
International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

5

Employee Searching based on User and Query-

Dependent Ranking

Soumya S., Vismi V., Jeena C.D., Nisha Oommachen.

Department of Computer Science and Engineering, University of Kerala
Sree Buddha College of Engineering

Alappuzha district
Pattoor

ABSTRACT

The growth of the Web and the Internet leads to the

development of an ever increasing number of interesting

application classes. The most common method used now in

companies is normal recruitment process. If a company wants

an employee immediately, the only way for recruitment is

advertising in any media. After receiving applications from

the employees, they need to check the qualification,

experience etc. It is a time required process.

This paper proposes a method for employee searching by

using a user and query dependent ranking. Here present a

ranking model based on user inputs. This ranking model is

acquired from several other ranking functions derived for

various user-query pairs. This is based on the intuition that

similar users display comparable ranking preferences over the

result of similar queries. This paper gives an idea about how

the ranking can be used.

Keywords

User Similarity, Query Similarity, Automatic Ranking,

Workload, Relational Queries.

1. INTRODUCTION
The success and growth of the Internet and Web leads to the

development of a large number of Web databases for a variety

of applications. Database systems support only a Boolean

query model. If query is not selective then too many tuples

may be in the answer. It is time consuming to select the most

appropriate answer .Web databases simplify this task by

sorting the query result. Currently this sorting is done on the

values of a single attribute. The ordering based on multiple

attribute values would be closer to the Web user’s

expectation.

 Here depict two scenarios as running examples.

Example-1: Two users – a software company executive (U1)

and a nonsoftware company executive, for example a data

entry company (U2), seek answers to the same query (Q1):

“Working area= computer AND Location = Dallas, TX”, for

which more than 18,000 tuples are typically returned in

response. Intuitively, U1 would typically search for employees

with Programming skills in particular language, and hence

would prefer employees with “Condition =programmer AND

language = Java” to be ranked and displayed higher than the

others. In contrast, U2 would most likely search for data entry

operators with minimum speed in data entry; hence, for U2,

employees with “Condition = Dataentry operator AND

qualification=Plus Two” should be displayed before the rest.

Example-2: The same user (U2) moves to do some medical

transcription work and asks a different query (say Q4):

“Working area = Medical field AND Location = Mountain

View”. It can presume that he may want employees with

slightly higher qualification for medical transcription, and

hence would prefer employees with “Condition = Data Entry

Operator AND Qualification=Degree” to be ranked higher

than others.

Example-1 shows that towards the results of the same query,

different Web Users may have contrasting ranking

preferences [2]. Example-2 shows that the same user may

display different ranking preferences for the results of

different queries [2]. Thus in the case of Web databases,

where a large set of queries is involved, the corresponding

results should be ranked in a user-and query-dependent

manner.

The current sorting mechanism used by Web databases is an

automated ranking of database results. Automated ranking

provide a single ranking order for a given query across all

users because they do not differentiate between users. In

contrast, techniques for building extensive user profiles [3] as

well as requiring users to order data tuples [4], proposed for

user-dependent ranking, do not distinguish between queries

and provide a single ranking order for any query given by the

same user.

This paper proposes an application of user- and query-

dependent approach for ranking the results of Web databases

queries. The key goal of an information retrieval system is to

retrieve information which might be useful or relevant to the

user. Employees are recruited into the company by normal

methods such campus placements, advertising in any media

etc. But it is a time required process.

For filling a single vacancy the above method is not as

efficient. Here present a method for employee searching by

using a user and query dependent ranking. The employer can

search in the site and can select employees with required

qualification.

 For a query Qj given by a user Ui, a relevant ranking function

is identified from a workload of ranking functions, to rank

Qj’s results. Query similarity indicates that for the results of

a given query, similar users display comparable ranking

preferences. And the user similarity means a user displays

analogous ranking preferences over results of similar queries.

