lower threshold

value, i.e., +/-1 degree. In case the upper and lower thresholds

have not been reached, the temperature difference can be

represented through two bits only, which is 00 for no change,

01 for change less than 0 but more than -1 i.e. a negative

change, and 10 for change less than 1 but more than 0 i.e. a

positive change. However, in case the change is beyond

defined thresholds bit representation 11 can be used and 1

additional byte can be allocated to represent the final

temperature. Based on the change in temperature observed by

the microcontroller, four cases therefore arise for temperature

difference, Dd.

Temperature

difference,

Dd = 0

Value 00 is stored in

MSB of first frame

Yes

No

Temperature

difference,

Dd = +1

Value 10 is stored in

MSB of first frame

Yes

No

Temperature

difference,

Dd = -1

Value 01 is stored in

MSB of first frame

Yes

No

Value 11 is stored in MSB of

first frame and current

temperature is stored in

another frame

End

Fig 3: Temperature difference representation flow

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

47

3.2.1 Case I: if the microcontroller does not observe

any temperature difference.
Dd, value 00 is stored in 2 bits allocated in the memory. In an

implementation, the 2 bits can be the Most Significant Bits

(MSB) of the frame allocated by the microcontroller and the

allocation of memory can be shown as:

 00YYYYYY

wherein 00 represents no change in the temperature difference

Dd calculated by the microcontroller and Y represents time

difference.

3.2.2 Case II: if the temperature difference Dd

calculated by the microcontroller is equal to -1 degree.
Value 01 is stored in the MSBs of the frame allocated in the

memory for storing temperature difference, Dd. Frame

allocation is shown as:

01YYYYYY

wherein 01 represents change in the temperature difference,

Dd observed by the microcontroller is equal to -1 degree and

Y represents time difference.

3.2.3 Case III: if the temperature difference Dd

calculated by the microcontroller is +1 degree.
Value 10 is stored in the MSBs of the frame allocated in the

memory for storing temperature difference, Dd. Frame

allocation is shown as:

10YYYYYY

wherein 10 represents change in the temperature difference,

Dd observed by the microcontroller is equal to +1 degree and

Y represents time difference.

3.2.4 Case IV: if the temperature difference Dd

calculated by the microcontroller is +1 degree.
In this case, value 11 is stored in the MSBs and another frame

is allocated for storing current temperature. Frame allocation

is shown as:

XXYYYYYY ZZZZZZZZ

wherein X represents temperature difference as 11, Y

represents time difference, and Z represents current

temperature read by the temperature sensor.

Four cases for storing representation of the temperature

difference Dd is shown with respect to the temperature

difference calculated by the microcontroller at duration less

than 1 minute or 60 seconds. Thus only one frame is

allocated. If calculation for temperature difference, Dd is

performed after 60 seconds and within 5 minutes or 300

seconds, 2 frames are allocated. If calculation for temperature

difference, Dd is performed after 5 minutes or 300 seconds

and within 18 hours or 64800 seconds, 3 frames are allocated.

If calculation for temperature difference, Dd is performed

after 18 hours or 64800 seconds, 4 frames are allocated. For

instance, if temperature difference, Dd is calculated after 4

minutes and the difference observed by the microcontroller is

less than 0 and more than -1 degree, value 01 is stored in the

MSBs of the first frame and 2 frames are allocated for storing

the time difference. If temperature difference, Dd is calculated

after 20 hours and the difference observed by the

microcontroller is more than 0 but less than 1, value 10 is

stored in the MSBs of the first frame and 4 frames are

allocated for storing the time difference. Different

combination of cases can be observed based on the calculated

time difference and the representation of temperature

difference. The microcontroller, thus stores only a

representation that depicts the temperature difference along

with time difference with respect to a reference time stamp, so

that the time at which the temperature was read can also be

inferred, thereby eliminating allocating memory to unwanted

data and compressing the data to fixed number of frames. The

system efficiently utilizes the limited memory available and

can store more data.

