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ABSTRACT 

A Wireless Sensor Network (WSN) is an increasingly 

important mechanism for enabling continuous monitoring and 

sensing of physical variables like temperature, humidity etc. 

The tiny sensor nodes are powered by low capacity batteries. 

As the WSNs are usually deployed in remote areas, battery 

replacement becomes difficult. To minimize the power 

consumption in WSN, the data compression schemes play a 

vital role. If applied appropriately, these data compression 

schemes can result in drastic increase in the lifetime of the 

network. In this paper, we present a scheme called Induced 

Redundancy based Lossy Data Compression Algorithm, (IR-

LDCA), which is best suited for WSNs that sense data with 

higher correlation. Our algorithm induces certain amount of 

redundancy into the data set to achieve more effective data 

compression and also gives the user a flexibility to control the 

compression ratio and loss of data. Simulation results prove 

the effectiveness of the proposed scheme over the existing 

ones.  
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1. INTRODUCTION 
A Wireless Sensor Network (WSN) [1] comprises of several 

sensor nodes communicating with each other to perform a 

common task i.e., to transfer the sensed data to the base-

station. In WSN, one of the nodes is designated as the base-

station that connects the WSN with the outside world. Each 

sensor node predominantly consists of a processor, sensor and 

a radio communication module powered by a battery. The 

sensor node makes use of radio communication module for 

transmitting data to the base-station (possibly via other 

intermediate nodes). The radio communication module is a 

dominant consumer of energy. Hence, efficient management 

of battery power is desired in the design of any WSN. The 

replacement or recharge of batteries is impossible as their 

deployment is in remote geographic locations, and sometimes 

with extreme weather conditions. Thus, it is desirable to 

reduce the consumption of energy in order to enhance the 

lifetime of the network. It is desirable to incorporate energy 

efficient schemes in various operations of the WSN like- 

storage, data transmission, computations etc. Some of the 

important techniques that are adopted for achieving energy 

efficiency are- duty cycling [2], aggregation [3], and in-

network processing [4]. Duty cycling is a scheme, according 

to which a sensor node switches between active and sleep 

modes. During the active mode, it will be sensing, computing  

or transmitting data. This scheme switches the sensor to sleep 

mode when there is no sensing or transmission activity in the 

network. As the node is shut down temporarily, the node 

would be operating in power saving mode with minimal 

consumption. This ensures optimal power utilization in the 

network. The aggregation scheme in WSN is the one where 

every intermediate node performs combination of data 

received from other nodes (intending to send data to base-

station), and transmit the combined data towards the base-

station, so as to derive fewer data items than what it has 

received, to be forwarded to the next node on the way to the 

base-station. The aggregation may involve functions such as 

min, max, average, count, and sum. The duplicate suppression 

involves forwarding distinct data items, while discarding the 

duplicate ones. This results in fewer data items for 

transmission. The other aggregate functions mentioned above, 

when applied on the data stream will always result in single 

value. Thus, this scheme results in reduced power 

consumption during data routing due to reduced number of 

packets. The in-network processing scheme is to reduce the 

quantity of data transmitted, by applying data compression 

schemes [5]. Since the proposed work in this paper is closely 

related to data compression, the in-network processing 

scheme is elaborated in the following paragraph.  

The correlation is the amount of association between two or 

more continuous variables. The sensor nodes are deployed 

densely in the area of interest for satisfactory coverage. This 

dense deployment results in multiple sensor nodes employed 

for sensing single event. The spatially dense sensor nodes 

capture highly correlated data. The degree of correlation 

increases with decrease in inter-node separation distance. 

Some of the WSN applications such as environment 

monitoring systems may require sensor nodes to continuously 

sense and transmit the sensed data in fixed time interval. 

Hence, the data in such applications mostly exhibit temporal 

correlation [6]. Temporal correlation is the function that exists 

between the data in the present moment and the data in the 

next moment. To reduce the data transmission activity, the 

data compression schemes are applied at node level. There has 

been significant amount of work on data compression for 

sensor networks. Many algorithms exploit the natural 

correlation existing in the sensor data. The data compression 

schemes can be broadly classified into two categories: lossless 

compression and lossy compression. Most of them use 

Huffman coding [7] to map symbols to their equivalent bit 

representations, so that symbols that occur frequently have a 

smaller representation than those occur rarely. With lossless 

compression, original sampling data can be perfectly restored 
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at the receiving end i.e., without any loss in the precision of 

the data. But this hinders achieving higher compression ratios. 