The ranking function here used is a function of attribute

weights and value weights. The former denoting the

significance of individual attributes and the latter representing

the importance of attribute values. A minimal workload is

important to make this approach practically useful. By

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

6

adapting relevant feedback mechanism, this proposed

technique can acquire such a workload.

2. RELATED WORK
There was no concept of ranking in traditional databases.

Currently ranking has become everywhere at once and is used

in document retrieval systems, traditional data bases, Web

searching/browsing as well.

2.1 Ranking done in database
This context proposes address the problem of query dependent

ranking. But, for a given query, this technique provides the

same ordering of tuples across all users. By considering the

profiles of users for user-dependent ranking in databases has

been proposed here. The drawbacks in all these works focus

on the fact that they ignore the concept that the same user may

have varied ranking preferences for different queries. The

closest form of query- and user-dependent ranking in

relational databases has been proposed here. This technique is

also unsuitable for Web users who are not proficient with

query languages and ranking functions. In contrast, this

framework provides an automated query- as well as user-

dependent ranking solution without requiring users to possess

knowledge about query languages, data models and ranking

mechanisms.

2.2 Relevance Feedback
Inferring a ranking function by analyzing the user’s

interaction with the query results originates from the concepts

of relevance feedback [7] [8] [9] in the domain of document

and image retrieval systems. The direct application of either

explicit or implicit feedback mechanisms for inferring

database ranking functions has several challenges.

3. PROBLEM DEFINITION AND

ARCHITECTURE
The ranking problem can be stated as: “For the query Qj given

by the user Ui, determine a ranking function FUiQj from W”.

The ranking problem can be split into:

1. Identifying a ranking function using the similarity model:

Given W, determine a user Ux similar to Ui and a query Qy

similar to Qj such that the function FUxQys exists in W.

2. Generating a workload of ranking functions: Given a user

Ux asking query Qy, based on Ux’s preferences towards Qy’s

results, determine, explicitly or implicitly, a ranking function

FUxQy. W is then established as a collection of such ranking

functions learnt over different user-query pairs.

3.1 Ranking Architecture
The core component of ranking framework is the similarity

model (Figure 1). The set of users ({Ui, U1, U2, ...Ur}) most

similar to Ui, determined by the user similarity model

Fig 1: Similarity Ranking Model [2]

The query similarity model determines the set of queries

({Qj,Q1,Q2, ...,Qp}) most similar to Qj. Using these similar

queries and users, it searches the workload to identify the

function FUxQy. The ranking functions for several user-query

pairs are formed from the workload used in this framework.

 In the proposed paper, the ranking function is of the

linear weighted-sum type. The mechanism used for deriving

this function captures the: i) significance associated by the

user to each attribute i.e., an attribute-weight and ii) user’s

emphasis on individual values of an attribute i.e., a value-

weight.

i

m

i

i vwttuplescore *)(
1






 (1)

Where wi represents the attribute-weight of Ai and vi

represents the value-weight for Ai’s value in tuple t.

4. SIMILARITY MODEL FOR

RANKING
When ranking functions are known for a small set of user-

query pairs, then the concept of similarity-based ranking is

aimed. At the time of answering a query asked by a user, if no

ranking function is available for this user-query pair, the

proposed query and user-similarity models can effectively

identify a suitable function to rank the corresponding results.

4.1 Query Similarity
For the user U1 from Example-1, a ranking function does not

exist for ranking Q1’s results (N1). However, from Example-2,

it is known that a user is likely to have displayed different

ranking preferences for different query results. Consequently,

a randomly selected function from U1’s workload is not likely

to give a desirable ranking order over N1. On the other hand,

the ranking functions are likely to be comparable for queries

similar to each other [2].

