On Strong Form of Irresolute Functions

M.Lellis Thivagar
School Of Mathematics, Madurai Kamaraj University, Madurai-625021.
Tamilnadu,INDIA.

C.Santhini
V.V.Vanniaperumal College For Women, Virudhunagar-626001.
Tamilnadu,INDIA.

Abstract

A strong form of Λ_{a}-irresolute function called completely Λ_{a}-irresolute function is introduced and several characterizations of such functions are investigated. The relationships among completely Λ_{a}-irresolute functions, separation axioms and covering properties are also investigated.

Keywords

Λ_{a}-closed sets, Λ_{a}-open sets, completely Λ_{a}-irresolute functions, Λ_{a}-compact spaces, Λ_{a}-connected spaces and Λ_{a}-normal spaces.

1. INTRODUCTION

In 1972, Crossley and Hildebrand [2] introduced the notion of irresoluteness. Various types of irresolute functions have been introduced over the course of years. Recently Thivagar et al.[5],introduced a new class of sets called Λ_{a}-sets via aclosed sets and investigated several properties of such sets. The purpose of this paper is to introduce a new form of irresolute function called completely Λ_{a}-irresolute function which is stronger than Λ_{a}-irresolute functions. We also investigate the relationships among completely Λ_{a} irresolute functions, separation axioms and covering properties.

2. PRELIMINARIES

Throughout the paper (X, τ) and ($\mathrm{Y}, \boldsymbol{\sigma}$) and ($\mathrm{Z}, \boldsymbol{\eta}$) (or simply X, Y and Z) represent topological spaces on which no separation axioms are assumed. For a subset A of $\mathrm{X}, \mathrm{cl}(\mathrm{A})$, $\operatorname{int}(A)$ and A^{c} denote the closure of A, interior of A and the complement of A respectively. A subset A of a topological space X is called δ-closed if $\mathrm{A}=\mathrm{cl}_{\delta}(\mathrm{A})$ where $\mathrm{cl}_{\delta}(\mathrm{A})=$ $\{x \in X \quad: \operatorname{int}(c l(U)) \cap A \neq \phi, U \in \tau$ and $x \in U\}$. The complement of δ - closed set is called δ-open set. A subset A of a topological space X is called regular open if A $=\operatorname{int}(\mathrm{cl}(\mathrm{A}))$. The complement of regular open set is called regular closed set. A subset A of a topological space X is called an a-open set [3] if $\mathrm{A} \subset$ int ($\mathrm{cl}\left(\operatorname{int}_{\delta}(\mathrm{A})\right)$).The complement of an a-open set is called an a-closed set. A
subset A of a topological space X is called a δ-semiopen [7] if $\mathrm{A} \subset \mathrm{cl}$ (int ${ }_{\delta}(\mathrm{A})$). The complement of a δ-semiopen set is called a δ-semiclosed set.

Definition 2.1. A subset A of a topological space (X, τ) is said to be a Λ_{a}-set [5] if $\Lambda_{a}(\mathrm{~A})=\mathrm{A}$ where $\Lambda_{a}(\mathrm{~A})=$ $\cap\{\mathrm{O} \in \mathrm{aO}(\mathrm{X}, \tau): \mathrm{A} \subset \mathrm{O}\}$.

Definition 2.2. A subset A of a topological space (X, τ) is said to be Λ_{a}-closed [5] if $\mathrm{A}=\mathrm{T} \cap \mathrm{C}$ where T is a Λ_{a} set and C is an a-closed set. A is said to be Λ_{a}-open if X - A is Λ_{a} - closed.

