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ABSTRACT 

In this paper, the Markov chain Monte Carlo (MCMC) 

method has been used to estimate the parameters of 

Exponentiated Gumbel(EG) model based on a complete 

sample. A procedure is developed to obtain Bayes estimates 

of the parameters of the Exponentiated Gumbel model using 

MCMC simulation method in OpenBUGS, an established 

software for Bayesian analysis using Markov Chain Monte 

Carlo (MCMC) method. The MCMC methods have been 

shown to be easy to implement computationally, the estimates 

always exist and are statistically consistent, and their 

probability intervals are convenient to construct. The R 

functions are developed to study the statistical properties, 

model validation and comparison tools of the proposed model 

and the output analysis of MCMC samples generated from 

OpenBUGS. The proposed methodology is suitable for 

empirical modeling. A simulated data set is considered for 

illustration under uniform and gamma sets of priors. 

Keywords 

Exponentiated Gumbel(EG) model, Parameter estimation, 

Maximum likelihood estimate (MLE), Bayes estimates, 

Markov Chain Monte Carlo (MCMC), OpenBUGS. 

1. INTRODUCTION 

The Exponentiated Gumbel (EG) model has been proposed as 

a modification of the classical Gumbel model[1]. Since the 

Gumbel model[2] yields narrower confidence intervals than 

the some other extreme value models but has also the risk of 

under-estimating the certain important characteristic of the 

model. Hence, the choice of model is not trivial. 

Recently, Nadarajah in 2006[3,4] introduced the 

Exponentiated Gumbel (EG) model as  

  F(x; , ) exp exp u ; ( , ) 0, x .           

Where u= -(x/σ), Moreover, hazard-rate functions, moments, 

asymptotics and maximum likelihood functions were 

presented.  

In this paper, we have proposed the EG model for modeling 

the software reliability data. We have obtained the ML 

estimates and associated probability intervals. The Bayes 

estimation of the EG model is considered when both 

parameters are unknown. It is observed that the Bayes 

estimates cannot be computed explicitly under the assumption 

of independent uniform and gamma priors for the parameters. 

We have developed the procedure to generate MCMC 

samples using Gibbs sampling technique from the posterior 

density function in OpenBUGS, Based on the generated 

posterior samples, we can compute the Bayes estimates of the 

unknown parameters and also can construct highest posterior 

density credible intervals. We have also estimated the 

reliability function. 

One real data set has been analyzed to demonstrate how the 

proposed method can be used in practice for software 

reliability data. 

2. MODEL ANALYSIS 

2.1 Probability density function(pdf)           

The probability density function is given by 

x x
f (x) exp exp exp ;

where  x , 0, 0.

       
          

       

     




  

 

   (2.1)   

The R functions dexpo.gumbel( ) and pexpo.gumbel( ) given 

in [5] can be used for the computation of pdf and cdf, 

respectively. Some of the typical EG density functions for 

different values of  and for σ = 1 are depicted in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is clear from the above figure that the density function of 

the Exponentiated Gumbel model can take different shapes 

2.2 Cumulative density function(pdf)           

The distribution function of Exponentiated Gumbel model 

with two parameters is given by 

x
F(x) exp exp ; x , 0, 0

   
           

   
  


, (2.2) 

 

Fig  1.   The PDF of EG model for σ =1 and different 

values of . 
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where,  > 0 is the shape and  > 0 is the scale 

parameter. The two-parameter Exponentiated Gumbel model 

will be denoted by EG(,σ).  

2.3 The Reliability function 

The reliability/survival function is 

x
R(x) 1 exp exp .

   
      

   



          (2.3) 

Here, - < x < ,  > 0 and  > 0. The R function 

sexpo.gumbel( ) given in [5], computes the reliability 

function. 

2.4 The Hazard function 

The hazard rate function is 

x x
exp exp exp

h(x; , )
x

1 exp exp

        
          

           
   

      
   

 (2.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The hazard rate is an increasing function. It has been graphed 

in Figure 2 for scale parameter  =1 and different values of 

shape parameter .  

The associated R function hexpo.gumbel( ) given in [5]. 

