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ABSTRACT 

The joint linear complexity and k - error joint linear 

complexity of an m fold 2n periodic multisequence can be 

efficiently computed using Modified Games Chan algorithm 

and Extended Stamp Martin Algorithm respectively. In this 

paper we derived an algorithm for finding the joint linear 

complexity of n2.3 periodic binary multisequence with the 

help of Modified Games Chan algorithm. Here we derived the 

minimum value of k for which k-error joint linear complexity 

is strictly less than the joint linear complexity of binary m fold 

multisequences of period 2n and an algorithm which, given a 

constant c and an  m  fold  2n periodic binary multisequence S, 

computes the minimum number k of errors and the associated 

error multisequence needed over a period of S for bringing the 

joint linear complexity of S below c . 
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1. INTRODUCTION 
Complexity measures for keystream sequences over finite 

fields, such as the linear complexity and the k-error linear 

complexity, is of great relevance to cryptology, in particular, 

to the area of stream ciphers.  The immense majority of 

proposed keystream generators are based on the use of linear 

feedback shift registers (LFSR). The length of the shortest 

LFSR which generates the given sequence is known as the 

linear complexity of the sequence. A necessary requirement 

for unpredictability of keystream sequence is long period, 

which can be attained by large linear complexity. Recent 

developments in stream ciphers point towards an interest in 

word based stream ciphers which require the study of 

complexity theory of multisequences i.e., of parallel streams 

of finitely many sequences, and of their complexity properties 

([3],[4],[11]). A cryptographically strong sequence should not 

only have a large linear complexity, but also changing a few 

terms should not cause any significant decrease of the linear 

complexity. This unfavorable property leads to the concept of 

k-error linear complexity [11]. Recently many authors studied 

various properties of k-error linear complexity of single and 

multisequences ([2],[4],[5],[8],[9],[10],[11],[13],[14],16],[18] 

and [19]). In [17] Stamp and Martin presented an efficient 

algorithm for finding the k-error linear complexity of N 

periodic binary sequences, where 0,2  N               

for Nk 0  in linear time, which was a generalization of 

the Games Chan algorithm [3] which computes the linear 

complexity of 
2 periodic binary sequences in linear time. 

Further Lauder-Paterson algorithm [8] was generalized to 

compute the k-error linear complexity spectrum of sequences 

over  qF  with period 
2  in [6]. In [1], Anna Salagean 

developed an algorithm which, given a constant c and a binary 

sequence with period  
2 , computes the minimum number k 

of errors needed over a period for bringing the linear 

complexity of the sequence to below the value c. 

In [19] a survey of existing algorithms for finding the linear 

complexity and k-error linear complexity of N periodic 

sequences over a finite field qF  were given. Algorithms for 

finding Joint linear complexity and error joint linear 

complexity of m fold pv periodic (p prime) sequences over 

GF(pm) were also discussed in [18] 

2. MULTISEQUENCES 
Multisequences are parallel streams of finitely many single 

sequences. Let ),...,,( )()2()1( mSSSS   denote an m fold 

N periodic multisequence consisting of m parallel sequences 

S(1), S(2), ..., S(m) each of period N over a finite field qF  where                

q = pn, p prime.  

3. Joint Linear complexity 
Consider an m fold N periodic multisequence 

),...,,( )()2()1( mSSSS  over
qF . Then the  joint linear 

complexity of S denoted  by JLC(S) is defined as the least 

order of a linear recurrence relation over qF that S(1), S(2), …, 

S(m) satisfy simultaneously. The polynomial of minimal degree 

which generates a given multisequence is called its minimal 

connection polynomial. This polynomial generates each 

sequence of the multisequence ([15]). 

3.1 Theorem 1 ([15]) 
The necessary and sufficient condition for the polynomial 

C(D) to be the minimal connection polynomial of the given N 

periodic m  fold multisequence ),...,,( )()2()1( mSSSS 

over qF where ),,...,,( )(

1

)(

1

)(

0

)( h

N

hhh sssS  h =1,2, …, m                                                              

are the following 

(i) ,)1)(()()()( N

i

i DDPDCDS   

i = 1,2, …, m. 

