
International Journal of Computer Applications (0975 – 8887)

Volume 62– No.20, January 2013

33

Double Level Priority based Optimization Algorithm for

Task Scheduling in Cloud Computing

Shachee Parikh

Gujarat technological university
kalol institute of technology and research center

kalol, Gujarat, india

Richa Sinha
Gujarat technological university

kalol institute of technology and research center
kalol, Gujarat, india

ABSTRACT

Cloud computing is the fastest new paradigm for delivering on

demand services over internet and can be described as internet

centric software. In cloud computing there are many tasks that

needs to be executed by the available resources to acquire high

performance, reduce task completion time, minimize response

time, utilization of resource usage and etc.

Scheduling theory for cloud computing is gaining a lot of

attention with increasing popularity in this cloud era. Service

providers like to ensure that resources are utilized to their fullest

and best capacity so that resource power is not left unused. This

paper proposes a priority based scheduling optimization

algorithm which addresses these major challenges of task

scheduling in cloud. The incoming tasks are grouped on the

basis of data and requested resources by the task and prioritized.
Resource selection is done on the basis of its cost and turnaround

time both using greedy approach. Task selection on the basis of

a priority formula. This way of resource selection and task

selection gives more better results over sequential scheduling.

General Terms

Task scheduling, cloud computing, priority based algorithm.

Keywords

Priority based scheduling, task scheduling, cloud computing,

optimization algorithm.

1. INTRODUCTION
 Cloud computing is a very current topic and the term has gained

a lot of attention in recent times. It can be defined as on demand

pay-as-per-use model in which shared resources, information,

software and other devices are provided according to the clients’

requirement when needed [1]. Human dependency on cloud is

evident from the fact that today’s most popular social

networking, email, document sharing and online gaming sites are

hosted on cloud. Google, Microsoft, IBM, Amazon, Yahoo and

Apple among others are very active in this field[5].

 Scheduling theory for cloud computing is gaining consideration

with day by day hike in cloud popularity. In general, scheduling

is the process of mapping tasks to available resources on the

basis of tasks’ characteristics and requirements. It is an essential

aspect in efficacious working of cloud as many task parameters

need to be considered for proper scheduling. The available

resources should be utilized efficiently without affecting the

service parameters of cloud. Scheduling process in cloud can be

generalized into three stages namely–

– Datacenter Broker

discovers the resources present in the network system and
collects status information related to them.

– Target resource is selected based on
certain parameters of task and resource. This is deciding stage.

 -Task is submitted to resource selected[5].

The simplified scheduling steps mentioned above are shown in

Figure 1

Figure 1. Scheduling in Cloud

The rest of this paper is organized as follows: Section 2 briefly

discusses related work followed by proposed framework in

Section 3. Next, Section 4 presents the proposed scheduling

algorithm and its strategy.

2. RELATED WORK
Target resources in a cloud environment can be selected in

various ways. The selection of resources can be either random,

round robin, greedy (resource processing power and waiting time

based) or by any other means. The selection of jobs to be

scheduled can be based on FCFS, SJF, priority based, coarse

grained task grouping etc. Scheduling algorithm selects job to be

executed and the corresponding resource where the job will be

executed. As each selection strategy is having certain flaws work

could be done in this direction to extract the advantageous points

of these algorithms and come up with a better solution that tries

to minimize the drawbacks of resultant algorithm.

The existing algorithms are beneficial either to user or to cloud

service providers but none of them takes care of both. Each have

their own advantages and disadvantages. Like greedy and

priority based scheduling are beneficial to user and grouping

 USER

DATACENTER BROKER CLOUD INFORMATION

SERVICES

VM1 VM2 VM3

DATACENTER

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.20, January 2013

34

based scheduling is concerned with better utilization of available

resources. But the priority based scheduling may lead to long

waiting time for low prioty tasks. Greedy scheduling from users

point of view lead to wastage of resources whereas greedy

scheduling from service providers point of view may lead to

disappointment for user on QoS parameters. Similarly task

grouping may have the disadvantage of considerable task

completion time due to formation of groups. Thus we see that

some scheduling strategies are biased to users while others to

service providers. There is an emerging requirement to balance

this biasing to form an optimized scheduling solution.

New scheduling strategy need to be proposed to overcome the

problem posed by network properties and user requirements. The

new strategies may use some of the conventional scheduling

concepts to merge them with some network and requirement

aware strategies to provide solution for better and more efficient

task scheduling[5].

3. PROPOSED FRAMEWORK
Task Grouping: Grouping means collection of components on

the basis of certain behavior or attribute. By task grouping in

cloud it is meant that tasks of similar type can be grouped

together and then scheduled collectively[2] .

Activities will be performed on virtual operating systems and the

resources are provided over these virtual systems by the original

system. There might be tasks which are totally independent or

dependent on the other task. There might be some tasks whose

all required resources are not available on any single data center.

So after considering all possibilities, divide the task into

different groups. These groups are, a) Available b)

Partially available.

