
International Journal of Computer Applications (0975 – 8887)  

Volume 62– No.21, January 2013 

32 

Hybrid Supervised Learning in MLP using Real-coded 

GA and Back-Propagation 

 
P. P. Sarangi 

Dept. of CSE 
SEC, Mayurbhanj, India 

B. S. P. Mishra 
Dept. of CSE 

KIIT, Bhubaneswar, India 

 

B. Majhi 
Dept. of CSE 

NIT, Rourkela, India 

S. Dehuri 
Fakir Mohan 

University, India 
 
 

 

ABSTRACT  

This paper addresses a classification task of pattern 

recognition by combining effectiveness of evolutionary and 

gradient descent techniques. We are proposing a hybrid 

supervised learning approach using real-coded GA and back-

propagation to optimize the connection weights of multilayer 

perceptron. The following learning algorithm overcomes the 

problems and drawbacks of individual technique by 

introducing global and local adaptation strategies. The 

behavior of the proposed algorithm is observed by the 

experimental results on a couple of popular benchmark 

datasets. The results of our algorithm are compared with 

training algorithms based on conventional back-propagation 

and real-coded genetic algorithm. Finally we realize that 

proposed hybrid learning algorithm outperforms back-

propagation and real-coded genetic algorithm based training 

the multilayer perceptron. 

Keywords: Genetic Algorithms; Multi-layer perceptron; 

Gradient descent; Generalization 

1. INTRODUCTION 

Classification is one of the most recurrently encountered 

decision making tasks of pattern recognition. A classification 

problem occurs when an object needs to be assigned into a 

predefined class (group) in decision space based on a number 

of features (attributes) from feature space [3].Nowadays, 

neural networks have recognized by research community as 

an important tool for classification with immense studies 

concerning training. Most widely used neural network model 

for classification is multilayer perceptron (MLP) based on one 

or more sequentially connected layers of perceptrons. 

Multilayer perceptron model considered in this paper belongs 

to the feedforward neural networks. In classification first, the 

network is trained on a set of paired data to evolve a set of 

connection weights and second, then the network is ready to 

test a new set of data [4]. The most popular and widely used 

training algorithm to estimate the values of the weights is the 

back-propagation (BP) algorithm [11], follows the principle of 

gradient descent technique. Because of back-propagation 

algorithm, multilayer perceptrons are widely employed in 

many real problems and can approximate any non-linear 

complex functions with arbitrary accuracy. Despite of its 

popularity, back-propagation algorithm has drawback of slow 

error convergence rate and being trapped at local minima. 

Another technique, global search based optimization 

algorithms are being used as learning method for feedforward 

neural networks. Many researchers have introduced 

evolutionary algorithms to optimize the neural networks 

weights globally in order to avoid the local minima that so 

often appear in complex problems. Davis [5] showed how any 

neural network can be rewritten as a type of genetic algorithm 

called a classifier system and vice versa. Whitley [6] 

attempted successfully to train feedforward neural networks 

using genetic algorithms. Sexton, Dersey, and Jhonson [7]. 

Gupta and Sexton [8] compared back-propagation with a 

genetic algorithm for neural networks training. X. Yao [9] 

gave new dimension to neural networks. Sankar K. Pal and 

Dinabandhu Bhandari [10] used binary-coded GA for 

selection of optimal weights in MLP. Whitley, Darrell, 

Starkweather, Timothy, and Christopher Bogart [16] 

hybridized genetic algorithms and neural networks for 

optimizing connections and connectivity. J. D. Schaffer, 

Whitley and L. J. Eshelman [19] wrote a survey on 

combinations of genetic algorithms and neural networks. H. 

