
International Journal of Computer Applications (0975 – 8887)

Volume 62– No.20, January 2013

7

Issues with Orphan Computations in Distributed

Computing Systems

Shamsudeen. E
Research Scholar,

Karpagam University, Coimbatore, India

ABSTRACT
In distributed systems, the orphan computations [1] [2] make

problems like data inconsistency and wastage of computer

resources’ usage time. The inconsistency [3][4] of data is a big

concern among the users of the distributed systems. Here in

this paper, the issues of orphans have been discussed and a case

study that we face in our day to day life. The case study actually

reveals how a common man gets affected by an orphan

computation. The orphan may occur due to abort process,

failure node or a failure of communication link between the

client and server which participate in the RPC [5][6][7][8]. It is

also discussed the situation of deadlock which is caused by

orphan computations. The deadlock [9] [10] [11] situation

actually locks the resources of the system by unwanted

processes and hence affects the overall system throughput.

Keywords
Remote procedure call, orphan computations, nested

transactions, abort orphans, crash orphan, data inconsistency,

deadlock, etc.

1. INTRODUCTION
The orphan process in distributed systems makes problems like

inconsistency of data and wasting of valuable resources’ usage

time just because of the orphan processes continue to compute

at the server site, where the requests of clients are fulfilled, and

its results are no longer needed. In the distributed systems the

communication is made by remote procedure call mechanism.

Here a client process which needs service from the server

process sends a request to the server and results of the request is

sent by the server after computing client’s request. In the mean

time if the client which made the request fails by any means

like abort process[12] or node failure[13] or even

communication link between client and server fails, then the

server without knowing these failures at the client site continue

to operate on the request and try to send back the result. This

type of situations frequently happens in the distributed systems.

The inconsistency of the data due to orphan processes may

affect very badly to the customers who believes that the

distributed systems are highly reliable. For example, how the

inconsistency in a bank transaction- which have been discussed

in our case study- affects a common man. Many situations we

come across in our day to day life like a railway ticket booking

or while reserving an air line ticket through internet. In latter

cases, before getting the ticket to the customer the client

processes fail and the result is that an incomplete transaction as

far as the customer is concerned. But, as far as the system is

concerned, the transaction is a completed one because of the

orphan computation where the orphan is not killed properly

when it is born.

V. Sundaram, PhD.
Former Director, MCA,

Karpagam College of Engg.,
Coimbatore, India

 i.e., the orphan computation should not be allowed to run in the

system. It can be accomplished by simply killing the orphan

immediately after their birth. Or we can say that, when a node

fails or abort process happens or whenever a link fail happens

between the client and server, all the process corresponding to

the request made by that particular process should be rolled

back. We put forward a mechanism to handle these situations

in our previous paper ‘time stamp based global log [14] [15]

and monitor approach to handles orphans in distributed

systems’.

 2. HOW ORPHAN PROCESSES ARE

BORN?
In distributed systems failures may happen to both processes

and communication channels. Failures to processes are

discussed here. They are,

2.1. Failure of node
The node of a distributed system may fail; eventually the all

processes running on that node also fail. The processes which

have been initiated by the processes of the failed node at other

ends by executing remote procedure calls continue to run

without knowing the fact that its parent process is no more at

the requesting end.

2.2. Abort processes
When a parent process is aborted, but the processes running to

fulfill the request made by the abort processes before being

aborted continue to compute at server end and its results are

unwanted because no parent is waiting for its result.

In the above two scenarios the result is orphans, a process

continue to run and its results are no longer needed either

because of parent process aborted or the parent process

crashed. The former one is called abort-orphan and the latter

one is called crash-orphan. It has depicted in the figures 1(a) to

1(c).

Fig.1 (a). The process P1 sends a request to server S1

P1

S1

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.20, January 2013

8

Fig.1(b).While server S1 computes the result the client P1

crash or abort of parent process happens

Fig.1(c). After computation, the server sends back the

result, but no client is to receive the result

Here P1 is the client process which requests a service from the

server S1. The client and server may be on the same system or

in the different systems. In Fig.1(c), the process P1 is shown

with dotted lines and fade color indicates that the client is down

while the result is being communicated. That is the result of an

orphan process is no longer needed by any one. In all the above

cases, there is no client waiting for the result from the server.