This grouping is done on the basis of resources. Available is the

group of tasks which can be complete performed on a single data

center. And partially available is the group of tasks which will

require resources from other data centers. Again independent is

the group of tasks which are independent on the other task’s

result. And hence dependent require some results from previous.

Now the partially available is the group of tasks which needed

data from different data centers. Hence further we have sorted

them in different categories, cat1, cat2, cat3… and so on till N

number of categories. These categories are done on the basis of

data need. Cat1 tasks will need the data from same data centers.

Similarly cat2 tasks will need the data from same data centers

and so on[4].

Implementing task scheduling queue structure
There will be one parent queue in which it will store the tasks

according to their arrival time, i.e. first in first out approach.

Then it will check for data and requested resources by the task

and sort them into two different queues, available and partially

available. Again in available queue it will check if the task is

dependent or independent and according to that it will store them

in their respective queues. Now in partially available queue they

are having tasks which will need data resources from other data

centers. Then it will sort them in different queues named cat1,

cat2… and so on. This will be done on the basis of resources

they need. For example if task1 need resources from data center

location1 and data center location3 and similar for task2 and

task4. Then tasks 1, 2, 4 will be in one category say cat1.

Similarly for other tasks we will make cat2, cat3 and so on till

we finish the tasks in the partially available queue.

Now they have major queues as, independent, dependent, and

cat1, cat2…..catN. For every major queue they will again make

three different queues based on priority, High, Mid, Low. Now

the question is how to decide the priority?[4]. Decide using

below formula.

 Prioritization:
The priority level can be sorted by the ratio of task’s cost to its

profit.
Parameters are defined as followed:

(1) Ri,k: The ith individual use of resources by the kth

task.

(2) Ci,k: The cost of the ith individual use of resources

by the kth task.

(3) Pk: The profit earned from the kth task.

(4) Lk: The priority level of the kth task.

The priority level of each task can be calculate as in

formula (1), the total individual resources use is supposed to be

n, so the priority level of the kth task is:[3]

INCOMMING TASK

REQUEST

AVAILABLE

PARTIALLY

AVILABLE

DEPENDENT
INDEPENDENT

CATEGORY1

HIGH 1 MID 1 LOW 1 HIGH 2 LOW 2MID 2 HIGH 3 MID 3 LOW 3

CATEGORY2

Fig.2 Task Scheduling Tree Structure

While calculating priorities of the task, they will need to check

newly calculated priority with the previous ones. Then according

to that they will place them into priority queues.

When they will finish placing tasks in their queue then they can

select task from High priority queue and when this task will be

finished, the first task of the Mid priority queue will be shifted to

High priority queue. And in this way tasks from all the queues

will start executing.

One question still remain there that what will be the sequence of

task selection, as there will be more than one High priority

queues. Now it will use a simple logic, as below:

every High priority queue.

space.

if resources are remaining then again choose the

next task with the same strategy and allocate the resources and

space.

finish and as soon as any task finishes then again choose next

one and allocate the resources [4].

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.20, January 2013

35

Greedy Allocation : Greedy algorithm is suitable for dynamic

heterogeneous resource environment connected to the scheduler

through homogeneous communication environment [7]. Greedy

approach is one of the approach used to solve the job scheduling

problem. According to the greedy approach –

Fig 3.1 Scheduling of Deadline Constrained Tasks

“A greedy algorithm always makes the choice that looks best at

that moment. That is, it makes a locally optimal choice in the

hope that this choice will lead to a globally optimal solution"[8].

Minimum Turnaround Time Based - To improve the

completion time of tasks greedy algorithm is used with aim of

the resource with minimum turnaround time is given priority

than others, resulting in an overall improvement of completion

time.

Turnaround Time = Resource Waiting Time + Task Length /

Proc. Power of Resource

The task list is rearranged with tasks arranged in descending

order of priority in order to execute the task with high priority

constraint first. Once the scheduler submits a task to a machine,

the resource will remain for some time in processing of that job.

The resource status is updated to find out when the resource will

be available to process a new job.

Minimum Cost Based - The resource with minimum cost is

selected and tasks are scheduled on it until its capacity is

supported. After scheduling each task the resource status is

updated accordingly

Cost of Task = (Task length / Proc Power of Resource) *

Resource Cost

Figure 3.2 Scheduling of Cost Based Tasks

4. PROPOSED ALGORITHM
An optimum scheduling algorithm is proposed and. The

proposed algorithm works as follows

1. Incoming tasks to the broker are grouped on the basis of

their resources– available and partially available.

Further the grouping is done in available category of task−

independent and dependent. And in partially available category,
grouping is done on the basis of data need cat1,cat2 and so on.

2. Now we have major queues as, independent, dependent, and

cat1, cat2…..catN. For every major queue it will again make

three different queues based on priority, High, Mid, Low

3. After initial grouping, the priority level can be sorted by the

ratio of task’s cost to its profit .

4. i) Virtual Machine are sorted in ascending order on the basis

of processing power of machine and its cost .
ii)They are divided into 2 or more equal size groups .

5.starting with first group 1,
i) Turnaround time at each resource is calculated taking

following parameters into account.