Hasan Örkcü, HasanBal [2] used binary and real coded 

genetic algorithms for optimization of the connection weights 

of more than one hidden layers in the MLP. In this paper we 

have represented all connection weights as real numbers in the 

genetic algorithms. Genetic algorithms (GAs) based learning 

is used to find near-optimal solutions globally from search 

space without computing gradient information. Original 

genetic algorithms use binary string vector representation 

similar to the chromosome structure of biology. But binary 

GA has some disadvantages based learning main objective is 

to improve accuracy of the network and no consideration is 

given to the speed of convergence and local error. Here, our 

focus is to first apply GA leaning and next the gradient 

descent algorithm in multi-layer perceptron to optimize the 

best connection weights and minimize local errors with fast 

convergence. We have found that our approach not only 

succeeds in its task but it outperforms back-propagation, the 

standard training algorithm. 

The paper is structured as follows: Sections 2 deals an 

overview of neural networks and genetic algorithms 

respectively with a special emphasis on their strengths and 

weaknesses; Section 3 focuses on the detail of proposed 

algorithm; Section 4 describes empirical evolution of 

proposed algorithm on 11 real world data sets with their result 

analysis; Section 5 provides conclusions about our work and 

suggestions for future work. 

2. BACKGROUND STUDY 

2.1. Multi-layer perceptron training with 

back-propagation 

Neural networks are used to solve problems in which the 

complete formulation is unknown i.e. no casual model or 

mathematical representations exist. It is a massively parallel 

distributed processor made up of simple processing units, 

which has a natural propensity for storing experiential 

knowledge and making it available for use. It is very 

sophisticated modeling technique capable of modeling 

extremely complex functions. Neural network are also 



International Journal of Computer Applications (0975 – 8887)  

Volume 62– No.21, January 2013 

33 

referred to in literature as neurocomputers, connectionist 

networks, parallel distributed processors, etc [12]. Neural 

networks consist of number of simple processing units called 

neurons and unidirectional communicational channels called 

connections (links).  

 

Fig 1:  Schematic representation of multilayer perceptron 

The figure 1 shows the architecture of feed forward neural 

network, most common form of it is multi-layer perceptron. 

The units are organized in several layers, namely an input 

layer, one or more hidden layers, and an output layer. 

We have used in our experiment, a three layer feedforward 

neural network with m inputs, k outputs and l hidden neurons. 

Each neuron of both hidden and output layer uses hyperbolic 

tangent function f (x) = 
      

       
as activation function. The 

output of thehidden node h (1 ≤h ≤l) and output node q (1 ≤q 

≤k) can be expressed as: 

                          
 
    ,              (1) 

                       
 
    ,                               (2) 

respectively, where W =                   the 

connection weight vector connects input nodes to hidden node 

h, V =                    the connection weight vector 

connects hidden nodes to output node k, X = 
                  the input vector for each hidden node 

and Z =                   the input vector foreach output 

node.    and   are the responses of hidden and output neuron 

of node h and node q, respectively. bh and bq are the biases for 

hidden node h and output node q respectively. Most 

commonly used connection weights training algorithm for 

multi-layer perceptron is back-propagation. The idea of 

connection weights training in multi-layer perceptron is 

usually formulated as minimization of an error function, such 

as mean square error (MSE) between target (d)and actual 

(o)outputs averaged over all training examples. For a given 

training set, back-propagation learning may proceed in one of 

the two basic ways: sequential (on-line or pattern) mode and 

batch mode. In this paper we used batch learning in the 

experiment to adjust connection weights after the presentation 

of all the training examples that constitute an epoch. Thus net 

mean square error (MSE) function for a given neural network 

weight vector w is described as E(w);a value which is total 

sum of error of each neurons of the output layer of all training 

samples. 

      
 

  
            

  
   

 
                                (3) 

 

One method for minimization of error by repeatedly updating 

the weights of the net in the back propagation algorithm is to 

apply the principle of gradient descent as: 

          
     

    
                (n)                     (4) 

where      a positive number is called learning-rate parameter 

of the back-propagation algorithm,    the local gradient of a 

layerj, and n is the number of the iteration in the training. The 

equation (4) is also called delta rule. The learning-rate 

 controls the descent.A large value   enables back-

propagation to move faster to the target weights by reducing 

error of the neural network but it may not reach at minimum 

error of the error curve every time and rather oscillate. To 

avoid oscillation because of increasing the rate of learning, it 

is to modify the delta rule the equation (4) by including a 

momentum term. The following equation is called the 

generalized delta rule:  

                      (n)+                    (5) 

Again a term hdec is subtracted from equation (5), hdec is the 

decay factor 0.01 > hdec> 0 enables only those weights that 

help to minimize the error to survive and hence improve the 

generalization capability of the network. 