With lossy compression, some degree of information loss, 

presented in terms of RMS error (Root Mean Square error), is 

present. In order to achieve higher compression ratio, the 

lossy compression scheme exploits the redundancy in sensor 

data. Thus, for WSN applications which doesn’t require high 

precision, lossy compression techniques are more preferable. 

In this paper, a new lossy compression scheme called as 

Induced Redundancy based Lossy Data Compression 

Algorithm (IR-LDCA) is proposed to compress the data under 

transmission in the network. The proposed algorithm provides 

means to control the compression ratio and loss of data after 

compression. The performance evaluation experiments 

conducted for comparing the effectiveness of the proposed IR-

LDCA against the existing lossy data compression scheme K-

RLE [8] have shown promising results.  

The rest of the paper is organized as follows. The related work 

is discussed in Section 2, and the proposed scheme with 

algorithms and illustrations is described in Section 3. Section 

4 shows the simulation setup and experimental results. 

Finally, the conclusion is presented in Section 5. 

  

2. RELATED WORK 
There has been a significant amount of work done on data 

compression in WSN. As mentioned in Section 1, data 

compression schemes employed in WSN can be classified into 

two. The first one being the lossless data compression and the 

second is the lossy data compression technique. In this paper a 

lossy data compression scheme optimized for WSN data is 

proposed. 

 

2.1 Lossless Data Compression schemes 
The Lossless algorithms, as the name indicates compresses 

data without any loss of data. Hence, applications requiring 

higher precision adopt these schemes. It is obvious that higher 

compression ratios cannot be achieved with higher precision. 

The Modified Adaptive Huffman coding algorithm [9] is a 

lossless data compression algorithm. The algorithm uses a tree 

approach with leaves representing sets of symbols with the 

same frequency. The number of levels in the tree is reduced to 

enhance the performance of the scheme and bringing the 

maximum possible elements to the top of the tree. This 

algorithm uses the above mentioned tree to assign a smaller 

bit sequence representation to the symbols with higher 

frequencies and similarly a larger bit sequence for the 

symbols with lower frequencies.  The compression ratio of 

this algorithm is significantly less. Further, this algorithm is 

beneficial only in case of highly correlated data. 

The LZW [5] is a lossless dictionary based algorithm that 

builds its dictionary as the data is read in from the input 

stream. S-LZW (LZW for Sensor nodes) splits the 

uncompressed input bit stream into fixed size blocks and then 

compresses each block independently. For each new block the 

dictionary used in the compression is re-initialized by using 

the 256 codes which represent the standard character set. 

The Run-Length Encoding (RLE) [10] is a basic lossless 

compression algorithm. The simple idea behind this algorithm 

is to replace the repeated consecutive occurrences of the same 

data with a single value pair. For example, if a data item d 

occurs n consecutive times in the input stream, it replaces the 

n occurrences with the single pair nd. The main problem with 

this algorithm is its low compression ratios since two values 

having decimal representation may be close but not exactly 

equal. 

2.1 Lossy Data Compression schemes 
Here, we give a briefing on the lossy data compression 

schemes for WSN. In contrast to lossless compression, lossy 

compression schemes exhibit higher compression ratios with 

certain amount of loss of precision. 
The work in [11] describes a lossy compression algorithm 

which is known as Light-weight Temporal Compression 

(LTC) scheme for WSN. The algorithm exploits the fact that 

the captured readings for microclimate data, in a small 

window of time, are linear in nature. It identifies such 

windows and generates a series of line segments that 

accurately represent the data. This scheme performs 

compression by introducing error bounded by a control knob, 

which is in the order of the error specified on the hardware. 