 The proposed paper advances the hypothesis that if Q1 is

most similar to query Qy (in U1’s workload), U1 would display

similar ranking preferences over the results of both queries;

thus, the ranking function (F1y) derived for Qy can be used to

rank N1. Similar to recommendation systems, this framework

can utilize the aggregate function, composed from the

functions corresponding to the top-k most similar queries to

Q1, to rank N1 [2]. This proposal of query similarity into two

alternative models: i) query condition similarity, and ii)

query-result similarity.

4.1.1 Query-Condition Similarity
By comparing the attribute values in the query conditions, the

similarity between two queries can be determined.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

7

Given two queries Q and Q’, each with the conjunctive

selection conditions, respectively of the form “WHERE A1=a1

AND • • • AND Am=am” and “WHERE A1=a1’ AND • • •

AND Am=am’ “ , the query-condition similarity between Q

and Q’ is given as the conjunctive similarities between the

values ai and ai’ for every attribute Ai (Equation 1).

Similarity(Q,Q’) = 


m

i 1

sim(Q[Ai = ai],Q’[Ai = ai’])(2)

4.1.2 Query-Result Similarity
 If two queries are similar, the results are likely to

greater similarity. Similarity between a pair of queries is

evaluated as the similarity between the tuples in the respective

query results. Given two queries Q and Q’, let N and N’ be

their query results. The query-result similarity between Q and

Q’ is then computed as the similarity between the result sets N

and N’, given by Equation 2.

similarity(Q,Q’) =sim(N,N’) (3)

Fig 2: Query similarity model summarized view

The above figure shows the computation of similarity for the

two models.

4.2 User Similarity
 It is known from Example-1 that different users may

display different ranking preferences towards the same query.

Here put forward the hypothesis that if U1 is similar to an

existing user Ux, then, for the results of a given query (say

Q1), both users will show similar ranking preferences;

therefore, Ux’s ranking function (Fx1) can be used to rank Q1’s

results for U1 as well. Given two users Ui and Uj with the set

of common queries – {Q1, Q2, ..., Qr}, for which ranking

functions ({Fi1, Fi2, ..., Fir} and {Fj1, Fj2, ..., Fjr}) exist in W,

the user similarity between Ui and Uj is expressed as the

average similarity between their individual ranking functions

for each query Qp (shown in Equation 3):

Similarity(Ui, Uj)

 r

FFsim
r

jpip


),(

 (4)

4.3 The Composite Similarity Model
 The goal of this composite model is to determine a

ranking function (Fxy). Finding such an appropriate ranking

function is given by the Algorithm.

INPUT: Ui, Qj , Workload W (M queries, N users)

OUTPUT: Ranking Function Fxy to be used for Ui, Qj

STEP ONE:

for p = 1 to M do

%% Using Equation 2 %%

 Calculate Query Condition Similarity (Qj ,Qp) end for

%% Based on descending order of similarity with Qj %%

Sort(Q1, Q2, QM)

Select QKset i.e., top-K queries from the above sorted set

STEP TWO:

for r = 1 to N do

%% Using Equation 4 %%

 Calculate User Similarity (Ui, Ur) over QKset

end for

%% Based on descending order of similarity with Ui %%

Sort(U1, U2, UN) to yield Uset

STEP THREE:

for Each Qs ∈QKset do

for Each Ut∈Uset do

Rank(Ut,Qs) =Rank(Ut∈Uset) + Rank(Qs ∈QKset)

end for

end for

Fxy = Get-RankingFunction()

The input to the algorithm is a user (Ui) and a query (Qj) along

with the workload matrix (W) containing ranking functions.

