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ABSTRACT 

In this paper, we study the Hyers-Ulam-Rassias stability of 

the quadratic functional equations 

(3 ) ( ) 16 ( )f x y f x y f x     for the mapping f from 

orthogonal linear space in to Banach space. Furthermore, we 

establish the asymptotic behavior of the above quadratic 

functional equation. The main result has been supported by 

well constructed example. 
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1. INTRODUCTION 

In 1940, a famous talk presented by Stanislaw M. Ulam [20], 

triggered the study of stability problem for various functional 

equations. Ulam presented a number of important unsolved 

problems. One of the interesting problem in the theory of non-

linear analysis concerning the stability of homomorphism was 

as follows:  

Let 1G be a group and let 2G be a metric group with the 

metric (.,.)d . Given 0  , does there exist a 0  such that 

if a mapping 1 2:h G G
 

satisfies the inequality

( ( ), ( ) ( ))d h xy h x h y  , for all 1,x y G , then there is a 

homomorphism 1 2:H G G  with ( ( ), ( ))d h x H x  , for all 

1x G ? If the answer is affirmative, we would say that 

equation of homomorphism ( ) ( ) ( )H xy H x H y is stable.  

In 1941, D. H. Hyers [2] was the first mathematician to 

present the result concerning the stability of functional 

equations on Banach spaces. This result of Hyers [2] is stated 

as follows: Let :f X Y satisfies

( ) ( ) ( )f x y f x f y     for all x, yX and   0. Then 

there exists a unique additive mapping :T X Y such that

( ) ( )f x T x   , for all xX. The generalized version of D. 

H. Hyers [2] result was given by famous Greece 

mathematician Th. M. Rassias [23] in 1978, where 

:f X Y
 

satisfies the inequality 

( ) ( ) ( ) ( )
p p

f x y f x f y x y     for all ,x y X , 

for some 0  and 0 1p  . The stability paper [24] given 

by Th. M. Rassias has significantly influenced in the 

development of stability of functional equations and hence 

named as Hyers-Ulam-Rassias stability of functional 

equations. Further, in 1994, P. Gavruta [16] provided a further 

generalization in which he replaced the bound ( )
p p

x y 

by a general function ( , )x y for the existence of unique linear 

mapping. During the last decades several stability results have 

been introduced by many famous mathematicians one may 

also refer to [4, 15, 18, 22]. 

In 1975, the orthogonally additive functional equation

( ) ( ) ( )f x y f x f y   , x y , where  is the orthogonality 

symbol was investigated by S. Gudder and D. Strawther [21]. 

Later on, Ger and Sikorska [19] established the orthogonal 

stability of above additive functional equation
 
in the sense of 

J. Ratz [8] for the mapping :f X Y , where X is orthogonal 

linear space and Y is a Banach space. This result was also 

generalized by M.S. Moslehian [10] in the framework of 

Banach modules.  

The orthogonally quadratic functional equation

( ) ( ) 2 ( ) 2 ( )f x y f x y f x f y     , where  x y  and 

means the Hilbert space orthogonality was first investigated 

by F. Vajzovic [5]. Later on, the result of Vajzovic [5] was 

generalized by F. Drljevic [3], M. Fochi [12] and Gy. Szabo 

[7]. For further detailed study of stability of orthogonal 

functional equations one may also refer to [9, 11, 13, 14]. The 

functional equation  

( ( , )) (3 ) ( ) 16 ( )D f x y f x y f x y f x    
  

(1.1) 

is called as quadratic functional equation. In 2008, W. 

Towanlong and P. Nakmahachalasiant [25] established the 

general solution and proved the Hyers-Ulam-Rassias stability 

of the quadratic functional equation (1.1). In this paper, we 

investigate the orthogonal stability of the quadratic functional 

equation (1.1). Furthermore, the results have been supported 

by a well constructed example.  

