On Strong Form of Irresolute Functions

M.Lellis Thivagar School Of Mathematics, Madurai Kamaraj University, Madurai-625021. Tamilnadu,INDIA.

ABSTRACT

A strong form of Λ_a -irresolute function called completely

 Λ_a -irresolute function is introduced and several characterizations of such functions are investigated. The relationships among completely Λ_a -irresolute functions, separation axioms and covering properties are also investigated.

Keywords

$$\begin{split} \Lambda_a \text{-closed sets}, \Lambda_a \text{-open sets, completely } \Lambda_a \text{-irresolute} \\ \text{functions, } \Lambda_a \text{-compact spaces, } \Lambda_a \text{-connected spaces and} \\ \Lambda_a \text{-normal spaces.} \end{split}$$

1. INTRODUCTION

In 1972, Crossley and Hildebrand [2] introduced the notion of irresoluteness. Various types of irresolute functions have been introduced over the course of years. Recently Thivagar et al.[5],introduced a new class of sets called Λ_a -sets via a-closed sets and investigated several properties of such sets. The purpose of this paper is to introduce a new form of irresolute function called completely Λ_a -irresolute functions. We also investigate the relationships among completely Λ_a -irresolute functions, separation axioms and covering properties.

2. PRELIMINARIES

Throughout the paper (X, τ) and (Y, σ) and (Z, η) (or simply X, Y and Z) represent topological spaces on which no separation axioms are assumed. For a subset A of X, cl(A), int(A) and A^c denote the closure of A, interior of A and the complement of A respectively. A subset A of a topological space X is called δ -closed if $A = cl_{\delta}(A)$ where $cl_{\delta}(A) =$ $\{x \in X : int (cl(U)) \cap A \neq \phi, U \in \tau \text{ and } x \in U\}$.The complement of δ - closed set is called δ -open set. A subset A of a topological space X is called regular open if A = int (cl(A)). The complement of regular open set is called regular closed set. A subset A of a topological space X is called an a-open set [3] if $A \subset$ int (cl (int $_{\delta}(A)$)).The complement of an a-open set is called an a-closed set. A C.Santhini V.V.Vanniaperumal College For Women, Virudhunagar-626001. Tamilnadu,INDIA.

subset A of a topological space X is called a δ -semiopen [7] if A \subset cl (int $_{\delta}$ (A)). The complement of a δ -semiopen set is called a δ -semiclosed set.

Definition 2.1. A subset A of a topological space (X, τ) is said to be a Λ_a -set [5] if $\Lambda_a(A) = A$ where $\Lambda_a(A) = \cap \{ O \in aO(X, \tau) : A \subset O \}.$

Definition 2.2. A subset A of a topological space (X, τ) is said to be Λ_a -closed [5] if A=T \cap C where T is a Λ_a -set and C is an a-closed set. A is said to be Λ_a -open if X - A

is Λ_a - closed.

Definition 2.3. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called (i) strongly continuous [4] if f⁻¹(V) is clopen in X for every subset V in Y.

(ii) completely continuous [8] if f $^{-1}(V)$ is regular open in X for every open set V in Y.

(iii) almost a-continuous [3] if $f^{-1}(V)$ is a-open in X for every regular open set V in Y.

(iv) Λ_a -continuous [5] if f⁻¹(V) is Λ_a -open in X for every open set V in Y.

(v) Λ_a -irresolute [5] if f⁻¹(V) is Λ_a -open in X for every Λ_a -open set V in Y.

(vi) quasi Λ_a -irresolute [5] if f⁻¹(V) is Λ_a -open in X for every a-open set V in Y.

(vii) completely α -irresolute [10] if $f^{1}(V)$ is regular open in X for every α -open set V in Y.

(viii) completely δ -semi-irresolute [8] if $f^{1}(V)$ is regular open in X for every δ -semiopen set V in Y.

(ix)R-map [8] if $f^{1}(V)$ is regular open in X for every regular open set V in Y.

(x) a-irresolute [3] if $f^{1}(V)$ is a-open in X for every a-open set V in Y.

(xii) a*-closed [3] if f (V) is a-closed in X for every a-closed set V in Y.

3. COMPLETELY Λ_a -IRRESOLUTE FUNCTIONS

In this section we introduce completely Λ_a -irresolute functions and obtain several properties concerning such functions.

Definition 3.1. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be completely Λ_a -irresolute function if the inverse image of every Λ_a -open subset of Y is regular open in X.