Definition 2.3. A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called (i) strongly continuous [4] if $\mathrm{f}^{-1}(\mathrm{~V})$ is clopen in X for every subset V in Y .
(ii) completely continuous [8] if $\mathrm{f}^{-1}(\mathrm{~V})$ is regular open in X for every open set V in Y .
(iii) almost a-continuous [3] if $f^{1}(V)$ is a-open in X for every regular open set V in Y .
(iv) Λ_{a}-continuous [5] if $\mathrm{f}^{-1}(\mathrm{~V})$ is Λ_{a}-open in X for every open set V in Y .
(v) Λ_{a}-irresolute [5] if $\mathrm{f}^{-1}(\mathrm{~V})$ is Λ_{a}-open in X for every Λ_{a}-open set V in Y.
(vi) quasi Λ_{a}-irresolute [5] if $\mathrm{f}^{-1}(\mathrm{~V})$ is Λ_{a}-open in X for every a-open set V in Y .
(vii) completely α-irresolute [10] if $\mathrm{f}^{1}(\mathrm{~V})$ is regular open in X for every α-open set V in Y .
(viii) completely δ-semi-irresolute [8] if $\mathrm{f}^{-1}(\mathrm{~V})$ is regular open in X for every δ-semiopen set V in Y .
(ix)R-map [8] if $\mathrm{f}^{1}(\mathrm{~V})$ is regular open in X for every regular open set V in Y .
(x) a-irresolute [3] if $\mathrm{f}^{-1}(\mathrm{~V})$ is a-open in X for every a-open set V in Y .
(xii) a*-closed [3] if $\mathrm{f}(\mathrm{V})$ is a-closed in X for every a-closed set V in Y .

3. COMPLETELY Λ_{a}-IRRESOLUTE FUNCTIONS

In this section we introduce completely Λ_{a}-irresolute functions and obtain several properties concerning such functions.

Definition 3.1. A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be completely Λ_{a}-irresolute function if the inverse image of every Λ_{a}-open subset of Y is regular open in X .

Example3.2. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}$, $\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$,
$\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{Y}\}$.Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{d}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$ and $\mathrm{f}(\mathrm{d})=\mathrm{b}$. Then f is completely Λ_{a}-irresolute.

Theorem 3.3 The following are equivalent for a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$
(i) f is completely Λ_{a}-irresolute.
(ii) the inverse image of every Λ_{a}-closed subset of Y is regular closed in X.
Proof: (i) \Rightarrow (ii) Suppose f is completely Λ_{a}-irresolute. Let V be a Λ_{a}-closed subset of Y . Then $\mathrm{Y}-\mathrm{V}$ is Λ_{a}-open in Y . $\mathrm{By}(\mathrm{i}), \mathrm{f}^{-1}(\mathrm{Y}-\mathrm{V})=\mathrm{X}-\mathrm{f}^{-1}(\mathrm{~V})$ is regular open in X which implies $\mathrm{f}^{-1}(\mathrm{~V})$ is regular closed in X . Thus (ii) holds.

Similarly (ii) \Rightarrow (i) holds.
Remark 3.4.It is clear that every strongly continuous function is completely Λ_{a}-irresolute. However the converse is not true as shown by the following example.

Example 3.5. Let X and τ be same as in example 3.2.Then f is completely Λ_{a}-irresolute but not strongly continuous since $\mathrm{f}^{-1}\{\mathrm{~b}\}=\{\mathrm{d}\}$ is not clopen in X.
Theorem 3.6.Every completely Λ_{a}-irresolute function is
(i) Λ_{a}-irresolute.
(ii) a-irresolute.
(iii) quasi- Λ_{a}-irresolute.
(iv) a R-map.
(v) almost a-continuous.