In addition, another improvement in learning algorithm is 

stopping rule to control when training ends. It is necessary 

due to the overfitting (overtraining) phenomenon. 

2.2. Real-coded genetic algorithm 

Genetic algorithms are randomized search algorithm based on 

the principle of natural selection and natural genetics. The 

characteristic of genetic algorithms are population-based 

evolution, survival of the fittest, directed stochastic, 

derivative-free. GAs performs the search process in four 

stages: initialization, selection, crossover, and mutation 

[13].GAs has been successfully incorporated in a wide rage of 

applications. GAs are robust, the reasons for this are [14] : 1) 

GA can solve hard problems quickly and reliably, 2) GAs are 

easy to interface to existing simulations and models, 3) GAs 

are extensible and 4) GAs are easy to hybridize. The binary 

coding representation of chromosomes encounter certain 

difficulties when dealing with continuous search spaces with 

large dimensions and a great numerical precision is required 

[15]. These difficulties are: more computing time for coding 

and decoding of chromosomes, premature convergence, and 

hamming cliff problem. Since the performance of binary-

coded genetic algorithm for continuous optimization problems 

are not effective for continuous search space that led towards 

the use of real-coded genetic algorithm. In real-coded GA the 

representation of chromosomes are candidate solutions is very 

close to variables of the problem that means there are no 

difference between the genotype and the phenotype. The size 

of chromosome is number of genes that equals to number of 

variables the objective function have in a problem. In this 

paper size of chromosome is the total weights of the neural 

network and the value of genes are same as the value of 

weights. 

2.2.1 Outlines of simple genetic algorithms 

A GAs initiates with a population of randomly generated 

chromosomes. The chromosomes undergo evolution in a form 

of natural selection, reproduction and mutation. A new 

population of chromosomes is created using a selection 

mechanism and particular genetic operators such as crossover 

and mutation as search mechanism. Using number of 



International Journal of Computer Applications (0975 – 8887)  

Volume 62– No.21, January 2013 

34 

iterations called generations, chromosomes advances toward 

better solutions by selection of high fitness values in the 

population and through crossover and mutation. The structure 

of GAs as follows. 

Simple_Genetic_ Algorithm () 

      { 

       initialize population; 

       evaluate population; 

       while (termination_criteria_not_satisfied) 

             { 

              select parents for mating pool; 

              perform crossover; 

              perform mutation; 

              new generation after crossover and  

                      mutation; 

              Evaluate population; 

             } 

      } 

Fig 2:  Structure of simple genetic algorithms 

3. PROPOSED HYBRID SUPERVISED 

TRAINING ALGORITHM  

Traditional back-propagation algorithm adapts gradient 

information of error function to optimize the connection 

weights of the neural network but several times it may get 

stuck to local optimum easily. GAs has good exploration and 

exploitation characteristics that lead towards near optimal 

solution in a complex non-linear search space. Hence GA has 

been extensively used in neural networks weights 

optimization and is known as successful alternative approach 

to back-propagation algorithm. Several studies have been used 

GAs as training algorithm in multilayer perceptron and its 

performance compared with back-propagation that the former 

outperforming the latter in most applications. Moreover it is 

difficult to use binary-coded genetic algorithms for 

continuous search space with large dimensions and a great 

numerical precision. To overcome these problems it seems 

more natural to represent the genes of a chromosome directly 

as real numbers for applications with variables in continuous 

domain. Genetic algorithms based on real number 

representation of chromosomes are called real-coded genetic 

algorithms. In RGA the size of a chromosome is same as 

length of the vector which is the solution of the problem but in 

BGA it is not so [1]. However in RGA proper selection of 

genetic operators are very important for specific applications. 

