
International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

35

Design of a Fast and Autonomous Complex Line Tracker

and Fully Controlled Robot by Limit Switches

Amevi Acakpovi

Accra Polytechnic (Ghana)
P.o Box: GP561

Salifu Osman
Accra Polytechnic (Ghana)

P.o Box: GP561

Olufemi O.Fatonade
Accra Polytechnic (Ghana)

P.o Box: GP561

ABSTRACT

The explosion of microcontrollers and microprocessor

applications has led to a rapid growth in the area of robotics

especially line follower robots. Controlling line follower

robots to travel over a complex race course pose some

instability and speed problems. This article mainly deals with

the design of an electronic three wheeled-robot capable of

tracking a black line by means of infrared sensors and also

capable of moving through a given trajectory by control of

limit switches at a relatively high speed. The method consists

first in developing a program written in Basic language under

Microcode plus environment and loading it into the

microcontroller to control the robot. Various PWM techniques

were adopted in the programming to handle the turning left,

right, the moving forward and backward. In addition,

necessary hardware involving 6V DC motor, limit switches,

infrared sensors, 6V battery and others have been assembled

on a PIC16F877 microprocessor board and put in a case,

shaped as a vehicle. H bridge motor control and PWM were

used to control the DC motors. The implementation is finally

successful. The robot can move autonomously across a black

line and also pass through a complex race in absence of black

line by means of limit switches. The motor can complete a

race of 2m in 10s and turn at angles less than 30 degree while

remaining stable.

General Terms
Automation, Microprocessor/Microcontroller programming,

Intelligent wireless sensor programming.

Keywords

Basic language Programming, Microprocessor, DC motor

control, infrared sensors, PWM, H-bridge.

1. INTRODUCTION
Line follower robots have played a significant role in

industries growth. Initially, used for the purpose of delivering

mails within an office building, they are now serving to

deliver medication in a hospital. With more accuracy in the

design, the technology could even be suggested for running

buses and other mass transit systems, and may end up as part

of autonomous cars navigating the freeway. Many automation

techniques help to design such robots. In the scope of our

design the work will be focused on the use of PIC

microcontrollers with programming of PWM for the control

of the DC motors.

2. PROBLEM STATEMENT
Line follower robots are popular in robotics industry. The

ultimate reason to design a new robot is to have it computing

with others in terms of speed and stability to travel over a

complex race course. These factors lead to the following

questions: What type of mechanical design can provide both

speed and stability? What type of control could be applied on

the motors to achieve a higher speed? How will the sensing of

black line be done?

3. OBJECTIVES
The main objective of this work is to design and implement a

fast and autonomous robot that will follow a black line on a

white board and also follow a given trajectory by using limit

switches in absence of black line.

The following specific objectives will help achieving the main

purpose:

- Design of a three wheels mechanically balanced

robot

- Design of various PWM applicable for the DC

motors using Basic language, in order to achieve

turning right, turning left, moving forward or

moving backward of the motor.

- Testing of the motor over a complex course race and

adjusting the PWM to achieve the fastest speed

4. REVIEW OF LITERATURE
Extensive research works were done on the mechanical aspect

using different methods to get robots moving fast. Some

include tank tread robot, two wheels robot, omnidirectional

four wheel robot, six wheel robots. The tank tread robot,

developed by Boe-Bot [1] has a strong mechanical aspect

which allows it to adapt itself to any varied terrain such as

carpet, small rocks, imperfect surfaces but it does not achieve

any high speed. However the omnidirectional four wheels

designed by L.Huang et al [2] show superiority to those with

differential wheels in terms of dexterity and driving ability.

Their controller is made of an RF unit which receives the

command and forwards it to the microcontroller. The

microcontroller then generates the PWM pulses and sends

them to the appropriate motors through their driver. These

robots are capable of performing various difficult movements.

Results were shown in term of travelling distance and speed

control of the same robot. The robot traces a line

approximately straight which is acceptable at a speed that

increases gradually from 0 to a threshold of 1000mm/s.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

36

Once again, the four-wheel model is not initially based on the

speed aspect but rather on the stability and mobility. However

additional works done respectively by Pedro F. Santana et al

[3], Dmitry U. Panfilov et al [4], Thomas Bak et al [5] and

Christophe Cariou et al [6] try to improve upon the speed of

wheeled motors. Furthermore, several other types of control

apply to wheeled robot: Gyula Mester [7] uses kinematic

controls on a two wheeled robot with control strategies using

a feed-forward compensator. Other motion controls by

Thomas Bak et al [5] and Sonal Kalra et al [8] were totally

hybrid type. They mainly use a non-holonomic dynamic

system to model the robot. Finally Rick Bickle [9] and

Electronics Design Laboratory [10] designed two fundamental

control methods to apply to the DC motors to achieve high

speed: H bridge method and PWM. The H-bridge enables the

voltage to be applied in both directions allowing both forward

and backward movement. The PWM has direct effect on the

speed.