There are several orthogonality concepts on a arbitrary real 

normed space given by many famous mathematicians such as 

G. Birkhoff [6], R. C. James [17], C. R. Diminnie [1], Gy. 

Szabo [7], J. Ratz [8] etc. Here, we recall the orthogonality in 

the sense of J. Ratz [8]. In 1985, J. Ratz presented the 

following definition of orthogonality: 

Definition 1.1. [8] Suppose X is a real vector space with 

dim≥2 and  is a binary relation on X with the following 

properties. 

(O1) totality of  for zero: 0x  , 0 x for all x X .   

(O2) independence: if , {0}x y X  , x y , then x, y are  

       linearly independent. 
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(O3) homogeneity: if ,x y X , x y , then x y  for 

       ,   . 

(O4) the Thalesian property: if P is a 2- dimensional subspace 

of  

       X, x P  and   , then there exists 0y P  such that  

       0x y  and 0 0x y x y     

The pair ( , )X  is called an orthogonality space. By an 

orthogonality space we mean an orthogonality space equipped 

with a norm. The relation  is called symmetric if x y  and 

y x  for all ,x y X . 

Definition 1.2. Let X be an orthogonality normed space and Y 

be a real Banach space. A mapping :f X Y is said to 

orthogonally quadratic if it satisfies the so-called orthogonally 

quadratic functional equation (1.1) for all ,x y X with 

x y . 

2. MAIN RESULTS  

Throughout, this section, let ( , )X  denotes an orthogonality 

normed space with norm .
X

 and ( , . )
Y

Y is a Banach 

space. 

Theorem 2.1. Let   and ( 2)p p  be non-negative real 

numbers. Suppose that :f X Y is a quadratic mapping 

satisfying the inequality 

( ( , )) ( )
p p

Y X X
D f x y x y   (2.1) 

for all ,x y X with x y . Then, there exists a unique 

orthogonally quadratic mapping :Q X Y  such that  

 
2

( ) ( )
2(3 3 )

p

pY X
f x Q x x


 


 (2.2) 

for all x X . 

 

Proof. To prove this theorem we have to show the following 

steps: 

(i) 2{ (3 ) / 3 }n nf x  is a Cauchy sequence for every 

fixed x X such that 0x  . 

(ii) There exists a quadratic mapping :Q X Y

defined by  

2( ) lim { (3 ) / 3 }n n

n
Q x f x




 

. 

(iii) The mapping :Q X Y satisfies  

2
( ) ( )

2(3 3 )

p

pY X
f x Q x x


 


 for 2p  . 

(iv) The mapping :Q X Y is unique. 

To prove (i) let us take y = 0 in (2.1) , we obtain  

2 (3 ) 2 ( ) 16 ( ) ( 0 )
p p

Y X X
f x f x f x x     

2 (3 ) 18 ( ) ( )
p

Y X
f x f x x   

2 2

(3 )
( )

3 2.3

p

X
Y

f x
f x x


       (2.3) 

for all ,x y X  with 0x  . Now, replacing x with 3x and 

dividing by 23  in (2.3) and then adding the resulting equation 

with (2.3), we obtain 

2

4 2 2

(3 ) 3
( ) 1

3 2.3 3

p
p

X

Y

f x
f x x

  
   

 
 

    

(2.4) 

By using induction on n, we get  

1

2 2 2
0

(3 ) 3
( )

3 2.3 3

nn pk
p

n k X
kY

f x
f x x






        (2.5) 

for all ,x y X  with 0x   and 1n  . To establish that 

2{ (3 ) / 3 }n nf x  is a Cauchy sequence. Replacing x with 3m x

and dividing by 23 m in (2.5) we obtain for , 0n m  . 