This algorithm attempts to represent a long sequence of 

similar data with a single symbol. It is effective on a data set 

which is largely continuous and changes in readings are 

infrequent. Thus, the results of LTC show that it performs 

better on the data related to temperature than on humidity or 

wind speed. This shows that the compression ratio in LTC is 

highly dependent on the nature of the data. The LTC 

algorithm is designed for mica motes with 8-bit processor, 

which has no hardware to handle floating point values. This 

limits the applications of LTC to compression of integer data 

only. 

The work in [8] describes K-RLE, a lossy compression 

algorithm. K-RLE is a variant of RLE algorithm. It shows 

increased compression ratios compared to RLE, but with 

certain amount of error (data loss). The performance of this 

algorithm depends on the choice of the value of the parameter 

K which represents the precision. This algorithm emphasizes 

on processing the data locally at node level. In this, if a data 

item d or a data item between d+K and d-K occurs for n 

consecutive times then the occurrences are replaced by a 

single pair nd. If K=0, then K-RLE is RLE. This K value 

makes the K-RLE lossy compression algorithm, leaving RLE 

a lossless algorithm. The choice of K also influences the 

percentage of data and the extent to which it is modified by 

this algorithm. 

2.2 Drawbacks of K-RLE Algorithm 
The main drawback of K-RLE is that the compression ratios 

depend on the data sources. The user chooses the K value 

depending on the compression ratio desired. Generally 

mathematical parameters like Standard deviation and Allen 

deviation are used. K-RLE can achieve higher compression 

ratios at the cost of data precision when K increases. Thus, the 

value of K provides an indication about the data loss resulting 

from the process. In K-RLE, one can see that compression 

ratios fall down as the precision requirements are high. This 

limits K-RLE from adoption by applications which require 

high precision. Hence, there is an obvious requirement for a 

better lossy compression algorithm in WSN, which can result 

in higher compression ratio with minimal or little higher loss 

depending on the constraints. 

In this paper, a new lossy data compression algorithm called 

IR-LDCA is proposed to achieve better compression ratios at 

minimal loss. The detailed description of the proposed scheme 

is given in the following Section. 
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3. PROPOSAL 
In this Section, a sophisticated lossy data compression 

algorithm (IR-LDCA) is proposed using which one can 

achieve higher compression ratios at reduced data loss. 

The algorithm is based on the following important 

assumptions about the data sensed/transmitted in the WSN. 

First, it is assumed that the sensed data has a reasonable 

amount of correlation. Secondly, a series of sensed data in the 

form of readings will have to be sent to the base-station by a 

node at a specified time frequency in batch mode. Lastly, it is 

also assumed that the sensor hardware should support storage 

and processing of floating point data. 

3.1 Induced Redundancy based Lossy Data 

Compression Algorithm (IR-LDCA) 
In the proposed scheme, a data set at a node is considered, 

which represents temperature and pressure data at regular time 

intervals. These sensor data readings which are floating point 

values exhibit certain degree of correlation. The consecutive 

readings exhibit commonality. Sometimes, they are found to 

be redundant as well. First, the commonality in the readings 

obtained is explored and next the redundancy is eliminated. 

Let A be the array of temperature values collected by a sensor 

node over a period of time. The first phase of the algorithm is 

to identify the commonality in fractional part of two 

consecutive sensor readings. The maximum value (Max (A)) 

and minimum value (Min (A)) in A is calculated, and the 

minimum value from the maximum to obtain the difference 

factor-d   is subtracted. 

d=Max (A)-Min (A). (1) 

The common part can be calculated by taking the value from 

any element in A till two place values greater than the place 

having the most significant non-zero value in d. This common 

part is subtracted from every data item of A. This gives the 

modified list A. Now, the new representation for the element 

of A at index position ‘i’ is computed as- 

A[i] = A[i]- common part. (2) 

The values in A are shifted by n places, where n is calculated 

as: if (Max (A) >1), then n is the place value of the most 

significant non-zero number in Max (A), if (Max (A) < 1), 

then n is the number of zeroes before the most significant 

non-zero place in Max (A). 

By doing this, every value in A is converted to a new 

representation in the form 0.xyz..., wherein the value of x in 

Max (A) is greater than 0. Now the value of the variable delta 

(Δ) is computed using the formula in equation (3). Here, Δ 

gives the maximum error that can be encountered in any 

element of A. 