Example3.2.Let $X = \{a,b,c,d\} = Y$, $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b\},$

 $\{c,d\},\{a,c,d\},\{b,c,d\},X\}$ and $\sigma = \{\phi,\{a\},\{c\},\{a,b\},\{a,c\},$

{a,b,c},{a,c,d},Y}.Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = d, f(b) = c, f(c) = a and f(d) = b. Then f is completely Λ_a -irresolute.

Theorem 3.3 The following are equivalent for a function $f: (X, \tau) \rightarrow (Y, \sigma)$

(i) f is completely Λ_a -irresolute.

(ii) the inverse image of every Λ_a -closed subset of Y is regular closed in X.

Proof: (i) \Rightarrow (ii) Suppose f is completely Λ_a -irresolute.

Let V be a Λ_a -closed subset of Y. Then Y-V is Λ_a -open in Y. By (i), f⁻¹(Y-V) = X- f⁻¹(V) is regular open in X which implies f⁻¹(V) is regular closed in X. Thus (ii) holds.

Similarly (ii) \Rightarrow (i) holds.

Remark 3.4.It is clear that every strongly continuous function is completely Λ_a -irresolute. However the converse is not true as shown by the following example.

Example 3.5. Let X and τ be same as in example 3.2. Then f is completely Λ_a -irresolute but not strongly continuous since f ${}^{-1}{b}={d}$ is not clopen in X.

Theorem 3.6.Every completely Λ_a -irresolute function is

(i) Λ_a -irresolute.

(ii) a-irresolute.

(iii) quasi- Λ_a -irresolute.

(iv) a R-map.

(v) almost a-continuous.

Proof:

(i) Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a completely Λ_a -irresolute function and V be Λ_a -open in Y. Since f is completely Λ_a -

irresolute, $f^{-1}(V)$ is regular open in X. Since every regular open set is a-open [7], $f^{-1}(V)$ is a-open in X. By proposition 4.20[5],

f⁻¹(V) is Λ_a -open in X which implies f is Λ_a -irresolute.

(ii) Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a completely Λ_a -irresolute function and V be an a-open in Y. By proposition 4.20[5], V is Λ_a -open in Y. Since f is completely Λ_a -irresolute, $f^{-1}(V)$ is regular open in X. Since every regular open set is a-open [7], $f^{-1}(V)$ is a-open in X which implies f is a - irresolute.

(iii) Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a completely Λ_a -irresolute function and V be an a-open in Y. By proposition 4.20[5], V is Λ_a -open in Y. Since f is completely Λ_a -irresolute, $f^{-1}(V)$ is regular open in X. Since every regular open set is a-open [7],

f⁻¹(V) is a-open in X. By proposition 4.20[5], f⁻¹(V) is Λ_a -open in X which implies f is quasi Λ_a -irresolute.

(iv) Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a completely Λ_a -irresolute function and V be a regular open set in Y. Since every regular open set is a-open [7], V is a-open in Y. By proposition 4.20[5], V is Λ_a -open in Y. Since f is completely Λ_a -irresolute,

 $f^{-1}(V)$ is regular open in X which implies f is a R-map.

(v) Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a completely Λ_a -irresolute function and V be a regular open set in Y. Since every regular open set is a-open [7], V is a-open in Y. By proposition 4.20[5], V is Λ_a -open in Y. Since f is completely Λ_a -irresolute,

 $f^{-1}(V)$ is regular open in X which implies $f^{-1}(V)$ is a-open in X and hence $\,f$ is almost a-continuous.

Remark 3.7. The converses of the above theorem are not true as shown by the following examples.

Example 3.8.Let $X = \{a,b,c,d\} = Y, \tau = \{\phi, \{a\}, \{c\}, \{a,b\}, d\}$

 $\{a,c\},\{a,b,c\},\{a,b,d\},X\}$ and $\sigma = \{\phi,\{a\},\{b,c\},\{a,b,c\},Y\}.$

Define a function $f: (X, \mathcal{T}) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a and f(d) = d. Then f is a-irresolute and R-map but not completely Λ_a -irresolute since $f^1(\{a,d\})=\{c,d\}$ is not regular open in X where $\{a,d\}$ is Λ_a -open in Y.

 $\{a,c\},\{a,d\},\{c,d\},\{a,c,d\},X\}$ and $\sigma = \{\phi,\{c\},\{a,b\},\{a,b,c\},$

{a,b,d},Y}.Define a function $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = c, f(b) = d, f(c) = b and f(d) = a. Then f is Λ_a -irresolute and almost a- continuous but not completely Λ_a -irresolute since $f^{-1}(\{a,b,d\})=\{b,c,d\}$ is not regular open in X where $\{a,b,d\}$ is Λ_a -open in Y.