2.5 The cumulative hazard function       

The cumulative hazard function H(x) defined as 

   H(x) 1 logF(x)     (2.5) 

can be obtained with the help of pexpo.gumbel( ) function 

given in [5]  by choosing  arguments lower.tail=FALSE and 

log.p=TRUE. i.e. 

-pexpo.gumbel(x,alpha,sigma,lower.tail=FALSE,log.p=TRUE) 

2.6 The Failure rate average (fra) and 

Conditional survival cumulative hazard 

function(crf)       

Two other relevant functions useful in reliability analysis are 

failure rate average (fra) and conditional survival function(crf)  

The failure rate average  of X is given by 

 

x

0

h(x) dx
H(x)

FRA(x) =
x x



 , x > 0, (2.6) 

where H(x) is the cumulative hazard function. An analysis for 

FRA(x) on x permits to obtain the IFRA and DFRA classes.  

The survival function (s.f.) and the conditional survival of X 

are defined by 

   R(x)= 1 − F(x)       

and       

  
R (x + t)

R (x | t) = 
R(x)

  , t > 0, x > 0, R (·) > 0,  (2.7) 

respectively, where F(·) is the cdf of x. Similarly to h(x) and 

FRA(x), the distribution of x belongs to the new better than 

used (NBU), exponential, or new worse than used (NWU) 

classes, when R (x | t) <  R(x),  R(t | x) =  R(x), or R(x | t) > 

R(x), respectively. 

The R functions hra.expo.gumbel() and crf.expo.gumbel() 

given in [5]  can be used for the computation of failure rate 

average (fra) and conditional survival function(crf), 

respectively. 

2.7 The Quantile function 

The quantile function is given by 

 q
1

x log logq ; 0 q 1.
 

     
 




 (2.8) 

The computation of quantiles the R function qexpo.gumbel( ), 

given in  [5] . 

2.8 The random deviate generation function       

Let U be the uniform (0,1) random variable and F(.) a cdf for 

which F
-1

(.) exists. Then F
-1

(u) is a draw from distribution 

F(.) . Therefore, the random deviate can be generated from 

EG(,σ) by  

1
x log log(u) ;  0 u 1.

 
     

 
 (2.9)        (2.9) 

where  u has the U(0, 1) distribution. The R function 

rexpo.gumbel( ),  given in  [5] , generates the random deviate 

from EG(,σ). 

3. MLE (MAXIMUM LIKELIHOOD 

ESTIMATION) AND INFORMATION 

MATRIX 

For completeness purposes, in this section, we briefly discuss 

the maximum likelihood estimators (MLE’s) of the two-

parameter Exponentiated Gumbel model and discuss their 

asymptotic properties to obtain approximate confidence 

intervals based on MLE’s[6]. 

 

Fig 2. The hazard function of EG model for σ =1 

and different values of . 
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Let x=(x1, . . . , xn) be a random sample of size n from 

EG(,σ), then the log-likelihood function L(,σ) can be 

written as;   

n n
i i

i 1 i 1

x x
logL nlog n log exp

 

  
        

  
  

 
  (3.1) 

Therefore, to obtain the MLE’s of  and σ [7], we can 

maximize (3.1) directly with respect to  and σ or we can 

solve the following two non-linear equations using Newton-

Raphson method  

 
n

i

i 1

logL n x
exp



   
     

     
 

and, 

n n
i i

i2 2
i 1 i 1

logL n x x
x exp

 

     
         

     



   
 

 

3.1 Information Matrix and Asymptotic 

Confidence Intervals 

Let us denote the parameter vector by  ,     and the 

corresponding MLE of  as  ˆ ˆ ˆ,    then the asymptotic 

normality results in 

     1
2

ˆ N 0, I( )


      (3.2)  

where I() is the Fisher’s information matrix given by 

 

2 2

2

2 2

2

ln L ln L
E E

I( )

ln L ln L
E E

     
    

        
    

     
              

 (3.3) 

In practice, it is useless that the MLE has asymptotic variance 

 
1

I( )


 because we do not know .  Hence, we approximate 

the asymptotic variance by “plugging in” the estimated value 

of the parameters[8].  The common procedure is to use 

observed Fisher information matrix ˆO( )  (as an estimate of 

the information matrix I()) given by 

 