Proof :

(i) Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a completely Λ_{a}-irresolute function and V be Λ_{a}-open in Y . Since f is completely Λ_{a} -
irresolute, $f^{-1}(V)$ is regular open in X. Since every regular open set is a-open [7], $\mathrm{f}^{-1}(\mathrm{~V})$ is a-open in X. By proposition 4.20[5],
$\mathrm{f}^{-1}(\mathrm{~V})$ is Λ_{a}-open in X which implies f is Λ_{a}-irresolute.
(ii) Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a completely Λ_{a}-irresolute function and V be an a-open in Y . By proposition 4.20[5], V is Λ_{a}-open in Y. Since f is completely Λ_{a}-irresolute, $\mathrm{f}^{-1}(\mathrm{~V})$ is regular open in X . Since every regular open set is a-open [7], $f^{-1}(V)$ is a-open in X which implies f is a - irresolute.
(iii) Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a completely Λ_{a}-irresolute function and V be an a-open in Y . By proposition 4.20[5], V is Λ_{a}-open in Y. Since f is completely Λ_{a}-irresolute, $\mathrm{f}^{-1}(\mathrm{~V})$ is regular open in X . Since every regular open set is a-open [7], $\mathrm{f}^{-1}(\mathrm{~V})$ is a-open in X . By proposition $4.20[5], \mathrm{f}^{-1}(\mathrm{~V})$ is Λ_{a} open in X which implies f is quasi Λ_{a}-irresolute.
(iv) Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a completely Λ_{a}-irresolute function and V be a regular open set in Y . Since every regular open set is a-open [7], V is a-open in Y. By proposition 4.20[5], V is Λ_{a}-open in Y. Since f is completely Λ_{a}-irresolute, $f^{-1}(V)$ is regular open in X which implies f is a R-map.
(v) Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a completely Λ_{a}-irresolute function and V be a regular open set in Y . Since every regular open set is a-open [7], V is a-open in Y. By proposition 4.20[5], V is Λ_{a}-open in Y. Since f is completely Λ_{a}-irresolute,
$f^{-1}(V)$ is regular open in X which implies $f^{-1}(V)$ is a-open in X and hence f is almost a-continuous.

Remark 3.7.The converses of the above theorem are not true as shown by the following examples.

Example 3.8. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}$,

$$
\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{~b}, \mathrm{~d}\}, \mathrm{X}\} \text { and } \sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}, \mathrm{Y}\} .
$$

Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}$, $\mathrm{f}(\mathrm{c})=\mathrm{a}$ and $\mathrm{f}(\mathrm{d})=\mathrm{d}$. Then f is a-irresolute and R -map but not completely Λ_{a}-irresolute since $\mathrm{f}^{1}(\{\mathrm{a}, \mathrm{d}\})=\{\mathrm{c}, \mathrm{d}\}$ is not regular open in X where $\{\mathrm{a}, \mathrm{d}\}$ is Λ_{a}-open in Y .

Example 3.9.Le $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{d}\}$,
$\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$,
$\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}, \mathrm{Y}\}$.Define a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{c}$, $\mathrm{f}(\mathrm{b})=\mathrm{d}, \mathrm{f}(\mathrm{c})=\mathrm{b}$ and $\mathrm{f}(\mathrm{d})=\mathrm{a}$. Then f is Λ_{a}-irresolute and almost a- continuous but not completely Λ_{a}-irresolute since $f^{-1}(\{a, b, d\})=\{b, c, d\}$ is not regular open in X where $\{a, b, d\}$ is Λ_{a}-open in Y .

Example3.10Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}$, $\mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$.Define a function f : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{d}, \mathrm{f}(\mathrm{c})=\mathrm{a}$ and $\mathrm{f}(\mathrm{d})=\mathrm{b}$. Then f is quasi- Λ_{a}-irresolute but not completely Λ_{a} irresolute since $\mathrm{f}^{-1}(\{\mathrm{a}, \mathrm{d}\})=\{\mathrm{b}, \mathrm{c}\}$ is not regular open in X where $\{\mathrm{a}, \mathrm{d}\}$ is Λ_{a}-open in Y .

Definition 3.11 A space (X, τ) is said to be Λ_{a}-space [5] if every Λ_{a}-closed subset of X is a-closed in X .

Theorem 3.12 Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a completely δ-semi-irresolute function where Y is a Λ_{a}-space ,then f is completely Λ_{a}-irresolute.