In the present classification problem, the neural networks 

training using RGA suffers from premature error convergence 

that is earlier in training using BGA. In this paper an attempt 

has been taken to propose a hybrid supervised learning 

algorithm by integrating both real-coded genetic algorithms 

and back-propagation methods together to alleviate the 

premature error convergence problem of RGA and to get 

stuck in local minimum of MLP in the training of multilayer 

perceptron. In the simulation of the proposed algorithm, it has 

been observed that hybrid training algorithm outperforms the 

individual training methods of multilayer perceptron. Figure 2 

shows the framework of hybrid real-coded genetic algorithm 

and back-propation algorithm. 

Fig 3: Framework of hybrid algorithm for classification 

3.1Encoding connection weights and initial 

population 

In [1] proposed, number of connection weights in the network 

are the parameters of a chromosome. For L number of layers, 

number of parameters is 

P =               
   . 

Each parameter is represented a real value in a range of (-1, 

1). In addition to that more number of chromosomes in the 

population results in lesser number of generations to be 

executed for convergence but takes higher processing time for 

each generation. 

3.2 Determine fitness function 

Here, the network with more error, the fitness value is less 

and vice versa, decreasing overall error function F (E) may be 

represented as increasing function 

F (E) =        
  

Where     is the total mean square error of individual 

chromosome and a MSE normalization operation applied on 

that chromosome total MSE, which is its fitness value. 

3.3 Fitness scaling or fitness shifting 

In order to make GAs work effectively on finite populations, 

we must modify the way we select individuals for 

reproduction. The basic idea is to control the number of 

reproductive opportunities each individual gets, so that it is 

neither too large, nor too small. One of the ways to control the 

reproductive opportunity of each individual is fitness scaling 

or fitness shifting. In this, the maximum number of 

reproductive trials allocated to an individual is set to a certain 

value typically 2.0. 



International Journal of Computer Applications (0975 – 8887)  

Volume 62– No.21, January 2013 

35 

3.4 Genetic operators 

Genetic operators are the basic search mechanisms of the GA 

for creating new points based on the existing population. 

Selection operator performs exploitation of promising 

candidates in every generation. Reproduction of new points 

(children) from the selected points (parents) using the two 

genetic operations: crossover and mutation that leads to 

exploration of new parts of the search space. Crossover 

produces two new individuals (children) from two existing 

individuals (parents), whereas mutation alters one individual 

to produce a single individual. In this work, arithmetic 

crossover and non-uniform-mutation function have been used 

[17] in real-coded genetic algorithms. 

3.4.1 Crossover operator 

Let us assume that        
            

            
   and    

    
            

            
   are two chromosomes selected for the 

application of crossover operator. For the arithmetic crossover 

operator then two offspring,    = (  
            

            
  , k = 

1, 2, are generated, where   
     

           
 and    

  

    
           

 . λ is a positive constant and in the 

experiments, λ is set to 0.28. 

3.4.2 Mutation operator   

Let us assume the nonuniform mutation operator is applied in 

a generation r, and      is the maximum number of 

generations, new offspring   
 can obtain as 

  
    

                        

                               
  

∆(r, y) = y (1 -     
    

 

    
  
  

where   is a random number either 0 or 1, b is a parameter 

that determines the degree of dependence on the number of 

iterations, in our experiments, b is set to 0.5. The random 

value rand lies in a range [0, 1]. 