 

2 2

2

ˆ
2 2

2
ˆ ˆ( , )

ln L ln L

ˆO( ) H( )
ln L ln L



 

  
 

 
      

  
   

 (3.4) 

where H is the Hessian matrix,  ,    and  ˆ ˆ ˆ,    . The 

Newton-Raphson algorithm to maximize the likelihood 

produces the observed information matrix. Therefore, the 

variance-covariance matrix is given by 

 
1

ˆ

ˆ ˆ ˆVar( ) cov( , )
H( )

ˆ ˆ ˆcov( , ) Var( )





   
    

   
 (3.5) 

Hence, from the asymptotic normality of MLEs, approximate 

100(1-)% confidence intervals for  and  can be 

constructed as 

/ 2ˆ ˆz Var( )       and  / 2ˆ ˆ z Var( )   (3.3.6) 

 where z/2 is the upper percentile of standard normal variate. 

3.2 Computation of Maximum Likelihood 

Estimation 

We are using software reliability data set SYS2.DAT - 86 time-

between-failures [9] is considered for illustration of the 

proposed methodology. In this real data set, Time-between-

failures is converted to time to failures and scaled. 

The Exponentiated Gumbel model is used to fit this data set. 

We have started the iterative procedure by maximizing the 

log-likelihood function given in (3.1) directly with an initial 

guess for   = 1.15 and  = 130.0, for away from the solution. 

We have used optim( ) function in R with option Newton-

Raphson method[10]. The iterative process stopped only after 

24 iterations. We obtain ̂   4.056801, ̂   151.915039 and 

the corresponding log-likelihood value = -734.5816. The 

similar results are obtained using maxLik package available in 

R.  An estimate of variance-covariance matrix, using (3.4), is 

given by 

ˆ ˆ ˆvar( ) cov( , )   0.1599290     -0.3198579

ˆ ˆ ˆcov( , ) var( )  -0.3198579      9.4358089   

     
   

     
 

Thus using (3.5), we can construct the approximate 95% 

confidence intervals for the parameters of Exponentiated 

Gumbel model based on MLE’s. Table 1 shows the MLE’s 

with their standard errors and approximate 95% confidence 

intervals for  and . 

 

 

 

 

 

 

4. MODEL VALIDATION 

To study the goodness of fit of the EG model, we compute the 

Kolmogorov-Smirnov statistics between the empirical 

distribution function and the fitted distribution function when 

the parameters are obtained by method of maximum 

likelihood[11]. For this we have used the R function 

ks.expo.gumbel( ) given in [5]. The result of K-S test is D= 

0.0708 with the corresponding p-value = 0.634. Therefore, the 

high p-value clearly indicates that EG model can be used to 

analyze this data set.  

We plot the empirical distribution function and the fitted 

distribution function in Figure 3, which indicates reasonable 

match between the empirical distribution function and the 

fitted distribution function.  

 

 

 

Table 1.  Maximum likelihood estimate, standard error 

and 95% confidence interval 

Parameter 
MLE Std. Error 95% Confidence Interval 

alpha 
4.056801 0.39632 (3.2800138, 4.8335882) 

sigma 
151.9150 3.06992 (145.897995, 157.932082) 
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Therefore, from above result and Figure 3, it is clear that 

the estimated EG model provides excellent fit to the given 

data. 

The graphical methods widely used for checking whether a 

fitted model is in agreement with the data are Quantile-

Quantile(Q-Q) and Probability-Probability (P-P) plots in 

model validation. The corresponding R functions are 

qq.expo.gumbel( ) and pp.expo.gumbel( ) given in [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let F̂(x)  be an estimate of F(x) based on xl, x2,. . . , xn. 

The scatter plot of the points  

1
1:nF̂ (p )

  versus   xi : n   ,  i = 1 , 2, . . . ,n , is called a     

Q-Q plot. 

The Q-Q plot shows the estimated versus the observed 

quantiles. If the model fits the data well, the pattern of points 

on the Q-Q plot will exhibit a 45-degree straight line. As can 

be seen from the straight line pattern in Figure 4, the EG 

model fits the data very well. This is also supported by the 

Probability-Probability(P-P) plot in Figure 5. 