Proof : Let V be a Λ_{a}-closed subset of Y. Since Y is a Λ_{a}-space, V is a-closed in Y. Since every a-closed set is δ semiclosed [7], V is δ-semiclosed in Y. Now f is completely δ-semi-irresolute implies $\mathrm{f}^{-1}(\mathrm{~V})$ is regular closed in X and so f is completely Λ_{a}-irresolute.

Theorem 3.13 Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a completely $\quad \alpha$-irresolute function where Y is a Λ_{a}-space ,then f is completely Λ_{a}-irresolute.

Proof : Let V be a Λ_{a}-closed subset of Y. Since Y is a Λ_{a}-space, V is a-closed in Y . Since every a-closed set is α closed [7], V is α-closed in Y. Now f is completely α irresolute implies $\mathrm{f}^{-1}(\mathrm{~V})$ is regular closed in X and so f is completely Λ_{a}-irresolute.

Theorem 3.14 Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ and $\mathrm{g}:(\mathrm{Y}, \sigma)$ $\rightarrow(\mathrm{Z}, \eta)$ be functions. Then the following properties hold:
(i) If f is completely Λ_{a}-irresolute and g is Λ_{a}-continuous, then $\mathrm{g} \circ \mathrm{f}$ is completely continuous.
(ii) If f is completely Λ_{a}-irresolute and g is Λ_{a}-irresolute, then $\mathrm{g} \circ \mathrm{f}$ is completely Λ_{a}-irresolute.
(iii) If f is almost a-continuous and g is completely Λ_{a} irresolute, then $\mathrm{g} \circ \mathrm{f}$ is Λ_{a}-irresolute.
(iv) If f is completely continuous and g is completely Λ_{a} irresolute, then $\mathrm{g} \circ \mathrm{f}$ is completely Λ_{a}-irresolute.
(v) If f is a R-map and g is completely Λ_{a}-irresolute, then $\mathrm{g} \circ \mathrm{f}$ is completely Λ_{a}-irresolute.
(vi) If f is completely Λ_{a}-irresolute and g is a R-map, then $\mathrm{g} \circ \mathrm{f}$ is almost a-continuous.
(vii) If f is almost a-continuous and g is completely Λ_{a} irresolute, then $\mathrm{g} \circ \mathrm{f}$ is a-irresolute.
Proof. (i) Let V be an open set in Z. Since g is Λ_{a} continuous, $\mathrm{g}^{-1}(\mathrm{~V})$ is Λ_{a}-open in Y . Since f is completely Λ_{a}-irresolute, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is regular open in X and hence $\mathrm{g} \circ \mathrm{f}$ is completely continuous.
Proofs of (ii) - (vii) can be obtained similarly.
Theorem 3.15 If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is a surjective, a^{*}-closed function and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ is a function such that $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \boldsymbol{\eta})$ is completely $\Lambda_{a}{ }^{-}$ irresolute, then g is Λ_{a}-irresolute.

Proof. Let V be a Λ_{a}-closed set in Z . Since $\mathrm{g} \circ \mathrm{f}$ is completely Λ_{a}-irresolute, $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)$ is regular closed in X . Since every regular closed set is a-closed [7], $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)$ is a-closed in X . Now f is a^{*}-closed and surjective implies $\mathrm{f}\left(\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)\right)=\mathrm{g}^{-1}(\mathrm{~V})$ is Λ_{a}-closed in Y .
Thus g is Λ_{a}-irresolute.
Remark 3.16 From the above results we have the following diagram where $\mathrm{A} \rightarrow \mathrm{B}$ represents A implies B but not conversely.
1.completely $\quad \Lambda_{a}$-irresolute 2.almost a-continuous 3.airresolute 4.quasi Λ_{a}-irresolute 5. Λ_{a}-irresolute 6.strongly continuous

FIGURE : 1

4. CHARACTERIZATIONS

Lemma 4.1.[9] Let S be an open subset of a topological space (X, τ).Then the following hold:
(i) If U is regular open in X, then so is $U \cap S$ in the subspace (S, τ_{S}).
(ii) If $\mathrm{B} \subset \mathrm{S}$ is regular open in (S, τ_{S}) there exists a regular open set U in (X, τ) such that $\mathrm{B}=\mathrm{U} \cap \mathrm{S}$.