3.5 Proposed algorithm for MLP 

STEP 1.  initialize the RGA parameters 

STEP 2.  initialize the population with real values   

in the domain for each neuron’s connection    

weights and bias to its correspondent gene segments 

STEP 3. while new gen. is less than equal to 

MaxGen. Do { 

STEP 4. the fitness of a chromosome is determined 

by MSE 

STEP 5. sort minimum fitness values 

STEP 6. if first fitness value is less than equal to 

min. error then select best solution for MLP then 

goto step 9 

STEP 7. select parents for reproduction based on 

their fitness 

STEP 8. new population by crossover and mutation 

STEP 9. goto step 1 for new generation} 

STEP 10. initialize parameters of back-propagation 

learning 

STEP 11. initialize weights of the MLP using best 

solution  of RGA 

STEP 12. while new epoch is less than equal to 

MaxEpoch or error converges to Min Error do 

STEP 13. update weights to minimize error using 

back-propagation with training data 

STEP 14. end while 

STEP 15. evaluate performance of classification 

with test data 

STEP 16. end while 

4. EXPERIMENTAL STUDY 

4.1 Experimental real world datasets 

In this section numbers of experiments were conducted with 

standard datasets. Eleven classification problems were 

verified in the experiment. In Table 1 lists a summary of the 

used datasets along with following attributes: problems and 

the number of instances, the number of binary (b), continuous 

(c) features in the dataset, number of classes. The 

classification problems were obtained from the UCI 

repository [20]. In pattern classification, the total set of 

patterns in the dataset divided into three different set of 

partitions forming training, validation and test sets prechelt 

[17]. A popular and very useful form to use validation set in 

neural network is early stopping. In this paper the validation 

set was used for testing the performance of the network in the 

training phase, it is necessary to avoid the overtraining 

phenomenon. Here initially the datasets were divided into two 

segments like sixty and forty percent of data, former was used 

for training and later for testing sets. Again the training 

segment divided into two parts like twenty and forty percent 

of data. The later segment was  

used for training and former segment for validation sets. 

Before partition of the dataset, we were normalized the dataset 

using z-score or max-min normalization techniques. 

The proposed algorithm is compared with back-propagation 

and real-coded GA based training multilayer perceptron. BP, 

Real-coded GA based training and proposed one was 

implemented and analyzed using matlab. 

Table 1: Summary of used classification problems 

Dataset 

 

Instances 

 

Problem attributes Class 

 b b t 

Cancer 683 0 9 9 2 

Bupa live 345 0 6 6 2 

Diabetes 768 0 8 8 2 

Heart 270 0 13 13 2 

Hepatitis 155 0 19 19 2 

Iris 150 0 4 4 3 

Thyroid 215 0 5 5 3 

Wine 178 0 13 13 3 

Vehicle 846 0 18 18 4 

Glass 214 0 9 9 6 

Zoo 101 15 2 17 7 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 62– No.21, January 2013 

36 

4.2 EXPERIMENTAL PREPARATION 

1. Patterns were normalized to the range [-1, 1] 

2. The real-coded genetic algorithms used real encoding to 

represent chromosomes 

3. Each chromosome in the population represents the neural 

network architecture 

4. The length of the chromosome is the total number of 

connection of the network 

5. Synaptic weights of the neural network are represented by 

real values in a domain [-1, 1] 

6. Population size: 10 

7. Linear fitness scaling were used to compress the range of 

fitness to two 

8. Roulette wheel selection or Rank based roulette selection 

were used in the mating pool 

9. Crossover rate: 0.9 

10. Arithmetic crossover operator was used  

11. Mutation rate: 0.7 

12. Non-uniform mutation operator was used  

13. Elitism the best chromosomes are preserved for the next 

generation was used 

14. Number of generation for each experiment: 50 to 100 

15. The multilayer perceptron had only one hidden layer, 

number of neurons in this layer was optimized by trial and 

error method as mentioned in table 2. 