Let xl, x2,. . . , xn be a sample from a given population with 

estimated cdf F̂(x) . The scatter plot of the points 

1:nF̂(x ) versus   pi : n  ,  i = 1 , 2 , . . . , n, is called a P-P plot. If 

the model fits the data well, the graph will be close to the 45-

degree line[12]. Here we note that all the points in the P-P 

plot are inside the unit square [0, l] x [0, 1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen from Figure 4 and Figure 5 that the data do not 

deviate dramatically from the line. 

5. BAYESIAN ESTIMATION USING 

MARKOV CHAIN MONTE CARLO 

(MCMC) METHOD 

A Monte Carlo method is an algorithm that relies on repeated 

pseudo-random sampling for computation, and is therefore 

stochastic (as opposed to deterministic). Monte Carlo methods 

are often used for simulation. The union of Markov chains 

and Monte Carlo methods is called MCMC[13]. A Markov 

chain is a random process with a finite state-space and the 

Markov property, meaning that the next state depends only on 

the current state, not on the past[14]. 

The revival of Bayesian inference since the 1980s is due to 

MCMC algorithms and increased computing power. The most 

prevalent MCMC algorithms may be the simplest: random-

walk Metropolis and Gibbs sampling. The quality of the 

marginal samples usually improves with the number of 

iterations. In Bayesian inference, the target distribution of 

each Markov chain is usually a marginal posterior 

distribution, such as each parameter. Each Markov chain 

begins with an initial value and the algorithm iterates, 

attempting to maximize the logarithm of the unnormalized 

joint posterior distribution and eventually arriving at each 

target distribution. Each iteration is considered a state. 

The Gibbs algorithm starts by assuming some arbitrarily 

chosen initial values for the concerned variates and then 

generating the variate values from the various full 

conditionals in a cyclic order. That is, every time a variate 

value is generated from a full conditional, it is influenced by 

the most recent values of all other conditioning variables and, 

after each cycle of iteration, it is updated by sampling a new 

value from its full conditional. The entire generating scheme 

is repeated unless the generating chain achieves a systematic 

pattern of convergence. It can be shown that after a large 

number of iterations the generated variates can be regarded as 

 

Fig 3.     The graph of empirical distribution function and 

fitted distribution function. 

 

Fig 5.  Probability-Probability(P-P) plot using 

MLEs as estimate. 

 

Fig 4.    Quantile-Quantile(Q-Q) plot using MLEs as 

estimate. 
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the random samples from the corresponding posteriors. 

Readers are referred to Gamerman [13, 14] for details of the 

procedure and the related convergence diagnostic issues. 

The most widely used piece of software for applied Bayesian 

inference is the OpenBUGS[15]. The software offers a user-

interface, based on dialogue boxes and menu commands, 

through which the model may then be analyzed using Markov 

Chain Monte Carlo techniques. It is a fully extensible modular 

framework for constructing and analyzing Bayesian 

probability models for the existing probability models, [16, 

17]. As the EG model is not available in OpenBUGS, thus it 

requires incorporation of a module to estimate parameters of 

EG model. The Bayesian analysis of a probability model can 

be performed for the models defined in OpenBUGS. Recently, 

a number of probability models have been incorporated in 

OpenBUGS to facilitate the Bayesian analysis, [18]. The 

readers are referred to [2, 10-12] for implementation details of 

some models.  

A module, dexpo.gumbel(alpha, sigma), is written in 

component Pascal for EG model to perform full Bayesian 

analysis in OpenBUGS using the method described in Thomas 

[18], Lunn et al. [17] and Thomas et al. [16]. The module 

code can be obtained from the author. 

5.1 Bayesian Analysis under Uniform Priors 

The developed module is implemented to obtain the Bayes 

estimates of the EG model using MCMC method. The main 

function of the module is to generate MCMC sample from 

posterior distribution for non-informative set of priors, i.e. 

Uniform priors. 