These types of data transactions make the data in an

inconsistent state.

3. PROBLEMS WITH ORPHAN

PROCESSES

3.1. Wastage of computer resources
Orphans cause two undesirable problems. First, they waste

resources- the orphan process is active without knowing the

parent process is no more there at the requesting end. The

resources held by the orphan processes are remain locked and

even it may lead to the problem of deadlock for a period of time

as shown in the figures 2(a) & 2(b) below. Here no preemption

happens until the orphan computation completes or the orphan

process is killed.

Fig.2(a). Deadlock by no preemption of CPU

In Fig.2(a)., CPU is held by the orphan process P1 and the

process P2 is waiting for the CPU. Unfortunately, the CPU can

be allocated to P2 only after execution of P1 or after deliberate

killing of process P1.

Fig.2(b). Deadlock situation by locked Database

Whereas in Fig.2 (b)., the database is locked by the orphan

process P1 and the process P2 wants a lock on the same. The

lock cannot be granted for P2 because P1 is having a lock with

database. So, a deadlock occurs till completion of the execution

of P1. Forced preemption can be possible only by killing the

orphan process P1 and hence all the resources held by P1 can be

freed.

The resources locked by the orphan computations not only the

CPU but may also be the memory, databases etc. More

importantly the valuable CPU time to compute the unwanted

computation of the orphan process is wasted. So, the orphan

processes slow down the entire performance of the distributed

systems.

3.2. Data inconsistency
As it has been discussed above, the orphan process leaves data

in an inconsistent state. Data inconsistency exists when

different and conflicting versions of the same data appear in

different places of the system. Data inconsistency creates

unreliable information, because it will be difficult to determine

which version of the data is correct.

Consider a situation where two data variables (Figure 3), A and

B are accessed from the database by two different

computations, say X and Y, which are initiated by two different

processes. After the initiation of the request X, its parent

process is crashed and the computation X becomes an orphan

and continue to execute and makes changes in the values of A

and B. After some time, as shown in the fig. 3, the computation

Y starts and it reads the value of A and does its calculations. In

the meanwhile the transaction Y is a successful one and it has

read the value of A which has jut updated by the computation

X. But, being an orphan process, the transaction X should be

rolled back. Now the value of A becomes an inconsistent one.

Again, the computation Y works with the old value of A and

subsequent transactions should produce unexpected and

unwanted results. See, what a disastrous situation made by a

single orphan!

Suppose a situation where the computation X makes another

RPC to get a service from any other server and the server itself

again makes another request to any other server and hence a

chain of transactions or we say nested transactions. Then, after

all these chain of requests the transaction X becomes an orphan

and the situation becomes more vulgar. It is concluded that the

inconsistency made by an orphan process is exponential!

The only solution is to kill the orphan immediately after their

birth. Not make any wait to kill them!

P1

CPU

P2

P1

DATABASE

P2

P1
S1

P1

S1

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.20, January 2013

9

Computation X

Read (A)

A: =A-100

Write (A) Read (B)

 Computation Y

B: = B+A Read (A)

Write (B) A: = A+100

 Write (A)

Fig.3. Two parallel computations X and Y and X becomes

an orphan during its execution

4. PROBLEM WITH BANKING

TRANSACTION: A CASE STUDY OF

ORPHAN COMPUTATIONS IN

DISTRIBUTED SYSTEMS.
All of us are well aware of our banking transaction system in

our country. It is a good example of distributed computing

system. Here the databases are distributed and users are getting

real feeling of single system. Here consider a scenario where

you are using the ATM machine to withdraw some money from

your valuable savings bank account. While you are about to

collect the money from the ATM machine, the machine fails

due to any problems like network failure or any technical

failure and you do not able to get the money back. The result

here is that the amount you needed to withdraw has already

been deducted from the account and the same time you haven’t

received the money. This type of situation might have been

faced by us in our day to day life. To get back our money back

into our account we have to manually inform the corresponding

bank branch where we have the account. It is the real problem

of orphan computation. See, this type situation-deducting the

amount from account without receiving the same at the user

end- can be avoided by implementing a correct orphan detection

and killing mechanism in the system. If someone is there to

look over the entire scenario and to see whether the entire

transaction is completed or not? If it is not completed the

transaction, it should be rolled back and avoid going back the

user to the branch to get credited the account back.