5. METHODOLOGY
This project involves both hardware and software aspects. The

design description will first start with the hardware aspect and

explain their configuration after which will follow the

software description.

5.1 Hardware Design
The hardware deals with the mechanical design of the robot.

The robot is made of four fundamental parts: Four limit

switches coupled with bumpers, three infrared sensors used to

track black line, the main microprocessor PIC16F877 board

with LCD screen, the two DC-motor, their driving circuit and

a 6V battery with charger. Two tyres are positioned at each

sides at the back and the third on is in front. The front tyre is

not coupled with any motor but can rotate in any direction.

Figure 1 shows the bloc diagram of the robot controller. The

shape of the robot is illustrated by Figure 2.

Legend:

LS-FL: Limit switch front left

LS-FR: Limit switch front right

LS-BL: Limit switch back left

LS-BR: Limit switch back right

Motor R: DC Motor right side

Motor L: DC Motor left side

- Limit switches

The limit switches are put in line under the car, two at the

front and two at the back of the robot. In between the switches

in front are two bumpers to enable the car detect obstacles.

Figure 3 shows a picture of the configuration of the limit

switches. When the bumper hit an obstacle, it closes the

corresponding switch which sends a signal to the

microprocessor. The signal is interpreted to take decision base

on the program that is further explained.

- Infrared sensors

They consist of a set of three infrared sensors put together on

the same printed circuit board and centered under the base

board of the robot. The spacing between two consecutive

sensors is about 1cm. Each sensor comprises both an infrared

transmitter and receiver. The transmitter emits an invisible

radiation which is sensed back by the receiver in case it falls

on any object having black color. A solution-tape of 2cm

width is set on a white board and the sensors are supposed to

sense them and make the car follow the black line.

- Main microprocessor board

The main board is made of the PIC16F877 microprocessor

with adequate extension to the various input and output ports

and also an LCD screen.

- LCD Screen

The LCD (liquid crystal display) screen is a digital screen

capable of printing 20 digits, including alphanumerical

characters. It is used in this project to display information on

the identity of the car. For instance the text displayed on the

LCD screen is: “Robot PIC16F877.

- DC motors

Two 6V DC motor were used to control the two tyres at the

back independently. The motors can be controlled to move in

both directions using a drive circuit that will be further

explained.

- Battery pack

The whole design is powered with a 6V rechargeable battery.

The battery capacity of 12 Ah allow the robot to move

continuously for 2 hours.

- Motor driving circuit

An H bridge DC motor direction control has been used with

complemented inputs as shown by the Figure 4. The driver

circuit is built for each of the DC motor. The three pins of

connector J2 are made available for connection to the

microprocessor board. The three pins on connector J2 are

VCC, Control and GND. When the control signal sent from

the microcontroller is digital 1, Q2 and Q4 are forward biased

and then run the motor in Forward Direction. Conversely,

when the control voltage comes to a 0 logic, Q1 and Q3

become forward biased and run the motor in reverse direction.

5.2 Software Description
The software description involves the use of artificial

intelligence to execute the movement of the car. This is based

on a specific program written in basic language and explained

by the flowchart in Figure 5. The three infrared sensors are

considered digital inputs. The 0 level means the sensor has

detected a black line. All the decision boxes in the flowcharts

are checking if the sensors have detected the black line or not.

Figure 1: Block diagram of the robot controller

LS-FL

LS-FR

LS-BL

LS-BR

L-IRS

M-IRS

R-IRS

Micro

Controller

Memory

Motor

Driver

Motor R

Motor L

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

37

At start, the robot goes through an initialization process which

involves the definition of input and output ports after which it

beeps for 2 seconds and display a message on the LCD screen.

The program continues by checking the state of “BITSART”

which is a push button that the user must press to run the

program. At the execution of the main program, the robot

move in one of the following direction according to the state

of black line sensed by the three infrared sensors: forward,

backward, left, right, normal left or normal right.

- Forward

The forward procedure is explained by the flowchart in Figure

6. First the program checks if the back left or right switches

are hitting an obstacle in which case it execute different

procedures called “EVADE_LEFT” and “EVADE_RIGHT

respectively. If there is no obstacle detected, the program runs

the left and the right motors for 2ms and 1ms respectively,

insert a delay of 18 ms and return back to the main program to

check if the state of the infrared sensors continues to allow the

robot to move forward.