1 ( )

2 2 2 2 2 2
0

(3 ) (3 ) 3

3 3 2.3 3

nn m m p k m
p

n m m k m X
kY

f x f x
x


 

 


    

1

2 2 2 2 2
0

1 (3 ) 3
(3 )

3 3 2.3 .3 3

nn m pk
pm

m n m pm k X
kY

f x
f x x







  
 

(2.6) 

As we know for 2p   the right hand side of (2.6) tends to 

zero as m  for all x X . Thus, the sequence 

2{ (3 ) / 3 }n nf x is convergent in Y. Since Y is complete normed 

space, whence the sequence 2{ (3 ) / 3 }n nf x  is a Cauchy 

sequence for every x X . Then, there exists a orthogonally 

quadratic mapping :Q X Y such that 

2( ) lim { (3 ) / 3 }n n

n
Q x f x


  for all x X .   (2.7) 

(ii) Now, we claim that the mapping :Q X Y is quadratic 

that is it satisfies the equation (1.1).  Substituting 3n x and 

3n y at place of x and y in (2.1) respectively and dividing by 

23 n , we obtain 

2 2

( (3 ,3 ))
( 3 3 )

3 3

n m p p
n n

n n X X
Y

D f x y
x y


    (2.8) 

Taking n in (2.8), we have 

 (3 ) ( ) 16 ( ) 0
Y

Q x y Q x y Q x      

 (3 ) ( ) 16 ( )Q x y Q x y Q x     

for all ,x y X  with x y . Which shows that the mapping 

:Q X Y is orthogonally quadratic mapping. 

(iii) By making n in the equation (2.5) we obtain as 

follows 



International Journal of Computer Applications (0975 – 8887)  

Volume 62– No.18, January 2013 

44 

2
( ) ( )

2(3 3 )

p

pY X
f x Q x x


 


 for all x X . 

(iv) Now, to prove the uniqueness of orthogonally quadratic 

mapping :Q X Y . We consider another orthogonally 

quadratic mapping ' :Q X Y satisfying the equation 

(1.1). Hence,  

 

'

2

1
( ) '( ) { (3 ) (3 ) (3 ) (3 ) }

3

n n n n

nY Y Y
Q x Q x Q x f x f x Q x    

             
2 (2 )(3 3 )3

p

p n p X
x







 

0  as n  

for all x X . Which implies that ( ) '( )Q x Q x , that means 

the orthogonally quadratic mapping Q is unique. This 

completes the proof of theorem.  

Theorem 2.2. Let   and ( 2)p p  be non-negative real 

numbers. Suppose that :f X Y is a quadratic mapping 

satisfying the inequality (2.1) for all ,x y X with x y . 

Then, there exists a unique orthogonally quadratic mapping 

:Q X Y  such that  

2
( ) ( )

2(3 3 )

p

pY X
f x Q x x


 


  

for all x X .      (2.9) 

Proof. Replacing x with x/3 and multiplying by 23  in (2.3), 

we obtain as follows 

2( ) 3 ( ) .
3 2 3

p

Y X

x x
f x f


     

  

2( ) 3 ( )
3 2.3

p

p X
Y

x
f x f x


 

                 

(2.10) 

for all x X  with 0x  . Again replacing x with x/3 and 

multiplying by 23 in (2.10) and then summing the resulting 

equation with (2.10), we obtain 

2
4

2

3
( ) 3 ( ) 1

3 2.3 3

p

p p X
Y

x
f x f x

  
   

 
 

 (2.11) 

By using induction on n, we obtain  

1 2
2

0

3
( ) 3 ( )

3 2.3 3

n k
pn

n p kp X
Y k

x
f x f x






    (2.12) 

2

0

3

2.3 3

k
p

p kp X
k

x






   

for all x X  with 0x   and 1n  . Now, to prove the 

convergence of 2{ (3 ) / 3 }n nf x  replacing x with / 3mx and 

multiplying by 23 m in (2.12) we obtain for , 0n m  .

2
2 2 2

( 2) ( 1)
0

3
3 ( ) 3 ( )

3 3 2.3 3

k
pm n m

m n m m p p k X
Y k

x x
f f x






  


   
     (2.13) 

for 2p   the right hand side of (2.13) tends to zero as 

m  for all x X . Thus, the sequence 2{3 ( / 3 )}n nf x is 

convergent in Y. Since Y is complete normed space, whence 

the sequence 2{3 ( / 3 )}n nf x  is a Cauchy sequence for every

x X . Then, there exists a orthogonally quadratic mapping 

:Q X Y such that 

2( ) lim {3 ( / 3 )}n n

n
Q x f x


  for all x X . (2.14) 

By making n in the equation (2.13) and using (2.14), we 

obtain the required result (2.9). 

