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ABSTRACT 

The growth of the Web and the Internet leads to the 

development of an ever increasing number of interesting 

application classes. The most common method used now in 

companies is normal recruitment process. If a company wants 

an employee immediately, the only way for recruitment is 

advertising in any media. After receiving applications from 

the employees, they need to check the qualification, 

experience etc. It is a time required process.  

This paper proposes a method for employee searching by 

using a user and query dependent ranking. Here present a 

ranking model based on user inputs. This ranking model is 

acquired from several other ranking functions derived for 

various user-query pairs. This is based on the intuition that 

similar users display comparable ranking preferences over the 

result of similar queries. This paper gives an idea about how 

the ranking can be used.   
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1. INTRODUCTION 
The success and growth of the Internet and Web leads to the 

development of a large number of Web databases for a variety 

of applications. Database systems support only a Boolean 

query model. If query is not selective then too many tuples 

may be in the answer. It is time consuming to select the most 

appropriate answer .Web databases simplify this task by 

sorting the query result. Currently this sorting is done on the 

values of a single attribute. The ordering based on multiple 

attribute values would be closer to the Web user’s 

expectation. 

 Here depict two scenarios as running examples.  

Example-1: Two users – a software company executive (U1) 

and a nonsoftware company executive, for example a data 

entry company (U2), seek answers to the same query (Q1): 

“Working area= computer AND Location = Dallas, TX”, for 

which more than 18,000 tuples are typically returned in 

response. Intuitively, U1 would typically search for employees 

with Programming skills in particular language, and hence 

would prefer employees with “Condition =programmer AND 

language = Java” to be ranked and displayed higher than the 

others. In contrast, U2 would most likely search for data entry 

operators with minimum speed in data entry; hence, for U2, 

employees with “Condition = Dataentry operator AND 

qualification=Plus Two” should be displayed before the rest. 

Example-2: The same user (U2) moves to do some medical 

transcription work and asks a different query (say Q4): 

“Working area = Medical field AND Location = Mountain 

View”. It can presume that he may want employees with 

slightly higher qualification for medical transcription, and 

hence would prefer employees with “Condition = Data Entry 

Operator AND Qualification=Degree” to be ranked higher 

than others. 

Example-1 shows that towards the results of the same query, 

different Web Users may have contrasting ranking 

preferences [2]. Example-2 shows that the same user may 

display different ranking preferences for the results of 

different queries [2]. Thus in the case of Web databases, 

where a large set of queries is involved, the corresponding 

results should be ranked in a user-and query-dependent 

manner. 

The current sorting mechanism used by Web databases is an 

automated ranking of database results. Automated ranking 

provide a single ranking order for a given query across all 

users because they do not differentiate between users. In 

contrast, techniques for building extensive user profiles [3] as 

well as requiring users to order data tuples [4], proposed for 

user-dependent ranking, do not distinguish between queries 

and provide a single ranking order for any query given by the 

same user. 

This paper proposes an application of user- and query-

dependent approach for ranking the results of Web databases 

queries. The key goal of an information retrieval system is to 

retrieve information which might be useful or relevant to the 

user. Employees are recruited into the company by normal 

methods such campus placements, advertising in any media 

etc. But it is a time required process. 

For filling a single vacancy the above method is not as 

efficient. Here present a method for employee searching by 

using a user and query dependent ranking. The employer can 

search in the site and can select employees with required 

qualification. 

 For a query Qj given by a user Ui, a relevant ranking function 

is identified from a workload of ranking functions, to rank 

Qj’s results. Query similarity indicates that for the results of 

a given query, similar users display comparable ranking 

preferences. And the user similarity means a user displays 

analogous ranking preferences over results of similar queries. 

The ranking function here used is a function of attribute 

weights and value weights. The former denoting the 

significance of individual attributes and the latter representing 

the importance of attribute values. A minimal workload is 

important to make this approach practically useful. By 
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adapting relevant feedback mechanism, this proposed 

technique can acquire such a workload. 

2. RELATED WORK 
There was no concept of ranking in traditional databases. 

Currently ranking has become everywhere at once and is used 

in document retrieval systems, traditional data bases, Web 

searching/browsing as well. 