In the equation (3), if Max (A) <1, then n is - (n+1) and the ‘c’ 

can be any value between 0 and 2. The variable ‘c’ acts as a 

control knob for controlling the compression ratio and error. 

Now we convert the set of values in A to their corresponding 

integer representations, which are calculated using the 

formula in equation (4). 

  
                                    

               
(3) 

        
        

 
   (4) 

The above explained process in phase one, encodes the 

floating point data value into their equivalent integer 

representation, which performs initial compression. The 

modified values in A are now ready and can be made into 

packets. In the second phase of the algorithm, the data are 

combined and the redundancy is eliminated for achieving 

further compression. 

Let z be the minimum bits required to represent the Max (A). 

For example, the binary representation of 8 is1000; here the 

minimum number of bits required to represent 8 is 4, this 

implies z=4. The procedure given below performs the second 

phase of data compression. 

3.1.1 Procedure Combine (A) 
Begin 

int i, count=1; 

From i=1 to length (A)-1 

While A[i] = A [i++] & i < length 

Increment Count 

End 

For j= 1 to Count/4 

Put binary 1 (logical 1) into the binary file. 

End 

For j= 1 to Count  %4 

Put the binary equivalent of A[i] calculated upto 

z+1 bit into the file (if needed, do sign extension). 

End 

End 

                If   i ≠ length (A) 

Put the binary equivalent of A[i] calculated upto 

z+1 bit into the file (if needed, do sign extension). 

End 

End Procedure 

In the above Procedure Combine(A), we place the z+1 bit 

binary representations into a file combining every 4m-1 

(where m is any integer greater than 0) consecutive 

occurrences of any number k by m single bit 1s. 

4. SIMULATION RESULTS 
The algorithm is simulated for evaluating its performance. 

This section gives details about the simulation setup and the 

series of experiments conducted to prove the effectiveness of 

the proposed IR-LDCA. 

4.1 Simulation Environment  
The IR-LDCA is implemented on our custom built simulator. 

The data compression process of the proposed algorithm is 

incorporated in a simulated sensor node, which has been 

developed using JAVA. To make comparisons the K-RLE 

algorithm described in Section 2.2  is also implemented. Since 

the algorithm works on the data collected at individual nodes 

the transmission of data between the nodes is not considered. 

Hence, the usual parameters of a WSN like- topology, 

transmission range etc., will not come into picture. 

4.2 Evaluation of IR-LDCA 
To evaluate our IR-LDCA, we have conducted a series of 

experiments on the sample data set obtained from Intel 

Berkeley Research lab [12]. The sample data set comprises of 
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data about temperature and pressure. As the performance of 

data compression algorithms is assessed based on their 

compression ratio and error percentage (which indicates the 

degree of lost tests were conducted on IR-LDCA and K-RLE , 

for similar performance metrics. The data set contained a log 

of 1305 values for each physical quantity. The compression 

ratio is computed as shown in equation (5), given below. 

                         
               

            
  (5) 

The Root Mean Square (RMS) error is computed as shown in 

equation (6), given below. 

            
        

  
   

  
 (6) 

In IR-LDCA, the value of control knob c (used in equation 

(3)) can be altered to get the corresponding compression ratio 

for each parameter (temperature, pressure). In the graph 

shown in Fig.1 the compression ratios for various values of c 

have been indicated for both pressure and temperature 

quantities. The compression ratio depends on the value of c. 

The x-axis of the graph shown in Fig. 1 represents the variable 

values for the control knob c and the y-axis represents the 

compression ratio obtained. The value of the compression 

ratio for temperature decreases gradually from 95.4% to 45% 

and the pressure decreases from 85.8% to 45.4%, as the value 

of c changes from 0 to 2. The line graph thus obtained shows 

a gradual change in compression ratio as the value of c 

changes. This is because- as the value of c increases, the value 

of delta decreases and this results in lowering of the 

compression ratio. It is observed that, most of the times, the 

change in compression ratios for both temperature and 

pressure show similar behavior (both of them either increase 

or decrease), between any pair of values for c. This is due to 

the fact that the data samples are not mutually correlated. 