It frequently happens that the experimenter knows in advance 

that the probable values of  lie over a finite range [a, b] but 

has no strong opinion about any subset of values over this 

range. In such a case a uniform distribution over [a, b] may be 

a good approximation of the prior distribution, its p.d.f. is 

given by 

1
          ; 0<a b

( ) b a

0                 ; otherwise


  

   



 

We run the two parallel chains for sufficiently large number 

of iterations, say 5000 the burn-in, until convergence results. 

Final posterior sample of size 7000 is taken by choosing 

thinning interval five i.e. every fifth outcome is stored. 

Therefore, we have the posterior sample {α1i ,λ1i}, i = 

1,…,7000 from chain 1 and {α2i ,λ2i}, i = 1,…,7000 from 

chain 2. 

The chain 1 is considered for convergence diagnostics plots. 

The visual summary is based on posterior sample obtained 

from chain 2 whereas the numerical summary is presented for 

both the chains. 

5.1.1 Convergence diagnostics 

Before examining the parameter estimates or performing other 

inference, it is a good idea to look at plots of the sequential 

(dependent) realizations of the parameter estimates and plots 

thereof. We have found that if the Markov chain is not mixing 

well or is not sampling from the stationary distribution, this is 

usually apparent in sequential plots of one or more 

realizations. The sequential plot of parameters is the plot that 

most often exhibits difficulties in the Markov chain. 

5.1.1.1 History(Trace) plot  

 

 

 

 

 

 

 

From the graph, we can conclude that the chain has converged 

as the plots show no long upward or downward trends, but 

look like a horizontal band. 

5.1.1.2 Autocorrelation plot  

 

 

 

 

 

 

 

5.1.2 Visual summary by using Kernel density 

estimates 

Histograms can provide insights on skewness, behaviour in 

the tails, presence of multi-modal behaviour, and data outliers; 

histograms can be compared to the fundamental shapes 

associated with standard analytic distributions. 

Histogram and kernel density estimate of  and  based on 

MCMC samples, vertical lines represent the corresponding 

MLE and Bayes estimate. 

 

 

 

 

 

 

 

 

 

 

Figure 8 and 9 provide the kernel density estimate of  and . 

The kernel density estimates have been drawn using R[19,20] 

with the assumption of Gaussian kernel and properly chosen 

values of the bandwidths. 

 

 

                      
Fig 6.    Sequential realization of the parameters  and  

Fig 7.    The autocorrelation plots for  and  

 

Fig 8.    Histogram and kernel density estimate of α  
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From the above Figure 8 and 9, It can be seen that  and  

both are symmetric. 

 

5.1.3 Numerical Summary 

In Table 2, we have considered various quantities of interest 

and their numerical values based on MCMC sample of 

posterior characteristics for Exponentiated Gumbel model 

under uniform priors. The numerical summary is based on 

final posterior sample (MCMC output) of 7000 samples for 

alpha and sigma.  

 {1i , σ1i},    i = 1,…,7000 from chain 1,  

and, 

 {2i 2i},  i = 1,…,7000 from chain 2. 

 

5.2 Bayesian Analysis under Gamma Priors 

The developed module is implemented to obtain the Bayes 

estimates of the Exponentiated Gumbel model using MCMC 

method to generate MCMC sample from posterior distribution 

for given set of gamma priors, which is most widely used prior 

distribution of  is the inverted gamma distribution with 

parameters a and b (>0) with p.d.f. given by            

(a 1) a /b
e ; 0 (a,b) 0

( ) (a)

0 ; otherwise


   


   

   



 

We also run the two parallel chains for sufficiently large 

number of iterations, say 5000 the burn-in, until convergence 

results. Final posterior sample of size 7000 is taken by 

choosing thinning interval five i.e. every fifth outcome is 

stored and same procedure is adopted for analysis as used in 

the case of uniform priors. 

5.2.1 Convergence diagnostics 

Simulation-based Bayesian inference requires using simulated 

draws to summarize the posterior distribution or calculate any 

relevant quantities of interest. We need to treat the simulation 

draws with care. The first step in making an inference from an 

MCMC analysis is to ensure that an equilibrium distribution 

has indeed been reached by the Markov chain, i.e., that the 

chain has converged. For each parameter, we started the chain 

at an arbitrary point (the initial value or init chosen for each 

parameter), and because successive draws are dependent on 

the previous values of each parameter, the actual values 

chosen for the inits will be noticeable for a while. Therefore, 

only after a while is the chain independent of the values with 

which it was started. These first draws ought to be discarded 

as a burn-in as they are unrepresentative of the equilibrium 

distribution of the Markov chain. 