2.1 Ranking done in database 
This context proposes address the problem of query dependent 

ranking. But, for a given query, this technique provides the 

same ordering of tuples across all users. By considering the 

profiles of users for user-dependent ranking in databases has 

been proposed here. The drawbacks in all these works focus 

on the fact that they ignore the concept that the same user may 

have varied ranking preferences for different queries. The 

closest form of query- and user-dependent ranking in 

relational databases has been proposed here. This technique is 

also unsuitable for Web users who are not proficient with 

query languages and ranking functions. In contrast, this 

framework provides an automated query- as well as user-

dependent ranking solution without requiring users to possess 

knowledge about query languages, data models and ranking 

mechanisms. 

2.2 Relevance Feedback 
Inferring a ranking function by analyzing the user’s 

interaction with the query results originates from the concepts 

of relevance feedback [7] [8] [9] in the domain of document 

and image retrieval systems. The direct application of either 

explicit or implicit feedback mechanisms for inferring 

database ranking functions has several challenges. 

3. PROBLEM DEFINITION AND 

ARCHITECTURE 
The ranking problem can be stated as: “For the query Qj given 

by the user Ui, determine a ranking function FUiQj from W”. 

The ranking problem can be split into: 

1. Identifying a ranking function using the similarity model: 

Given W, determine a user Ux similar to Ui and a query Qy 

similar to Qj such that the function FUxQys exists in W. 

2. Generating a workload of ranking functions: Given a user 

Ux asking query Qy, based on Ux’s preferences towards Qy’s 

results, determine, explicitly or implicitly, a ranking function 

FUxQy. W is then established as a collection of such ranking 

functions learnt over different user-query pairs. 

3.1 Ranking Architecture 
The core component of ranking framework is the similarity 

model (Figure 1). The set of users ({Ui, U1, U2, ...Ur}) most 

similar to Ui, determined by the user similarity model 

 

Fig 1: Similarity Ranking Model [2] 

The query similarity model determines the set of queries 

({Qj,Q1,Q2, ...,Qp}) most similar to Qj. Using these similar 

queries and users, it searches the workload to identify the 

function FUxQy. The ranking functions for several user-query 

pairs are formed from the workload used in this framework. 

 In the proposed paper, the ranking function is of the 

linear weighted-sum type. The mechanism used for deriving 

this function captures the: i) significance associated by the 

user to each attribute i.e., an attribute-weight and ii) user’s 

emphasis on individual values of an attribute i.e., a value-

weight. 
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Where wi represents the attribute-weight of Ai and vi 

represents the value-weight for Ai’s value in tuple t. 

4. SIMILARITY MODEL FOR 

RANKING 
When ranking functions are known for a small set of user-

query pairs, then the concept of similarity-based ranking is 

aimed. At the time of answering a query asked by a user, if no 

ranking function is available for this user-query pair, the 

proposed query and user-similarity models can effectively 

identify a suitable function to rank the corresponding results. 

4.1 Query Similarity 
For the user U1 from Example-1, a ranking function does not 

exist for ranking Q1’s results (N1). However, from Example-2, 

it is known that a user is likely to have displayed different 

ranking preferences for different query results. Consequently, 

a randomly selected function from U1’s workload is not likely 

to give a desirable ranking order over N1. On the other hand, 

the ranking functions are likely to be comparable for queries 

similar to each other [2]. 

 The proposed paper advances the hypothesis that if Q1 is 

most similar to query Qy (in U1’s workload), U1 would display 

similar ranking preferences over the results of both queries; 

thus, the ranking function (F1y) derived for Qy can be used to 

rank N1. Similar to recommendation systems, this framework 

can utilize the aggregate function, composed from the 

functions corresponding to the top-k most similar queries to 

Q1, to rank N1 [2]. This proposal of query similarity into two 

alternative models: i) query condition similarity, and ii) 

query-result similarity. 

4.1.1 Query-Condition Similarity 
By comparing the attribute values in the query conditions, the 

similarity between two queries can be determined.  
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Given two queries Q and Q’, each with the conjunctive 

selection conditions, respectively of the form “WHERE A1=a1 

AND • • • AND Am=am” and “WHERE A1=a1’ AND • • • 

AND Am=am’ “ , the query-condition similarity between Q 

and Q’ is given as the conjunctive similarities between the 

values ai and ai’ for every attribute Ai (Equation 1). 