Grouped deadline

constrained tasks

Task

available?

For each resource

calculated

expected waiting

time and

turnaround time

Select resource with

minimum turnaround

time and schedule task

Update resource

status

 End

Task

available?

Retrieve resource

id from resource

list arranged on

the basis of cost

and MIPS

Schedule task on

first resource in list

Update resource

status

 End

Grouped deadline

constrained tasks

No

Yes

Yes

No

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.20, January 2013

36

Deadline Constrained Based - To improve

.

.

Fig 4.Proposed algorithm

ii)Sort the vm list in ascending order on the basis of turnaround

time

iii) select the vm sequentially and schedule task till the resource

capacity is permitted

6. Waiting time and resource capacity of selected machine are

updated accordingly.

7. when resourcelist is empty in group 1, start with next group

and repeat step 5.

5. SIMULATION RESULTS

The CloudSim toolkit is used to simulate heterogeneous resource

environment and the communication environment [4].

CloudSim(2.1.1) simulator is used to verify the correctness of

proposed algorithm. The experiments are performed with

Sequential assignment which is default in CloudSim and the

proposed algorithm. The jobs arrival is Uniformly Randomly

Distributed to get generalized scenario. The configuration of

datacenter created is as shown below - Number of processing

elements – 1 Number of hosts – 2

Table 1 Configuration of Hosts

RAM(MB) 10240

Processing Power(MIPS) 110000

VM Scheduling Time Shared

The configuration of Virtual Machines used in this experiment is

as shown in Table 2.

Table 2 Configuration of VMs

Virtual Machines VM 1 VM 2

RAM(MB) 5024 5024

Processing

Power(MIPS)
22000 11000

Processing

Element(CPU)
1 1

Performance with cost: The tasks execution using the

proposed algorithm results in a significant improvement in cost

over the sequential allotment as shown in Table 3.

 Cloudlet received

Prioritize(

)

1.Arrange VM list in ascending order on the basis

of (Resource cost / Resource Processing Power).

2. Now group them in 2 or more equal size groups

.

 Starting with 1st group,

 3. for group i, For each task do,

a) Compute turnaround time at each resource as

Turnaround time= waiting time + (task

length/Resource Processing power)

b) Sort the Resource list in ascending order on the

basis of turnaround time.

c) Select resource from list sequentially

d) Select task and schedule.

e) Update resource status

f) repeat step d and e till resource capacity is less

than or equal to tasks scheduled.

g) until resource/task list is empty

 go to step c

4. until task list is empty

 Do step 3 for next group.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.20, January 2013

37

Table 3 Comparison of Execution Cost

No. Of

Cloudlets

Proposed

Algorithm

Sequential

Assignment

25 565.91 735.68

50 1131.82 1471.36

75 1697.73 2207.05

100 2263.6 2942.73

Performance with time: It is evident from the results that

proposed algorithm gives better completion time of job in

comparison to the sequential approach.

Table 4 Comparison of Task Completion Time

Cloudlets

 Proposed

Algo

Sequential

Algo

25 565.91 735.68

50 1131.82 1471.36

75 1697.73 2207.05

100 2263.6 2942.73

125 910.04 997.99

150 1298.50

1439.75

6. CONCLUSION AND FUTURE WORK

It is observed that the proposed algorithm improves cost and

completion time of tasks as compared to Sequential Assignment.

The turnaround time and cost of each job is minimized

individually to minimize the average turnaround time and cost of
all submitted tasks in a time slot respectively. The results

improve with the increase in task count.

The proposed algorithm can be further improved by considering

following suggestions –

 In computing environment energy efficient scheduling

is a more concern. So,They should try to apply dvfs

policy for power saving or can add location parameter

with the existing deadline and cost.

 Load balancing parameter if needed could be taken

into account for proper scheduling of tasks.

7. REFERENCES

[1] Q. Cao, B. Wei and W. M. Gong, "An optimized algorithm

for task scheduling based on activity based costing in cloud

computing," In International Conference on eSciences

2009, pp. 1-3. Tavel, P. 2007 Modeling and Simulation

Design. AK Peters Ltd.

[2] Ashutosh Ingole, Sumit Chavan, Utkarsh Pawde. “An

optimized algorithm for task scheduling based on activity

based costing in cloud computing” (NCICT) 2011,

Proceedings published in International Journal of Computer

Applications® (IJCA)

[3] Monika Choudhary, Sateesh Kumar Peddoju “A Dynamic

Optimization Algorithm for Task Scheduling in Cloud

Environment” IJERA ISSN: 2248-9622 Vol. 2, Issue 3,

May-Jun 2012, pp.2564-2568.

[4] Modeling and Simulation of Scalable Cloud Computing

Environments and the CloudSim Toolkit: Challenges and

Opportunities. By Rajkumar Buyya.

[5] S. Singh and K. Kant, "Greedy grid scheduling algorithm in

dynamic job submission environment," in International

Conference on Emerging Trends in Electrical and

Computer Technology (ICETECT), 2011, pp. 933-936.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein

Introduction to algorithms: The MIT press, 2001, pp 16.