5.2.1.1   Running Mean (Ergodic mean) Plot 

The convergence pattern can be studied by calculating the 

running mean which is the mean of all sampled values up to 

and including that at a given iteration. We thus generate a 

time series(Iteration number) graph of  the running mean for 

each parameter in the chain. The Ergodic mean plots for the 

parameters shown in figure 10 depict the convergence pattern. 

 

 

 

 

 

 

5.2.1.2    Brooks-Gelman-Rubin Diagnostic 

Evidence for convergence comes from the red line being close 

to 1 on the y-axis and from the blue and green lines being 

stable (horizontal) across the width of the plot. 

 

 

 

 

 

 

From the Figure 11, it is clear that convergence is achieved. 

Thus we can obtain the posterior summary statistics. 

 

Fig 9.   Histogram and kernel density estimate of   

 

 

Fig 10.    The Ergodic mean plots for alpha and 

sigma. 

 

Fig  11.    The BGR plots for alpha and sigma. 
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5.2.2   Visual summary by using Box plots 

The boxes represent inter-quartile ranges and the solid black 

line at the (approximate) centre of each box is the mean; the 

arms of each box extend to cover the central 95 per cent of the 

distribution - their ends correspond, therefore, to the 2.5% and 

97.5% quantiles. (Note that this representation differs 

somewhat from the traditional.) 

 

 

 

 

 

 

5.2.3   Numerical Summary 

In Table 3, we have considered various quantities of interest 

and their numerical values based on MCMC sample of 

posterior characteristics for EG model under Gamma priors. 

The Highest probability density (HPD) intervals are computed 

the algorithm described by Chen and Shao (1999) under the 

assumption of unimodal marginal posterior distribution 

 

6. COMPARISON WITH MLE UNDER 

UNIFORM PRIORS 

For the comparison with MLE, we have plotted two 

graphs. In Figure 13, the density functions ˆ ˆf(x; , )  using 

MLEs and Bayesian estimates, computed via MCMC samples 

under uniform priors, are plotted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

whereas, Fig.14 represents the Quantile-Quantile(Q-Q) plot of 

empirical quantiles and theoretical quantiles computed from 

MLE and Bayes estimates. 

Thus, It is clear from the above figures, the MLEs and the 

Bayes estimates with respect to the uniform priors are quite 

close and fit the data very well. 

7. COMPARISON WITH MLE UNDER 

GAMMA PRIORS 

For the comparison with MLE, we have plotted a graph which 

exhibits the estimated reliability function which is shown by 

dashed line using Bayes estimate under gamma priors and the 

empirical reliability function which is shown by solid line. It 

is clear from Fig.15, the MLEs and the Bayes estimates with 

respect to the gamma priors are quite close and fit the data 

very well. 

 

 

 

 

 

 

 

 

Fig  12.    The boxplots for alpha and sigma. 

 

Fig  13.     The density functions ˆ ˆf(x; , )  using 

MLEs and Bayesian estimates. 

 

Fig 14.  Q-Q plot of empirical quantiles and 

theoretical quantiles computed from 

MLE and Bayes estimates. 
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8.   CONCLUSION 

The ExponentiatedGumbel model with shape parameter  and 

scale parameter  has been discussed and estimate of its 

parameters obtained based on a complete sample by using the 

Markov chain Monte Carlo (MCMC) method. The MCMC 

method has proven more effective as compared   to the usual 

methods of estimation.  

Bayesian analysis under different set of priors has been 

carried in to OpenBUGS to study the convergence pattern. A 

numerical summary based on MCMC samples of posterior 

characteristic for Exponented Gumbel model has been worked 

out under non-informative and informative set of priors. A 

visual summary under different set of priors which include 

box plot, kernel density estimation and comparison with MLE 

has been also attempted and it has been found that the 

proposed methodology is suitable for empirical modeling and 

best suited for data set which is considered for illustration 

under uniform and gamma sets of priors. 
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