16. The transfer function of the hidden layer and output layer 

are bipolar sigmoid functions 

17. The learning rate and momentum parameter of the BP is 

0.01 and 0.9 

18. Each classifier repeatedly executed ten times for one over 

all datasets and average accuracy mentioned in Table 2 

4.3 EXPERIMENTAL RESULT 

ANALYSIS 

Each training algorithm runs ten times over all datasets 

mentioned in Table 1and the average accuracy of the classifier 

(the percentage of samples that it correctly classified) is 

computed. The results were obtained for each training 

technique by the optimization of the connection weights of the 

multilayer perceptron. The fitness function values (errors) 

were normalized and obtained average over total number of 

training samples. Finally in batch learning mean square error 

(mse) was obtained that updated the connection weights of the 

MLP. Moreover the classification rate of the test set obtained 

in the training of the MLP using different training algorithms, 

presented in Table 2. Figure 1 to Figure 11 show the graphs 

comparing the mean square error (mse) and classification 

rates of the investigated training algorithms over all datasets. 

The proposed algorithm obtained the best results in the most 

dataset where RGA based training fails. By taking advantage 

of global optimization, early stopping, and weight decay 

proposed algorithm takes less computational time than RGA 

based training algorithm. Similarly, the problem of local 

minimum of BP algorithm observed many times in running 

the training algorithm number of times over all datasets. It 

leads worst performance in the experiments that could be 

avoided by proposed algorithm. 

From the experiments, it has revealed that by a large 

crossover rate and a higher mutation rate the proposed 

algorithm needs small number of generations. Here we used 

50 to 100 number of generation with 0.9 crossover and 0.07 

mutation rates to train the MLP at initial stage. Then BP 

algorithm takes small number of epochs to optimize the 

connection weights of MLP with less mean square error. In 

RGA based training, maximum generation number was 

chosen 10000. 

It is analyzed from Table 2 that for almost all datasets the 

classification rate of the proposed training algorithm 

outperforms classical back-propagation and real-coded GA. 
But datasets like thyroid, vehicle, glass and zoo the RGA 

based training obtained poor classification rates even worse 

than back-propagation algorithm. Thus it is clearly observed 

from the table that where RGA based training not performed 

well there proposed training algorithm obtained best results. 

Moreover in hepatitis dataset RGA based training produced 

best result than proposed training algorithm. Figure 4 shows 

the graphs comparing the performances of the investigated 

training algorithms of multilayer perceptron. The proposed 

training algorithm obtained best results regarding 

classification accuracy in percentage except hepatitis dataset. 

From the results we realized that in the proposed algorithm, 

initially RGA evolved a better search space globally in few 

generations then BP locally optimized the connection weights 

of the neural network. 

 

Table 2: Training results of the multilayer perceptron 

Dataset Input Nodes 
Hidden 

Nodes 

Classification Rates (%) MSE 

BP RGA GA BP BP RGA GA BP 

Breast cancer 9 10 97.27 98.21 98.44 0.021 0.024 0.021 

Bupa live 6 7 69.69 70.61 70.79 0.054 0.111 0.061 

Pima diabetes 8 10 75.25 79.22 79.22 0.067 0.024 0.066 

Heart 13 10 82.03 87.40 87.95 0.022 0.024 0.019 

Hepatitis 19 5 72.81 88.15 80.29 0.073 0.024 0.019 

Iris 4 5 96.99 95.43 97.77 0.028 0.012 0.010 

Thyroid 5 8 93.02 78.82 95.34 0.040 0.011 0.037 

Wine 13 10 95.39 97.22 98.63 0.077 0.017 0.017 

Vehicle 18 6 77.94 55.53 79.70 0.045 0.014 0.046 

Glass 9 12 75.51 50.77 77.00 0.037 0.008 0.035 

Zoo 17 10 95.14 66.21 95.57 0.027 0.006 0.020 



International Journal of Computer Applications (0975 – 8887)  

Volume 62– No.21, January 2013 

37 

Fig 5: Bupa dataset training performance using BP and GA-BP 

 

 

 

 

 

 

 

Fig 6: Pima diabetes dataset training performance using BP and GA-BP 

Fig 7: Hepatitis dataset training performance using BP and GA-BP 

 

 

 

 

 

 

 

 

Fig 8: Thyroid dataset training performance using BP and GA-BP  

 