Theorem 4.2. If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is completely Λ_{a}-irresolute and A is any open subset in X , then the restriction $\left.\mathrm{f}\right|_{\mathrm{A}}: \mathrm{A} \rightarrow \mathrm{Y}$ is completely Λ_{a}-irresolute.

Proof. Let V be any Λ_{a}-open subset of Y . Since f is completely Λ_{a}-irresolute, $\mathrm{f}^{-1}(\mathrm{~V})$ is regular open in X . Since A is open in X , by lemma 4.1, $\left(\left.\mathrm{f}\right|_{\mathrm{A}}\right)^{-1}(\mathrm{~V})=\mathrm{A} \cap \mathrm{f}^{-1}(\mathrm{~V})$ is regular open in A and so $\left.\mathrm{f}\right|_{\mathrm{A}}$ is completely Λ_{a}-irresolute.

Lemma 4.3.[1] Let Y be a preopen subset of a topological space (X, τ).Then $\mathrm{Y} \cap \mathrm{U}$ is regular open in Y for every regular open subset U of X.

Theorem 4.4. If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is completely Λ_{a}-irresolute and A is any preopen subset of X , then the restriction $\left.\mathrm{f}\right|_{\mathrm{A}}: \mathrm{A} \rightarrow \mathrm{Y}$ is completely Λ_{a}-irresolute.

Proof. Let V be any Λ_{a}-open subset of Y . Since f is completely Λ_{a}-irresolute, $\mathrm{f}^{-1}(\mathrm{~V})$ is regular open in X . Since A is preopen in X , by lemma 4.3, (f $\left.\left.\right|_{\mathrm{A}}\right)^{-1}(\mathrm{~V})=\mathrm{A} \cap \mathrm{f}^{-1}(\mathrm{~V})$ is regular open in A and so $\left.\mathrm{f}\right|_{\mathrm{A}}$ is completely Λ_{a}-irresolute.

Theorem 4.5. A topological space (X, τ) is connected if every completely Λ_{a}-irresolute function from a space X into any T_{0}-space Y is constant

Proof. Suppose X is not connected and every completely Λ_{a}-irresolute function from a space X into Y is constant. Since X is not connected, there exists a proper nonempty clopen subset A of X. Let $\mathrm{Y}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\}, \mathrm{Y}\}$ be a topology for Y. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function such that $f(A)=\{a\}$ and $f(X-A)=\{b\}$. Then f is a non-constant completely Λ_{a}-irresolute function such that Y is T_{0}, a contradiction. Hence X must be connected.

Definition 4.6. A topological space (X, τ) is said to be
(i) Λ_{a}-connected [5] if X cannot be written as a disjoint union of two nonempty Λ_{a}-open subsets in X .
(ii) r-connected [10] if X cannot be written as a disjoint union of two nonempty regular open subsets in X .
(iii) hyperconnected [8] if every open subset of X is dense.

Theorem 4.7. If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is completely Λ_{a}-irresolute surjection and X is r-connected, then Y is Λ_{a} connected.

Proof. Suppose Y is not Λ_{a}-connected. Then $\mathrm{Y}=\mathrm{A} \cup \mathrm{B}$ where A and B are disjoint nonempty Λ_{a}-open subsets in Y . Since f is completely Λ_{a}-irresolute surjection, $\mathrm{f}^{-1}(\mathrm{~A})$ and $f^{-1}(B)$ are regular open sets in X such that $X=f^{-1}(A) \cup$ $f^{-1}(B)$ and $f^{-1}(A) \cap f^{-1}(B)=\phi$ which shows that X is not r-connected, a contradiction. Hence Y is Λ_{a}-connected.