The algorithm begins by determining the querycondition

similarity (STEP ONE) between Qj and every query in the

workload. It then sorts all these queries (in descending order)

based on their similarity with Qj and selects the set (QKset) of

the top-K most similar queries to Qj that satisfy the conditions

for the top-K user similarity model. Based on these selected

queries, the algorithm determines the usersimilarity(STEP

TWO) between Ui and every user in the workload. All the

users are then sorted (again, in descending order) based on

their similarity to Ui. It then generate a list of all the user-

query pairs (by combining the elements from the two sorted

sets), and linearise these pairs by assigning a rank (which is

the sum of query and user similarity ranks) to each pair (STEP

THREE). For instance, if Ux and Qy occur as the xth and yth

elements in the respective ordering with the input pair, the

pair (Ux, Qy) is assigned an aggregate rank. In this case, a rank

of “x + y” will be assigned. The “Get-Ranking Function”

method then selects the pair (Ux, Qy) that has the lowest

combined rank and contains a ranking function (Fxy) in the

workload. Then, in order to rank the results (Nj), the

corresponding attribute weights and value weights obtained

for Fxy will be individually applied to each tuple in Nj.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.5, January 2013

8

5. WORKLOAD OF RANKING

FUNCTIONS
In this paper, the proposed model uses a workload of ranking

functions. Obtaining such a ranking function is not a trivial

task in the context of Web databases. Since obtaining ranking

functions from users on the Web is difficult determining the

exact set of ranking functions to be derived for establishing

the workload is important.

6. CONCLUSION
This paper proposes a model for employee searching by using

a user- and query-dependent ranking method. By using this

method, it solves the Many-Answers Problem which leverages

data and workload statistics and correlations. The design and

maintenance of an appropriate workload that satisfies

properties of similarity-based ranking is very challenging.

7. ACKNOWLEDGMENTS
We thank the anonymous referees for their extremely useful

comments on an earlier draft of this article

8. REFERENCES
[1] Google. Google base. http://www.google.com/base.

[2] AdityaTelang, Chengkai Li, Sharma Chakravarthy, “One

size Does Not Fit All: Towards User- and Query

Dependent Rasnking For Web Databases”.

[3] G. Koutrika and Y. E. Ioannidis. Constrained

optimalities in query personalization. In SIGMOD

Conference, pages 73–84, 2005.

[4] S. Amer-Yahia, A. Galland, J. Stoyanovich, and C. Yu.

From del.icio.us to x.qui.site: recommendations in social

tagging sites. In SIGMOD Conference, pages 1323–

1326, 2008.

[5] A. Penev and R. K. Wong. Finding similar pages in a

social tagging repository. In WWW, pages 1091–1092,

2008

[6] T. C. Zhou, H. Ma, M. R. Lyu, and I. King. Userrec: A

user recommendation framework in social tagging

systems. In AAAI, 2010.

[7] B. He. Relevance feedback. In Encyclopedia of Database

Systems, pages 2378–2379, 2009.

[8] Y. Rui, T. S. Huang, and S. Mehrotra. Content-based

image retrieval with relevance feedback in mars. In IEEE

International Conference on Image Processing, pages

815–818, 1997.

[9] L. Wu and C. F. et. al. Falcon: Feedback adaptive loop

for content-based retrieval. In VLDB, pages 297–306,

2000.

[10] Google. Google base. http://www.google.com/base.

[11] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k

queries over web-accessible databases. ACM

Transactions of Database Systems, 29(2):319–362,2004.

[12] S. Gauch and M. S. et. al. User profiles for personalized

information access. In Adaptive Web, pages 54–89,

2007.

[13] A. Penev and R. K. Wong. Finding similar pages in a

social tagging repository. In WWW, pages 1091–1092,

2008.

[14] T. C. Zhou, H. Ma, M. R. Lyu, and I. King.Userrec: A

user recommendation framework in social tagging

systems. In AAAI, 2010.

[15] H. Yu, S.-w.Hwang, and K. C.-C. Chang. Enabling soft

queries for data retrieval. Information Systems,

32(4):560–574, 2007.

[16] A. Telang, C. Li, and S. Chakravarthy. One size does not

fit all: Towardsuser- and query-dependent ranking for

web databases. Technical report,UT Arlington,

ttp://cse.uta.edu/research/Publications/Downloads/CSE-

2009-6.pdf,2009.