In an embodiment, based on the time difference intended to be

stored, the number of bytes can dynamically be increase and

allocated. In case more amount of information is desired to be

stored in a compressed mode, the time that can be stored in

the 6 LSBs of the first frame can be reduced. For instance,

instead of 64 seconds that can be stored in the 6 bits, 50

seconds can be configured to be stored such that for

subsequent data one or more new frames can be added. This

allows more data to be stored in the compressed space and

also allows dynamically allocating the number of bytes to

store as much time difference as desired

The microcontroller utilizes less temperature data and less

memory of EEPROM to store the calculated data for further

use. As the process is iterative, previously calculated data is

stored in RAM during calculation and moved to the EEPROM

memory and stored after calculation. Thus, the memory

allocated for storing temperature data can be compressed in

real time, thereby increasing the efficiency of the system.

4. RESULTS
The performance of the compression algorithm is calculated

by using compression ratio, which is defined as

Comp_ratio = 100. (1- Comp_size / Orig_size)

Where comp_size and orig_size are the size of the

compressed and uncompressed bit stream.

Table 1. Comparison Result

Tfinal (in

seconds)

Conventional

Method

Modified

RLE

Compression

Ratio

0 < Tfinal < 60 16 bits 8 bits 50 %

60 <= Tfinal <

300

24 bits 16 bits 33.3 %

300 < Tfinal <=

64800

24 bits 20 bits 16.67 %

64800 < Tfinal 40 bits 32 bits 20 %

The results show the proposed modified run length encoding

is lossless compression algorithm and has on average 30 %

better compression ratio as compared to the conventional

method.

5. CONCLUSION
This research paper provides a new and better performance

technique for data compression which can be used for slow

gradient variable Data with timestamp storage. The proposed

encoding technique has shown good results because

temperature sensing data values slowly change in the

environment. The authors have tested and used the optimized

algorithm in the e-safeT data logger developed by C-DAC. In

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

48

the next few months, we hope to gain significant experience

with the algorithm overall accuracy and performance, by

deploying the e-safeT data logger in cold supply chain.

6. ACKNOWLEDGMENTS
This work was done as a part of project titled “Design and

Development of Object Tracking system for environmental

sensitive object in transit” funded by Department of

Electronics and Information Technology (DeitY), Ministry of

Communications and Information Technology, Government

of India. Authors are thankful to Dr. G.V Ramaraju, (Scientist

G & Group Coordinator) and Smt. Geeta Kathpalia (Scientist

F & Head of Division) for the support. The authors are

indebted to Dr. B K Murthy, Executive Director, C-DAC &

Shri V. B. Taneja Director (A & R) to give enough space and

freedom to cultivate and nurture the research areas in

embedded systems.

7. REFERENCES
[1] Stefano Ferilli, “Automatic Digital Document Processing

and Management: Problems, Algorithms and

techniques,” ISBN: 0857291971

[2] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image

Data Compression. New York: Van Norstrand Reinhold,

1992.

[3] Z. Xiong, O. Guleryuz, and M. T. Orchard, ―A DCT-

based embedded image coder,‖ IEEE Signal Processing

Lett., vol. 3, pp. 289–290, Nov. 1996.

[4] A. Said and W. A. Pearlman, ―New, fast, and efficient

image codec based on set partitioning in hierarchical

trees,‖ IEEE Trans. Circuits Syst. Video Technol., vol. 6,

pp. 243–249, June 1996.

[5] C. Tu and T. D. Tran, ―Context based entropy coding of

block transform coefficients for image compression,‖ in

Proc. SPIE Applications of Digital Image Processing

XXIV, San Diego, CA, Aug. 2001, pp. 377–389.

[6] T. D.Tran and T. Q. Nguyen, ―A progressive

transmission image coder using linear phase uniform

filterbanks as block transforms,‖ IEEE Trans. Image

Processing, vol. 8, pp. 1493–1507, Nov. 1999. JPEG-

2000 VM3,1A software,‖ ISO, ISO/IEC

JTC1/SC29/WG1 N1142, Jan. 1999.

[7] J. Liang, C. Tu, and T. D. Tran, ―Fast lapped transforms

via time-domain pre- and post-filtering,‖ in Proc. ICICS,

Singapore, Oct. 2001. H26L Test model long term

number 8 (TML-8) draft0, ITU-T Study Group 16

(VCEG) June 2001.