Theorem 4.8. Completely Λ_{a}-connected images of hyperconnected spaces are Λ_{a}-connected.

Proof. Let f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a completely Λ_{a} irresolute function such that X is hyperconnected. Assume that B is a proper Λ_{a}-clopen subset of Y . Then $\mathrm{A}=\mathrm{f}^{-1}(\mathrm{~B})$ is both regular open and regular closed set in X as f is completely Λ_{a}-irresolute. This clearly contradicts the fact that X is hyperconnected. Thus Y is Λ_{a}-connected.

Definition 4.9. A topological space (X, τ) is said to be
(i) $\Lambda_{a}-\mathrm{T}_{1}$ [6] if for every pair of distinct points x and y ,there exist Λ_{a}-open sets G and H containing x and y respectively such that $\mathrm{y} \notin \mathrm{U}$ and $\mathrm{x} \notin \mathrm{V}$.
(ii) $\Lambda_{a}-\mathrm{T}_{2}$ [6] if for every pair of distinct points x and y , there exist disjoint Λ_{a}-open sets G and H containing x and y respectively.
(iii) $\mathrm{r}-\mathrm{T}_{1}[10]$ if for every pair of distinct points x and y ,there exist r -open sets G and H containing x and y respectively such that $\mathrm{x} \notin \mathrm{H}$ and $\mathrm{y} \notin \mathrm{G}$.

Theorem 4.10. If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is completely Λ_{a}-irresolute injective function and Y is $\Lambda_{a}-\mathrm{T}_{1}$, then X is r T_{1}.

Proof. Since Y is $\Lambda_{a}-\mathrm{T}_{1}$, for $\mathrm{x} \neq \mathrm{y}$ in X , there exist Λ_{a} open sets V and W such that $f(x) \in f(y) \in W, f(y) \notin V$, $\mathrm{f}(\mathrm{x}) \notin \mathrm{W}$. Since f is completely Λ_{a}-irresolute, $\mathrm{f}^{-1}(\mathrm{U})$ and $f^{-1}(V)$ are regular open sets in X such that $x \in f^{-1}(V), y \in$ $f^{-1}(W), x \notin f^{-1}(W), y \notin f^{-1}(V)$. This shows that X is $r-T_{1}$.

Theorem 4.11. If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is completely Λ_{a}-irresolute injective function and Y is $\Lambda_{a}-\mathrm{T}_{2}$.then X is T_{2}. Proof. Similar to the proof of theorem 4.10
Definition 4.12. A topological space (X, τ) is said to be (i) Λ_{a}-compact [5], if every Λ_{a}-open cover of X has a finite subcover.
(ii) nearly compact[11], if every regular open cover of X has a finite subcover.

Theorem 4.13. If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is completely Λ_{a}-irresolute surjective function and X is nearly compact, then Y is Λ_{a}-compact.

Proof. Let $\left\{V_{\alpha}: \alpha \in I\right\}$ be a cover of Y by Λ_{a}-open subsets of X . Since f is completely Λ_{a}-irresolute,
$\left\{\mathrm{f}^{-1}\left(V_{\alpha}\right): \alpha \in I\right\}$ is a regular open cover of X . Since X is nearly compact, there exists a finite subset I_{0} of I such that $\mathrm{X}=$ $\cup\left\{\mathrm{f}^{1}\left(V_{\alpha}\right): \alpha \in I_{0}\right\}$. Since f is surjective, $\mathrm{Y}=$ $\cup\left\{V_{\alpha}: \alpha \in I_{0}\right\}$ and hence Y is Λ_{a}-compact.

Definition 4.14. A topological space (X, τ) is said to be Λ_{a}-normal [5], if each pair of disjoint closed sets can be separated by disjoint Λ_{a}-open sets.

Theorem 4.15. If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is completely Λ_{a}-irresolute, closed injection and Y is Λ_{a}-normal ,then X is normal.