- Evade Left

This procedure allows the robot to evade left, which is

explained in Figure 7. It is executed when the front left switch

hit an obstacle. It is assumed to help the robot to change

direction and avoid the obstacle. It consists of moving the

robot backward for a certain distance and turns it right for 45o.

Otherwise, while moving backwards if the left or right back

switches detect obstacles the robot turn right or left

respectively at an angle of 45º.

- Evade Right

The procedure “EVADE_RIGHT” does the same thing as the

“EVADE_LEFT” just that the process starts based on the

detection of the front right switch. In this case the robot

moves backward and turn left.

- Turn Right

As shown by the Figure 8, the robot turns right when there is

no detection of black line. It turns right continuously,

resulting into rotation until the sensors meet a black line. The

procedure consists of turning on and off consecutively the

right side motor and the left side motor for 2ms each and

inserting a delay of 18ms. A click on the push button start can

stop this procedure and go back to the main program. This is

to allow the user to relocate the robot in order to detect a

black race course instead of turning right continuously.

- Turn Left

This procedure is similar to the previous one but the whole

system turns left.

- Turn Normal Right

It is a slow turning into the right direction which is often

called several times to allow the motor to turn at a desired

angle. The procedure consists of turning the left motor for

2ms while keeping the right one off and then inserting 18ms

delay. Figure

 9 shows the flowchart.

- Turn Normal Left

This procedure does the same thing as the “TURN NORMAL

RIGHT” just that the turning direction is left.

- Backwards

Backward is achieved by turning on sequentially, the left

motor for 1ms, the right one for 2ms and inserting a pause of

18ms. Figure 10 illustrate it.

6. DISCUSSION OF FINDINGS
The completed robot is very stable owing to the mechanical

aspect of the design. The robot was tested several times over a

complex course race. It can travel over a straight line of 2

meters within 10s. The robot can also turn left or right at

angles less than 30 degree without turning over, showing a

considerable stability. In absence of black line the robot

movement is controlled by the limit switches. For instance, if

any of the front switches hit an obstacle, the robot move

backward and turn slightly in the opposite direction before

moving forward. This helps the robot to overpass an obstacle

after hitting it for a certain limited number of times. This

number is not fixe but depends upon the angle at which the

robot hit the obstacle for the first time.

Furthermore, the timing diagram of Figure 11 explains the

PWM applied for the forward and backward procedures. This

diagram is derived from the flowcharts explained above. The

average voltage level for both motors is given by:

After applying the formula, the voltage levels are respectively,

57% and 29% for the Left and Right motors.

7. CONCLUSION
This article presents the design of a robot capable of following

a black line and also capable to move in absence of black line

with the control of four limit switches. The robot is

successfully designed and capable of passing through medium

to complex races at a relatively high speed. The robot is

controlled by a program written in Basic language and loaded

on a PIC16F877 controller which involves different PWM to

control the various movements (turning left, turning right,

moving forward or backward…). The design is an applied

engineering example of using microprocessor/microcontroller

in Electricity, Electronics and Computer technology.

Further works could improve the robot design by considering

a more advanced mechanical shape (4 wheels) and also by

using a speed drive for the DC motors in order to increase

their speed.

8. ACKNOWLEDGMENTS
Our thanks go to the experts who have contributed to the

development of this line tracker robot, especially: Nicholas

Ankrah and Samuel Inkumsa.

9. REFERENCES
[1] Boe-Bot 2011. Boe-Bot Tank Treads.

www.parallax.com.

[2] Huang,L., Lim, Y.S., David Li and Christopher, E.L.

2004. Design and Analysis of a Four-wheel

Omnidirectional Mobile Robot. 2nd International

Conference on Autonomous Robot and Agents,

Decenber 13-15 2004, Palmerstorn North, New Zeland.

[3] Pedro, F. S., Carlos C. and Vasco S. 2006. A Motion

Controller for Compliant Four-Wheeled-Steering Robots.

IntRoSys, S.A., FCT-UNL 2829-516- Portugal.

http://www.parallax.com/

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

38

[4] Dmitry U. P. and Sergey B. T. 2007. Tracking of

reference trajectory for wheeled mobile robot. Bauman

Moscow State Technical University, ul. 2-aja

Baumanskaja, 5, 107005, Russia., Moscow.

[5] Thomas B., Jan B. and Anders P. R. 2011. Hybrid

Control Design for a Wheeled Mobile Robot.