Similarity(Q,Q’) = 


m

i 1

sim(Q[Ai = ai],Q’[Ai = ai’])(2) 

4.1.2 Query-Result Similarity 
 If two queries are similar, the results are likely to 

greater similarity. Similarity between a pair of queries is 

evaluated as the similarity between the tuples in the respective 

query results. Given two queries Q and Q’, let N and N’ be 

their query results. The query-result similarity between Q and 

Q’ is then computed as the similarity between the result sets N 

and N’, given by Equation 2. 

similarity(Q,Q’) =sim(N,N’)                              (3) 

 

Fig 2: Query similarity model summarized view 

The above figure shows the computation of similarity for the 

two models. 

4.2 User Similarity 
 It is known from Example-1 that different users may 

display different ranking preferences towards the same query. 

Here put forward the hypothesis that if U1 is similar to an 

existing user Ux, then, for the results of a given query (say 

Q1), both users will show similar ranking preferences; 

therefore, Ux’s ranking function (Fx1) can be used to rank Q1’s 

results for U1 as well. Given two users Ui and Uj with the set 

of common queries – {Q1, Q2, ..., Qr}, for which ranking 

functions ({Fi1, Fi2, ..., Fir} and {Fj1, Fj2, ..., Fjr}) exist in W, 

the user similarity between Ui and Uj is expressed as the 

average similarity between their individual ranking functions 

for each query Qp (shown in Equation 3): 

 

Similarity(Ui, Uj)

 r
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4.3 The Composite Similarity Model 
 The goal of this composite model is to determine a 

ranking function (Fxy). Finding such an appropriate ranking 

function is given by the Algorithm. 

INPUT: Ui, Qj , Workload W (M queries, N users) 

OUTPUT: Ranking Function Fxy to be used for Ui, Qj 

STEP ONE: 

for p = 1 to M do 

%% Using Equation 2 %% 

 Calculate Query Condition Similarity (Qj ,Qp) end for  

%% Based on descending order of similarity with Qj %% 

Sort(Q1, Q2, .... QM) 

Select QKset i.e., top-K queries from the above sorted set 

STEP TWO: 

for r = 1 to N do 

%% Using Equation 4 %% 

 Calculate User Similarity (Ui, Ur) over QKset 

end for 

%% Based on descending order of similarity with Ui %% 

Sort(U1, U2, .... UN) to yield Uset 

STEP THREE: 

for Each Qs ∈QKset do 

for Each Ut∈Uset do 

Rank(Ut,Qs) =Rank(Ut∈Uset) + Rank(Qs ∈QKset) 

end for 

end for 

Fxy = Get-RankingFunction() 

The input to the algorithm is a user (Ui) and a query (Qj) along 

with the workload matrix (W) containing ranking functions. 

The algorithm begins by determining the querycondition 

similarity (STEP ONE) between Qj and every query in the 

workload. It then sorts all these queries (in descending order) 

based on their similarity with Qj and selects the set (QKset) of 

the top-K most similar queries to Qj that satisfy the conditions 

for the top-K user similarity model. Based on these selected 

queries, the algorithm determines the usersimilarity(STEP 

TWO) between Ui and every user in the workload. All the 

users are then sorted (again, in descending order) based on 

their similarity to Ui. It then generate a list of all the user-

query pairs (by combining the elements from the two sorted 

sets), and linearise these pairs by assigning a rank (which is 

the sum of query and user similarity ranks) to each pair (STEP 

THREE). For instance, if Ux and Qy occur as the xth and yth 

elements in the respective ordering with the input pair, the 

pair (Ux, Qy) is assigned an aggregate rank. In this case, a rank 

of “x + y” will be assigned. The “Get-Ranking Function” 

method then selects the pair (Ux, Qy) that has the lowest 

combined rank and contains a ranking function (Fxy) in the 

workload. Then, in order to rank the results (Nj ), the 

corresponding attribute weights and value weights obtained 

for Fxy will be individually applied to each tuple in Nj. 
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5. WORKLOAD OF RANKING 

FUNCTIONS 
In this paper, the proposed model uses a workload of ranking 

functions. Obtaining such a ranking function is not a trivial 

task in the context of Web databases. Since obtaining ranking 

functions from users on the Web is difficult determining the 

exact set of ranking functions to be derived for establishing 

the workload is important. 

6. CONCLUSION 
This paper proposes a model for employee searching by using 

a user- and query-dependent ranking method. By using this 

method, it solves the Many-Answers Problem which leverages 

data and workload statistics and correlations. The design and 

maintenance of an appropriate workload that satisfies 

properties of similarity-based ranking is very challenging. 
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