Example3.10LetX={a,b,c,d}=Y, $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b\}$

X} and $\boldsymbol{\sigma} = \{\phi, \{a\}, \{b,c\}, \{a,b,c\}, Y\}$. Define a function f : (X, τ) \rightarrow (Y, $\boldsymbol{\sigma}$) by f(a) = c, f(b) = d, f(c) = a and f(d) = b. Then f is quasi- Λ_a -irresolute but not completely Λ_a -irresolute since f $^{-1}(\{a,d\})=\{b,c\}$ is not regular open in X where $\{a,d\}$ is Λ_a -open in Y.

Definition 3.11 A space (X, τ) is said to be Λ_a -space [5] if every Λ_a -closed subset of X is a-closed in X.

Theorem 3.12 Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a completely δ -semi-irresolute function where Y is a Λ_a -space ,then f is completely Λ_a -irresolute.

Proof: Let V be a Λ_a -closed subset of Y. Since Y is a Λ_a -space, V is a-closed in Y. Since every a-closed set is δ -semiclosed [7], V is δ -semiclosed in Y. Now f is completely δ -semi-irresolute implies f⁻¹(V) is regular closed in X and so f is completely Λ_a -irresolute.

Theorem 3.13 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a completely α -irresolute function where Y is a Λ_a -space ,then f is completely Λ_a -irresolute.

Proof: Let V be a Λ_a -closed subset of Y. Since Y is a

 Λ_a -space, V is a-closed in Y. Since every a-closed set is α closed [7], V is α -closed in Y. Now f is completely α irresolute implies f⁻¹(V) is regular closed in X and so f is completely Λ_a -irresolute.

Theorem 3.14 Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be functions. Then the following properties hold:

(i) If f is completely Λ_a -irresolute and g is Λ_a -continuous, then $g \circ f$ is completely continuous.

(ii) If f is completely Λ_a -irresolute and g is Λ_a -irresolute, then g \circ f is completely Λ_a -irresolute.

(iii) If f is almost a-continuous and g is completely Λ_a -irresolute, then g \circ f is Λ_a -irresolute.

(iv) If f is completely continuous and g is completely Λ_a irresolute, then g \circ f is completely Λ_a -irresolute.

(v) If f is a R-map and g is completely Λ_a -irresolute, then $g \circ f$ is completely Λ_a -irresolute.

(vi) If f is completely Λ_a -irresolute and g is a R-map, then $g \circ f$ is almost a-continuous.

(vii) If f is almost a-continuous and g is completely Λ_a -irresolute, then $g \circ f$ is a-irresolute.

Proof. (i) Let V be an open set in Z. Since g is Λ_a -continuous, g⁻¹ (V) is Λ_a -open in Y. Since f is completely Λ_a -irresolute, f⁻¹(g⁻¹(V))= (g of)⁻¹(V) is regular open in X and hence g of is completely continuous.

Proofs of (ii) – (vii) can be obtained similarly.

Theorem 3.15 If $f: (X, \tau) \to (Y, \sigma)$ is a surjective, a*-closed function and $g: (Y, \sigma) \to (Z, \eta)$ is a function such that $g \circ f: (X, \tau) \to (Z, \eta)$ is completely Λ_a irresolute, then g is Λ_a -irresolute.

Proof. Let V be a Λ_a -closed set in Z. Since $g \circ f$ is completely Λ_a -irresolute, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is regular closed in X. Since every regular closed set is a-closed [7], $f^{-1}(g^{-1}(V))$ is a-closed in X. Now f is a*-closed and surjective implies $f(f^{-1}(g^{-1}(V)))=g^{-1}(V)$ is Λ_a -closed in Y.

Thus g is Λ_a -irresolute.

Remark 3.16 From the above results we have the following diagram where $A \rightarrow B$ represents A implies B but not conversely.

1.completely Λ_a -irresolute 2.almost a-continuous 3.airresolute 4.quasi Λ_a -irresolute 5. Λ_a -irresolute 6.strongly continuous

4. CHARACTERIZATIONS

Lemma 4.1.[9] Let S be an open subset of a topological space (X, τ). Then the following hold:

(i) If U is regular open in X, then so is U \cap S in the subspace (S, τ_{s}).

(ii) If B \subset S is regular open in (S, τ_S) there exists a regular open set U in (X, τ) such that B = U \cap S.