Department of Control Engineering, Aalborg University,

Fredrik Bajers Vej 7C, DK-9220, Aalborg, Denmark.

[6] Christophe C., Roland L., Benoit T. and Michel B. 2009.

Automatic Guidance of a Four-Wheel-Steering Mobile

Robot for Accurate Field Operations. Journal of Field

Robotics 26(6–7), 504–518 (2009), Wiley InterScience.

[7] Gyula M. 2006. Motion Control of Wheeled Mobile

Robots. SISY. 4th Serbian-Hungarian Joint Symposium

on Intelligent System.

[8] Sonal K., Dipesh P. and Karl S. 2007. Design and Hybrid

Control of a Two Wheeled Robotic Platform. Dept. of

Mechanical Engineering, University of Auckland, New

Zealand

[9] Rick.B. 2003. DC Motor Control Systems For Robot

Applications.

[10] Electronics Design Laboratory. 2003. Robot DC Motor

Driver and Speed Control. ECEN 2830.

10. APPENDIX I: FIGURES

D1
1N4002GP

D2
1N4002GP

D3
1N4002GP

D4
1N4002GP

Q1

2N2222A

Q2

2N2222A

Q3

2N2222A

Q4

2N2222A

R5

1.5kΩ

R6

1.5kΩ

R7

1.5kΩ

R8

1.5kΩ

X1

5V_1W

VCC

6V

U1A

74LS04N

LED1

LED2

R2
220Ω

R3
220Ω

J2

HDR1X3

Figure 4: H Bridge Driver Circuit

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

39

Figure 6: Forward

Figure 3: Infrared sensor

Figure 5: Main program

Figure 2: Three-wheeled robot

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

40

0 5 10 15 20 25
0

2

4

6

Time in ms

V
o
lt

Left Side Motor

0 5 10 15 20 25
0

2

4

6

Time in ms

V
o
lt

Right Side Motor

Figure 8: Turn right

Figure 7: Evade Left

Figure 11: PWM waveform for Backward and

Forward procedures

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

41

11. APPENDIX 2: Program loaded in the Microprocessor in Basic Language

'***

'* Name :COMPLETE ROBOT.bas

'* Hard ware :ET_ROBOR-877

'* CPU :PIC 16F877-20P

'* HARD WARE SETUP:

'* Servo-L <-- RC2

'* Servo-R <-- RC1

'* SW bumper left front <-- RA4

'* SW bumper right front <-- RE0

'* SW bumper left back <-- RE1

'* SW bumper right back <-- RA5

'* R-Light sensor <-- RA1 (AN1)

'* l-Light sensor <-- RA0 (AN0)

'* Notice : This program controls a robot car by using

tracker sensors

'* switch bumper sensor and display message to LCD

'***

 INCLUDE "modedefs.bas"

 DEFINE OSC 10

 pulse_1ms CON 250

 pulse_2ms CON 500

 Motor_L VAR PORTC.2

 Motor_R var PORTC.1

 SW_START VAR PORTA.2

 SPK VAR PORTD.1

 RUN_LED VAR PORTD.0

 SW_FL VAR PORTA.4

 SW_FR VAR PORTE.0

 SW_BL VAR PORTE.1

 SW_BR VAR PORTA.5

 LFT VAR PORTB.0

 MID VAR PORTB.1

 RGT VAR PORTB.2

 i var byte

'****** DEFINE CONFIGURATION FOR LED **

 Define LCD_DREG PORTD '

 Define LCD_DBIT 4'PORTD [7:4] is

LCD data pin

 Define LCD_RSREG PORTD '

 Define LCD_RSBIT 3 'RD3 is RS pîn

 Define LCD_EREG PORTD

 Define LCD_EBIT 2 'RD2 is E pin

 Define LCD_BITS 4 'LCD 4 bit mode

'****************** DEFINE INPUT AND OUTPUT

 OUTPUT MOTOR_R

 OUTPUT MOTOR_L

 LOW MOTOR_r

 LOW MOTOR_L

 INPUT SW_START

 INPUT SW_FL

 INPUT SW_FR

 INPUT SW_BL

 INPUT SW_BR

 TRISB = $FF

 TRISD = 0

 ADCON1 = 7

 GOSUB BEEP2

 LCDOUT $FE,1, " APOLY ROBOT ",$FE,$C0,

"ITS ET-ROBOT 877"