 

 

 

 

 

 

 

 

 

 

Fig 9:  Vehicle dataset training performance using BP and GA-BP 

 

0 2000 4000 6000 8000 10000
0.05

0.1

0.15

0.2

0.25

0.3

Epoch

Er
ro

r v
al

ue

 

 

BP

GA-BP

500 1000 1500
0

20

40

60

80

100

Epoch

Cl
as

si
fic

at
io

n 
ra

te

 

 

BP

GA-BP

0 500 1000 1500
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Epoch

Er
ro

r v
al

ue

 

 

BP

GA-BP

500 1000 1500
0

20

40

60

80

100

Epoch

Cl
as

si
fic

at
io

n 
ra

te

 

 

BP

GA-BP

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

Epoch

Er
ro

r v
al

ue

 

 

BP

GA-BP

500 1000 1500
0

20

40

60

80

100

Epoch
Cl

as
si

fic
at

io
n 

ra
te

 

 

BP

GA-BP

0 500 1000 1500 2000 2500
0.02

0.04

0.06

0.08

0.1

Epoch

Er
ro

r v
al

ue

 

 

BP

GA-BP

500 1000 1500 2000 2500
0

20

40

60

80

100

Epoch

Cl
as

si
fic

at
io

n 
ra

te

 

 

BP

GA-BP

2000 4000 6000
0

20

40

60

80

100

Epoch

Cl
as

si
fic

at
io

n 
ra

te

 

 

BP

GA-BP

0 2000 4000 6000 8000
0.04

0.06

0.08

0.1

0.12

Epoch

Er
ro

r v
al

ue

 

 

BP

GA-BP



International Journal of Computer Applications (0975 – 8887)  

Volume 62– No.21, January 2013 

38 

 

Fig 10: Performances of the investigated training algorithms of MLP 

5. CONCLUSION  
Feed forward neural networks training using back-

propagation, real-coded GA, and proposed hybridization of a 

real-coded GA and back-propagation algorithms have been 

discussed in this paper. In the experiment, proposed hybrid 

training algorithm has been compared with back-propagation 

and real-coded GA using several real world standard datasets. 

From experimental results it is cleared that real-coded GA 

based training algorithm not provides the highest accuracy 

and generalization results for all datasets. Although RGA 

produce global optimal solutions, it has shown RGA suffers 

from premature error convergence in complex problems that 

can lead to the training failure. Similarly, the back-

propagation algorithm has better local searching ability but its 

performance depends on the input sequence to reach at global 

optimum solution. Because of that back-propagation 

algorithm not always performs better and traps in local 

minima. Again when problems are more complex, back-

propagation most often fails because of its inherent gradient 

decent technique. In case of complex problems, large 

connection weight parameters of the neural networks increase 

the size of chromosome. The longer the size of chromosome 

needs more generations to globally optimize the weights 

parameters. Hence genetic algorithms are slower in the cost of 

better performance than where back-propagation fails. To 

alleviate the problems of premature convergence and more 

training time of genetic algorithms and getting stuck in local 

minimum of back-propagation the hybrid algorithms has been 

adopted in this paper.  The simulation of hybrid algorithm 

starts training with real-coded GA for several generations then 

uses that global information of RGA solution as initial 

weights of the neural network to commence the back-

propagation algorithm for local convergence of error. The 

experimental results of the proposed hybrid algorithm 

improves the training error convergence rate where real-coded 

GA and back-propagation fail, that leads to better accuracy 

and generalization. It also revealed that the proposed 

algorithm outperforms back-propagation and real-coded GA 

training algorithm without trapping in local minimum. 

Moreover proposed algorithm takes less training time than 

real-coded GA based training algorithm. In future this work 

will be extended in solving real world problems in image 

processing, bioinformatics, robotics and business. 

6. REFERENCES 
[1]  P.P.Sarangi, B.Majhi and M.Panda, "Performance 

Analysis of Neural Networks Training using Real Coded 

Genetic Algorithm", International Journal of Computer 

Applications 51(18):30-36, 2012. 