Further, to prove that the orthogonal quadratic mapping is 

unique the proof is similar to that of Theorem 2.1.  

Remark 2.3. In Theorem 2.1 and Theorem 2.2 the parameter 

p is assumed to take all values except p = 2. If p = 2 then the 

theorem are not longer valid. The following example shows 

that the orthogonally functional equation (2.1) has no stable 

solution at p = 2. 

Example 2.4. Let   be the mapping from  into itself 

defined by 

 
2

1
( )

x if x
x

otherwise






 



                    (2.15) 

for some 0  . Also, let :f  be a function defined as  

 
2

0

(3 )
( )

3

n

n

n

x
f x






  for all x       (2.16) 

Then, f  satisfies the inequality  

 
2 2

( ( , )) ( )D f x y x y              (2.17) 

for all ,x y . But there does not exists any quadratic 

mapping :Q   satisfying  

2
( ) ( )f x Q x x   for all x  (2.18) 

Solution. From (2.15) and (2.16), we obtain  

 
2

0

9
( )

83 n
n

f x








   for all x  

which implies that the function f is bounded. First we prove 

that the function f satisfies the inequality (2.17) under the 

condition of (2.15). Let us consider
2 2 2

0 1x y x y     . Then for a positive number

k , we have 

 
2 2

2 2( 1)

1 1

3 3k k
x y


    for all ,x y  

which implies that 13 1k x  , 13 1k y  , 13 ( ) 1k x y   , 

13 ( ) 1k x y   , 13 ( 3 ) 1k x y   , 13 ( 3 ) 1k x y    for all 

{0,1,2,..., 1}n  , whence 
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2 2 2
1

2

0

3 (3 ) 3 ( ) 16 3
( ( , ))

3

n n nk

n

n

x y x y x
D f x y

  



   


 

     
2

(3 (3 )) (3 ( )) 16 (3 )

3

n n n

n
n k

x y x y x  



   
  

      
20

9n

n k







  

Hence f satisfies inequality (2.17) for all ,x y  with the 

condition
2 2

1x y  , Further, let
2 2

1x y  , then  

 
( ( , ))D f x y 

2
0

(3 (3 )) (3 ( )) 16 (3 )

3

n n n

n
n

x y x y x  



   



      

0

20

9n

n








2 2

5 ( )x y   

Hence, to prove the required result let us consider an 

orthogonally quadratic mapping :Q   and a constant 

number 0   such that 

2
( ) ( )f x Q x x   for all x . 

Since, f is bounded, Q is also bounded on any open interval 

containing the origin zero. So, Q has the form 
2

( )Q x c x  

for all x , and c is constant. Therefore, we have 

2 2
( )f x c x x   

2
( ) ( )f x c x   for all x . 

Also for I  this implies c    and also for x  

implies 1(0,1/ 3 )x  , then, 0 3 1n x   for all 

{0,1,2,..., 1}n  . That implies  

1

2 2

0 0

(3 ) (3 )
( )

3 3

n n

n n

n n

x x
f x

 
 

 

    

     

21 2

2

0

3

3

n

n

n

x




  

     
2 2

( )x c x     

Which implies that orthogonally quadratic mapping 

:Q   not satisfies the inequality (2.18), that is, the 

given orthogonally quadratic functional equation is not stable 

at p = 2. Which is a contradiction. 

3. CONCLUSION 

First we proved the Hyers-Ulam-Rassias stability of the 

quadratic functional equations (1.1) for the mapping f from 

orthogonal linear space in to Banach space. Furthermore, we 

established an example showing that at p = 2 the results are 

not longer valid. 
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