.

 

Figure.1: Compression ratios achieved for varying values 

of c for temperature and pressure 

 

 Figure.2: RMS error percentage for varying values of c 

for temperature. 

 

 Figure.3: RMS error percentage achieved for varying 

values of c for temperature and pressure. 

The RMS error percentage (RMS error*100) for varying value 

of c, for temperature and pressure, are plotted in Fig. 2. and 

Fig 3. respectively. In both the graphs, c is plotted on the x-

axis and the y-axis represents the error percentage obtained. 

The value of the error percentage for temperature decreases 

gradually from 7.75% to 0.072% in Fig. 2, as value of c 

changes from 0 to 2. In Fig. 3, the graph shows decrease in the 

error percentage for pressure from 6.95% to 0.0684%. The 

line graph thus obtained shows a gradual change in error 

percentage when the value of c changes. This is because, as 

the value of c increases, the value of delta decreases resulting 

in decreased error percentage. 

4.3 Comparison between IR-LDCA and K-

RLE 
To establish the effectiveness of the proposed IR-LDCA over 

the existing K-RLE algorithm, the K-RLE scheme is also 

implemented and tested for its performance on the same 

simulation platform. The comparison parameters are 

compression ratio and error percentage. First,experiments are 

conducted to compare the compression ratio of the two 
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algorithms. In order to make a comparison between K-RLE 

and the proposed IR-LDCA, the value of K is considered as 

the standard deviation of the data sample and c corresponding 

to their respective highest compression ratios. Next, the RMS 

error as a percentage of range of the values in the data set is 

obtained to compare the loss generated up on the application 

of the two algorithms. 

 

Figure.4. Compression ratios achieved in K-RLE and IR-

LDCA for temperature and pressure. 

The compression ratio obtained for K-RLE is 99.7% and 

99.4% for temperature and pressure respectively. In case of 

IR-LDCA, it is 96.2% and 85.8% for both parameters. The 

compression ratios given here for IR-LDCA are 

corresponding to the minimum value of c.  

 

Figure.5.  RMS error percentage in K-RLE and IR-LDCA 

for temperature and pressure. 

The error percentage obtained for K-RLE is 17.2% and 20.5% 

for temperature and pressure respectively. In case of IR-

LDCA, it is 7.75% and 6.95% for both temperature and 

pressure respectively. The results obtained reveal the fact that 

the improvement in the compression ratio in IR-LDCA 

against that of the K-RLE is nominal, but IR-LDCA shows a 

drastic reduction in RMS error percentage, when compared to 

that of K-RLE. Reducing the value of ‘c’ below 0 can yield 

greater compression ratios at the cost of higher losses which 

in comparison to that of K-RLE is less. Also, the fact that in 

the algorithm the user has the chance of controlling ‘c’ and 

hence, controlling the value of compression ratio and error 

percentage. Whereas in K-RLE the value of K is taken to be 

the Standard or  Allan deviation of the data set, giving it less 

opportunity to control the error.   This proves the advantage of 

our IR-LDCA over the existing K-RLE algorithm making it 

more flexible compared to the existing algorithm. 

5. CONCLUSION 
In this paper, a new lossy data compression algorithm, IR-

LDCA for WSNs is proposed to achieve energy efficiency in 

transmission. The proposed algorithm, effectively exploits the 

natural correlation that exists in sensor data. The objective of 

the work was to exploit the commonality existing in the 

continuous data stream and also to eliminate redundancy. This 

property was exploited by inducing redundancy in the data set 

by converting them to their integer representation using 

equation (4). This lossy data compression scheme allows the 

user to control the compression ratio desired and the data loss 

during the compression facilitating higher compression ratios 

with minimum loss of data. Also, the algorithm performs in a 

more flexible and optimized manner than the existing K-RLE 

algorithm with respect to the RMS error (data loss). This 

proposed scheme reduces the volume of data for transmission 

at a sensor node (with minimal loss). Thus, resulting in 

reduced energy consumption and enhanced lifetime of the 

network. 
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