[2]  H. HasanÖrkcü, HasanBal, "Comparing performances of 

back-propagation and genetic algorithms in the data 

classification", Expert Systems with Applications, 

Volume 38, Issue 4,Pages 3703-3709,2011. 

[3]  Zhang, G., “Neural networks for classification: a 

survey”, IEEE Transactions on Systems, Man, and 

Cybernetics, Part C 30(4): 451-462, 2000. 

[4] S. B. Kotsiantis, “Supervised Machine Learning: A 

Review of Classification Techniques”, Informatica31 

249-268, 2007 

[5]  L. Davis, “Mapping Classifier Systems into Neural 

Networks'', Conference on Neural Information 

Processing Systems, Morgan Kaufimann, 1988. 

[6]  Whitley, Darrell, "Applying Genetic Algorithms to 

Neural Network Problems," International Neural 

Network Society p. 230, 1988. 

[7]  Randall S. Sexton, Robert E. Dorsey, John D. Johnson, 

“Optimization of Neural Networks: A Comparative 

Analysis of the Genetic Algorithm and Simulated 

Annealing”, European Journal of Operational Research, 

volume 114, issue 3,page 589-601, 1999. 

[8]  Gupta, J. N. D., & Sexton, R. S. Comparing back-

propagation with a genetic algorithm   for neural network 

training. Omega, 27, 679–684. 

[9]  X. Yao, Evolving artificial neural networks, Proc. IEEE 

87 (9), 1423–1447, 1999. 

[10]  Pal S. K. and BhandariD.”Selection Of optimal set of 

weights in a layered network using genetic algorithm”, 

Information Sciences, Vol: 80, Pages: 213-234,1994. 

[11]  D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning 

representations by back-propagating errors, Nature 323 

533-536, 1986 

0 

20 

40 

60 

80 

100 

120 

BP 

GA-BP 

RGB 



International Journal of Computer Applications (0975 – 8887)  

Volume 62– No.21, January 2013 

39 

[12]  Simon Haykin, “Neural Networks: A comprehensive 

foundation,” Pearson Education Asia, Seventh Indian 

Reprint, 2004. 

[13]  J.H. Holland, Adaptation in Natural and Artificial 

Systems, the University of Michigan Press, 1975. 

[14]  D.E. Goldberg, Genetic Algorithms in Search, 

Optimization, and Machine Learning, Addison-Wesley, 

New York, 1989. 

[15] F. Herrera, M. Lozano, J.L. Verdegay, Tackling Real-

coded Genetic Algorithms: Operators and Tools for 

Behavioral Analysis, Artificial Intelligence Review 12: 

265-319, Kluwer Academic Publishers 1998. 

[16] Whitley, Darrell, Starkweather, Timothy, and 

Christopher Bogart, “Genetic Algorithms and Neural 

Networks: Optimizing Connections and Connectivity,” 

ParallelComputing, 14, pp. 347-361,1990. 

[17] Deep, K., & Thakur, M. A new crossover operator for 

real coded genetic algorithms. Applied Mathematics and 

Computation, 188, 895–911, 2007. 

[18]  Prechelt, L.: Proben1, “A Set of Neural Network 

Benchmark Problems and Benchmarking Rules”. 

Technical Report 21, FakultÄat fÄur Informatik 

UniversitÄat Karlsruhe, 76128 Karlsruhe, Germany, 

1994. 

[19]  Schaffer J. D., D. Whitley, and L. J. Eshelman, 

“Combinations of Genetic Algorithms and Neural 

Networks: A Survey of the State of the Art,” Proceedings 

of the IEEE Workshop on Combinations of Genetic 

Algorithms and Neural Network. 

[20]  UCI repository of machine learning databases, 

Department of Information and Computer Sciences, 

University of California, Irvine, 

http://www.ics.uci.edu/~mlearn/MLRepositor.

 

 

 

 