Theorem 4.2. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is completely Λ_a -irresolute and A is any open subset in X, then the restriction $f|_A: A \rightarrow Y$ is completely Λ_a -irresolute.

Proof. Let V be any Λ_a -open subset of Y. Since f is completely Λ_a -irresolute, f⁻¹(V) is regular open in X. Since A is open in X, by lemma 4.1, (f |_A)⁻¹(V) = A \cap f⁻¹(V) is regular open in A and so f |_A is completely Λ_a -irresolute.

Lemma 4.3.[1] Let Y be a preopen subset of a topological space (X, τ). Then Y \cap U is regular open in Y for every regular open subset U of X.

Theorem 4.4. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is completely Λ_a -irresolute and A is any preopen subset of X, then the restriction $f|_A: A \rightarrow Y$ is completely Λ_a -irresolute.

Proof. Let V be any Λ_a -open subset of Y. Since f is completely Λ_a -irresolute, f⁻¹(V) is regular open in X. Since A is preopen in X, by lemma 4.3, (f $|_A$) ⁻¹ (V) =A \cap f ⁻¹ (V) is regular open in A and so f $|_A$ is completely Λ_a -irresolute.

Theorem 4.5. A topological space (X, τ) is connected if every completely Λ_a -irresolute function from a space X into any T₀-space Y is constant

Proof. Suppose X is not connected and every completely Λ_a -irresolute function from a space X into Y is constant. Since X is not connected, there exists a proper nonempty clopen subset A of X. Let Y={a,b} and $\tau = \{\phi, \{a\}, \{b\}, Y\}$ be a topology for Y. Let $f: X \rightarrow Y$ be a function such that $f(A)=\{a\}$ and $f(X - A) =\{b\}$. Then f is a non-constant completely Λ_a -irresolute function such that Y is T₀, a contradiction. Hence X must be connected.

Definition 4.6. A topological space (X, τ) is said to be

(i) Λ_a -connected [5] if X cannot be written as a disjoint

union of two nonempty Λ_a -open subsets in X.

(ii) r-connected [10] if X cannot be written as a disjoint union of two nonempty regular open subsets in X.

(iii) hyperconnected [8] if every open subset of X is dense.

Theorem 4.7. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is completely Λ_a -irresolute surjection and X is r-connected, then Y is Λ_a -connected.

Proof. Suppose Y is not Λ_a -connected. Then $Y = A \cup B$ where A and B are disjoint nonempty Λ_a -open subsets in Y. Since f is completely Λ_a -irresolute surjection, f⁻¹(A) and

 $f^{-1}(B)$ are regular open sets in X such that $X = f^{-1}(A) \cup$

 $f^{-1}(B)$ and $f^{-1}(A) \cap f^{-1}(B) = \phi$ which shows that X is not

r-connected, a contradiction. Hence Y is Λ_a -connected.

Theorem 4.8. Completely Λ_a -connected images of hyperconnected spaces are Λ_a -connected.

Proof. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a completely Λ_a irresolute function such that X is hyperconnected. Assume that
B is a proper Λ_a -clopen subset of Y. Then $A = f^{-1}(B)$ is both
regular open and regular closed set in X as f is completely Λ_a -irresolute. This clearly contradicts the fact that X is
hyperconnected. Thus Y is Λ_a -connected.

Definition 4.9. A topological space (X, τ) is said to be

(i) $\Lambda_a - T_1$ [6] if for every pair of distinct points x and y, there exist Λ_a -open sets G and H containing x and y respectively such that $y \notin U$ and $x \notin V$.

(ii) Λ_a -T₂[6] if for every pair of distinct points x and y ,there

exist disjoint Λ_a -open sets G and H containing x and y respectively.

(iii) $r - T_1 [10]$ if for every pair of distinct points x and y ,there exist r-open sets G and H containing x and y respectively such that $x \notin H$ and $y \notin G$.

Theorem 4.10. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is completely Λ_a -irresolute injective function and Y is Λ_a -T₁, then X is r-T₁.

Proof. Since Y is Λ_a -T₁, for $x \neq y$ in X, there exist Λ_a - open sets V and W such that $f(x) \in f(y) \in W$, $f(y) \notin V$, $f(x) \notin W$. Since f is completely Λ_a -irresolute, f⁻¹(U) and

f $\,{}^{\text{-1}}(V)$ are regular open sets in X such that $\,x\in\,f\,{}^{\text{-1}}(V),\,y\,\in\,$

 $f^{-1}(W)$, $x \notin f^{-1}(W)$, $y \notin f^{-1}(V)$. This shows that X is $r - T_1$.