 GOTO WAIT_ST

STOP_PRESS: PAUSE 50

Figure 9: Turn normal right

Figure 10: Backward

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

42

 IF SW_START = 0 THEN STOP_PRESS

 GOSUB BEEP2

WAIT_ST: HIGH RUN_LED

 IF SW_START = 1 THEN WAIT_ST

wait_1: PAUSE 50

 IF SW_START = 0 THEN WAIT_1

 low RUN_LED

'***

' MAIN PROGRAM

'***

 MAIN: if (lft = 0) AND (mid = 0) AND (rgt = 0) THEN

gosub FORWARD

 IF SW_sTART = 0 THEN STOP_PRESS

 if (lft = 0) AND (mid = 0) AND (rgt = 1) THEN

gosub TURN_RIGHT

 IF SW_sTART = 0 THEN STOP_PRESS

 if (lft = 0) AND (mid = 1) AND (rgt = 0) THEN

gosub FORWARD

 IF SW_sTART = 0 THEN STOP_PRESS

 if (lft = 0) AND (mid = 1) AND (rgt = 1) THEN

gosub TURN_NORM_R

 IF SW_sTART = 0 THEN STOP_PRESS

 if (lft = 1) AND (mid = 0) AND (rgt = 0) THEN

gosub TURN_LEFT

 IF SW_sTART = 0 THEN STOP_PRESS

 if (lft = 1) AND (mid = 0) AND (rgt = 1) THEN

gosub FORWARD

 IF SW_sTART = 0 THEN STOP_PRESS

 if (lft = 1) AND (mid = 1) AND (rgt = 0) THEN

gosub TURN_NORM_L

 IF SW_sTART = 0 THEN STOP_PRESS

 if (lft = 1) AND (mid = 1) AND (rgt = 1) THEN

gosub TURN_RIGHT

 IF SW_sTART = 0 THEN STOP_PRESS

 GOTO MAIN

'***

' WALKING FORMAT CONTROL

'***

FORWARD: IF SW_FL = 0 THEN GOSUB

EVADE_LEFT

 IF SW_FR = 0 THEN GOSUB EVADE_RIGHT

 PULSOUT MOTOR_L, PULSE_2MS

 low MOTOR_L

 PULSOUT MOTOR_R, PULSE_1MS

 low MOTOR_R

 PAUSE 18

 RETURN

EVADE_LEFT:

 GOSUB BEEP1

 FOR I = 0 TO 30

 GOSUB BACKWARD

 IF SW_BL = 0 THEN TURN_R45

 IF SW_BR = 0 THEN TURN_L45

 NEXT I

TURN_R45:

 FOR I = 0 TO 30

 GOSUB TURN_NORM_R

 NEXT I

 RETURN

EVADE_RIGHT:

 GOSUB BEEP1

 FOR I = 0 TO 30

 GOSUB BACKWARD

 IF SW_BL = 0 THEN TURN_R45

 IF SW_BR = 0 THEN TURN_L45

 NEXT I

TURN_L45:

 FOR I = 0 TO 30

 GOSUB TURN_NORM_L

 NEXT I

 RETURN

BACKWARD:

 PULSOUT MOTOR_L, PULSE_1MS

 LOW MOTOR_L

 PULSOUT MOTOR_R, PULSE_2MS

 LOW MOTOR_R

 PAUSE 18

 RETURN

TURN_RIGHT:

 PULSOUT MOTOR_R, PULSE_2MS

 LOW MOTOR_R

 PULSOUT MOTOR_L, PULSE_2MS

 LOW MOTOR_L

 PAUSE 18

 IF SW_START = 0 THEN RETURN

 IF SW_FR = 0 THEN RETURN

 IF MID = 0 THEN TURN_RIGHT

 RETURN

TURN_LEFT :

 PULSOUT MOTOR_R, PULSE_1MS

 LOW MOTOR_R

 PULSOUT MOTOR_L, PULSE_1MS

 LOW MOTOR_L

 PAUSE 18

 IF SW_START = 0 THEN RETURN

 IF SW_FL = 0 THEN RETURN

 IF MID = 0 THEN TURN_LEFT

 RETURN

TURN_NORM_R:

 LOW MOTOR_R

 PULSOUT MOTOR_L, PULSE_2MS

 LOW MOTOR_L

 PAUSE 18

 RETURN

TURN_NORM_L:

 LOW MOTOR_L

 PULSOUT MOTOR_R, PULSE_1MS

 LOW MOTOR_R

 PAUSE 18

 RETURN

BEEP1: FREQOUT SPK, 100, 2000

 RETURN

BEEP2: FREQOUT SPK, 100, 2000

 PAUSE 100

 FREQOUT SPK, 50, 2000

 RETURN