It is put forward a scenario where the orphan processes are the

villains. Here the orphan process not only made inconvenience

to the customer but it wasted the valuable time of the server by

computing an uncompleted transaction and also wasted the

associated resources like memory, database, CPU etc.

5. CONCLUSION
It is concluded that the orphans in distributed systems are not a

desirable one at all. Moreover, it makes many disastrous

situations in our common man’s life as we have seen in our case

study. Interestingly, the common man only blames the ATM

machine or banking system or the computer itself as they never

know the orphan computation is behind in this game.

It is also discussed that how orphan processes are making

problems with computer resources like CPU, databases etc. and

how they lead to deadlock situations in the system. Eventually,

as we have seen, the orphan processes slowdowns the

performance of the computer. So, the orphan computations

should be detected and killed whenever they are born. Never

make any wait to kill them.

6. REFERENCES
[1]. Randy Chow, Theodore Johnson, Distributed Operating

Systems and Algorithm Analysis, Pearson Education,

India, 2009

[2]. Andrew S. Tenenbaum, “Distributed Systems-Principles

and Paradigms”, Prentice-Hall, 2003.

[3]. Maurice Herlihy, Nancy Lynch, Michael Merritt, William

Weihl, On the Correctness of Orphan Management

Algorithms, Journal of the Association for Computing

Machinery, Vol 39, No.4, October 1992 pp 881-930.

[4]. Maurice P. Herlihy, Martin S. Mckendry, “ Timestamp-

Based Orphan Elimination”, IEEE transaction on Software

Engineering, Vol. 15, No.7, 1990

[5]. Fabio Panzieri, Santosh K. Shrivastava, “A Remote

Procedure Call Mechanism Supporting Orphan Detection

and Killing” Proc. IEEE Transaction on Software

Engineering, Vol. 14, No. 1, 1988.

[6]. Pradeep K. Sinha, “Distributed Operating Systems:

Concepts and Design Prentice Hall India, 2008.

[7]. Tanenbaum, A.S., Distributed Operating Systems,

Pearson Education, India,1995

[8]. A.D. Birrell and B.J. Nelson, “Implementing remote

procedure calls”, ACM Trans. Comput. Syst., Vol. 2. no.1,

pp. 39-59, Feb 1984.

[9]. Kai Hwang, Advanced Computer Architecture:

Parallelism, Scalability, Programmability, McGraw Hill

International Edition.

[10]. Ramez Elmasri, shamkant D Navathe, Fundamentals of

Database Management Systems, 5th Edition, Pearson

Educations, New Delhi.

[11]. Bipin C. Desai, An Introduction to Database Systems,

Galgotia Publications Pvt. Ltd, New Delhi, 2000.

[12]. Valerie Issarny, Gilles Muller, and Isabelle Puaut.

“Efficient Treatment of Failures in RPC Systems”.

Proc.13th Symposium on Reliable Distributed Systems,

pp. 170-180. IEEE Comp. Society Press, 1994.

[13]. Maurice Herlihy, Nancy Lynch, Michael Merritt, and

William Weihl. On the correctness of orphan elimination

algorithms. In Proceedings of the 17th Annual IEEE

Symposium on Fault- Tolerant Computing, July 1987.

[14]. Shamsudeen. E, V. Sundaram, An Approach for Orphan

Detection, International journal of computer applications,

Vol.10.No.5, 2010.pp28-29.

[15]. Shamsudeen. E, V. Sundaram, Time Stamp Based Global

log and monitor approach to handle orphans in distributed

systems, international journal of computer science and

network security, Vol 11 No.8, 2011, pp 123-125.

time