Theorem 4.11. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is completely Λ_a -irresolute injective function and Y is Λ_a -T₂.then X is T₂.

Proof. Similar to the proof of theorem 4.10

Definition 4.12. A topological space (X, τ) is said to be

(i) Λ_a -compact [5], if every Λ_a -open cover of X has a finite subcover.

(ii) nearly compact[11], if every regular open cover of X has a finite subcover.

Theorem 4.13. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is completely Λ_a -irresolute surjective function and X is nearly compact, then Y is Λ_a -compact.

Proof. Let $\{V_{\alpha} : \alpha \in I\}$ be a cover of Y by Λ_a -open subsets of X. Since f is completely Λ_a -irresolute,

{ $f^{-1}(V_{\alpha}): \alpha \in I$ } is a regular open cover of X. Since X is nearly compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^1(V_{\alpha}): \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_{\alpha}: \alpha \in I_0\}$ and hence Y is Λ_a -compact.

Definition 4.14. A topological space (X, τ) is said to be Λ_a -normal [5], if each pair of disjoint closed sets can be separated by disjoint Λ_a -open sets.

Theorem 4.15. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is completely Λ_a -irresolute, closed injection and Y is Λ_a -normal, then X is normal.

Proof. Let E and F be disjoint closed subsets of X. Since f is closed, f(E) and f(F) are disjoint closed subsets of Y. Since f is Λ_a -normal, there exist disjoint Λ_a -open sets U and V

such that $f(E) \subset U$ and $f(F) \subset V$. Since f is completely Λ_a irresolute, f⁻¹(U) and f⁻¹(V) are disjoint regular open subsets in X and hence open subsets in X such that $E \subset f^{-1}(U)$, F $\subset f^{-1}(V)$ which shows that X is normal.

Theorem 4.16.Let f, g be functions. If f and g are completely Λ_a -irresolute functions and Y is a Λ_a -T₂ space, then P = { x \in X : f(x) = g(x)} is δ -closed.

Proof. Let $x \notin P$. We have $f(x) \neq g(x)$. Since Y is Λ_a -

 T_2 , there exist disjoint Λ_a -open sets A and B in Y such that

f(x) ∈ A and g(x) ∈ B. Since f and g are completely Λ_a irresolute, f ⁻¹(A) and f ⁻¹(B) are disjoint regular open subsets in X .Put U = f ⁻¹(A) ∩ f ⁻¹(B).Then U is a regular open subset of X containing x and U ∩ P = ϕ and hence x ∉

 $cl_{\delta}(A)$.Hence P is δ -closed in X.

5. REFERENCES

- [1] Allam A.A. ; Zaharan A.M. ; Hasanein I.A. : On almost continuous, δ -continuous and set connected mappings, Ind. J.Pure.Appl.Math., 18(11),(1987),991-996.
- [2] Crossley S.G. ; Hildebrand S.K. : Semitopological properties, Fund. Math., 74(1972), 233-254.
- [3] Erdal Ekici : Some generalizations of almost contrasuper continuity, Filomat 21:2(2007),31-44.
- [4] Levine N. : Strong continuity in topological spaces, Amer.Math.Monthly,67(1960),269.
- [5] Lellis Thivagar M. ; Santhini C. : Another Form Of Weakly Closed Sets, Journal Of Ultra Scientist Of Physical Sciences –accepted for publication.
- [6] Lellis Thivagar M.; Santhini C.: New Generalization Of Topological Weak Continuity, Global Journal Of Mathematical Sciences : Theory and Practical –accepted for publication
- [7] Erdal Ekici : On a-open sets, A*-sets and decompositions of continuity and super-continuity, Annales Univ. Sci. Budapest, 51(2008), 39-51.
- [8] Erdal Ekici ; Saeid Jafari : On a Weaker Form of Complete Irresoluteness, Bol. Soc. Paran. Mat. 26, 1-2, (2008),81-87.
- [9] Long P.E. ; Herrington L.L. : Basic properties Of regular-closed functions, Rend. Cir. Mat.Palermo, 27(1978), 20-28.
- [10] Navalagi G.B.; Abdullah M.; Abdul Jabbar : Some remarks on completely *α*-irresolute functions, International Journal Of Mathematical Sciences, Vol .5,No.1 (2006),1-8.
- [11] Singal M.K.; Singal A. R.; Mathur A.: On nearly compact spaces, Boll. UMI, 4(1969), 702-710.