Proof. Let E and F be disjoint closed subsets of X. Since f is closed, $\mathrm{f}(\mathrm{E})$ and $\mathrm{f}(\mathrm{F})$ are disjoint closed subsets of Y. Since f is Λ_{a}-normal, there exist disjoint Λ_{a}-open sets U and V such that $\mathrm{f}(\mathrm{E}) \subset \mathrm{U}$ and $\mathrm{f}(\mathrm{F}) \subset \mathrm{V}$. Since f is completely Λ_{a} irresolute, $f^{-1}(\mathrm{U})$ and $\mathrm{f}^{-1}(\mathrm{~V})$ are disjoint regular open subsets in X and hence open subsets in X such that $E \subset \mathrm{f}^{-1}(\mathrm{U}), F$ $\subset \mathrm{f}^{-1}(\mathrm{~V})$ which shows that X is normal.
Theorem 4.16. Let f, g be functions. If f and g are completely Λ_{a}-irresolute functions and Y is a $\Lambda_{a}-\mathrm{T}_{2}$ space, then $\mathrm{P}=\{\mathrm{x} \in \mathrm{X}: \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\}$ is δ-closed.

Proof. Let $\mathrm{x} \notin \mathrm{P}$. We have $\mathrm{f}(\mathrm{x}) \neq \mathrm{g}(\mathrm{x})$. Since Y is $\Lambda_{a}-$ T_{2}, there exist disjoint Λ_{a}-open sets A and B in Y such that $\mathrm{f}(\mathrm{x}) \in \mathrm{A}$ and $\mathrm{g}(\mathrm{x}) \in \mathrm{B}$. Since f and g are completely Λ_{a} irresolute, $f^{-1}(\mathrm{~A})$ and $\mathrm{f}^{-1}(\mathrm{~B})$ are disjoint regular open subsets in X. Put $U=f^{-1}(A) \cap f^{-1}(B)$. Then U is a regular open subset of X containing x and $\mathrm{U} \cap \mathrm{P}=\phi$ and hence $\mathrm{x} \notin$ $c l_{\delta}(A)$.Hence P is δ-closed in X .

5. REFERENCES

[1] Allam A.A. ; Zaharan A.M. ; Hasanein I.A. : On almost continuous, δ-continuous and set connected mappings, Ind. J.Pure.Appl.Math ., 18(11),(1987),991-996.
[2] Crossley S.G. ; Hildebrand S.K. : Semitopological properties, Fund. Math., 74(1972), 233-254.
[3] Erdal Ekici : Some generalizations of almost contrasuper continuity, Filomat 21:2(2007),31-44.
[4] Levine N. : Strong continuity in topological spaces, Amer.Math.Monthly,67(1960),269.
[5] Lellis Thivagar M. ; Santhini C. : Another Form Of Weakly Closed Sets, Journal Of Ultra Scientist Of Physical Sciences -accepted for publication.
[6] Lellis Thivagar M. ; Santhini C. : New Generalization Of Topological Weak Continuity, Global Journal Of Mathematical Sciences : Theory and Practical -accepted for publication
[7] Erdal Ekici : On a-open sets, A*-sets and decompositions of continuity and super-continuity, Annales Univ. Sci. Budapest, 51(2008), 39-51.
[8] Erdal Ekici ; Saeid Jafari : On a Weaker Form of Complete Irresoluteness, Bol. Soc. Paran. Mat. 26, 1-2, (2008),81-87.
[9] Long P.E. ; Herrington L.L. : Basic properties Of regular-closed functions, Rend. Cir. Mat.Palermo, 27(1978), 20-28.
[10] Navalagi G.B. ; Abdullah M. ; Abdul Jabbar : Some remarks on completely α-irresolute functions, International Journal Of Mathematical Sciences, Vol .5,No. 1 (2006),1-8.
[11] Singal M.K. ; Singal A. R. ; Mathur A. : On nearly compact spaces, Boll. UMI, 4(1969), 702-710.