(ii) deg Pi(D) < deg C(D), i = 1, 2, ..., m 

(iii) gcd ( P1(D), P2(D), ..., Pm(D), C(D)) = 1  

3.2 Corollary 1 
Let ),..,,( )()2()1( mSSSS  where ),..,,( )(

1

)(

1

)(

0

)( h

N

hhh sssS 

for h =1,2, …,m  be an m fold N periodic multisequence over
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qF . Then its minimal connection polynomial is given by                          

                              

)1),(,...),(),(gcd(

1
)(

)()2()1( Nm

N

DDSDSDS

D
DC




 . 

Then the joint linear complexity of the given multisequence is 

given by([19])    

                           

))1),(),...,(

),(deg(gcd()(

)()2(

)1(

Nm DDSDS

DSNSJLC




 

3.3 An algorithm for computing the joint 

linear complexity of m fold 
2.3  periodic 

multisequence ([17])  

In order to reduce the computations for finding the joint linear 

complexity of m fold 2.3 periodic binary multisequences, we 

are reducing it into m fold 2  periodic multisequences and 

applying the Modified Games Chan algorithm on them in a 

particular way. For that we modify an algorithm due to Meidl 

[12] derived for single sequences of period  2.3  to  the case 

of m fold multisequences of period 2.3  

3.3.1 Algorithm 1 

Consider an m fold N = 
2.3  periodic multisequence   

  ),...,,( )()2(1 mSSSS   where ),...,,( )(

1

)(

1

)(

0

)( h

N

hhh sssS 

, h = 1, 2, …, m. For i = 0, 1, 2 let                                                 

             ),...,,( ),(

1

),(

1

),(

0

]3,[ ih

N

ihihh

i sssS   

where  








otherwise

itocongruentnotispifs
s

h

pih

p
0

)3(mod)(

),(                 

for h = 1, 2, …, m,  p = 0 , 1, …,  N – 1 

Build m fold 
2 periodic multisequences as follows.     

          
  ),...,,( )()2(1 mAAAA     

where ),...,,( )(

12

)(

1

)(

0

)( hhhh aaaA


                                              

with )(

2*2

)(

2

)()( h

p

h

p

h

p

h

p sssa  
  for h = 1 , 2, …, m           

and p = 0 , 1, …, 
2 - 1  

for i = 0,1,2 compute  

                ),...,,( ],[

12

],[

1

],[

0

]3,[ ihihihh

i aaaA


    

where  
),(

2*2

),(

2

),(],[ ih

p

ih

p

ih

p

ih

p sssa  
  for h = 1,2,…,m  

and   p = 0, 1, …, 
2 - 1. 

Then 

))(),(max(

))(),(max()()(

]3,[

0

]3,[

2

]3,[

0

]3,[

1

hh

hh

AJLCAJLC

AJLCAJLCAJLCSJLC 
 

It is possible to reduce the calculation of the joint linear 

complexity of un periodic sequence over a finite field mp
F to 

the calculation of the joint linear complexities of u 

multisequences over mp
F  of period n under the condition 

that u divides 1mp and gcd (n, 1mp ) = 1. These 

conditions guarantee that there exist exactly u distinct uth roots 

of unity x0 = 1, x1, …, xu – 1 in   ),...,,( )()2(1 mSSSS   and 

we can find unique 
mpi Fb  such that 

1...,,1,0,,  uixb i

n

i
. Following proposition is a 

generalization of a result in [5].  

3.3.2 Proposition 1 

Suppose p, m, u , n, x0, … , xu-1 , b0, … , bu – 1  are given as 

above. Let 
  ),...,,( )()2(1 mSSSS   be a multisequence 

over 
mp

F  where ),...,,( )(

1

)(

1

)(

0

)( h

N

hhh sssS   , for h = 1, 2, 

… , m and i = 0, 1, … , u – 1 and  let  

),...,,( ),(

1

),(

1

),(

0

],[ ih

n

ihihuh

i sssS   for h = 1, 2, … , m  be the n 

periodic sequence with kth term 
knu

i

h

knu

kn

i

h

kn

k

i

h

k

ih

k bsbsbss 





  )1()(

)1(

)()(),( ...  for 

10  nk . Then the joint linear complexity of S is given 

by 

          

)(

...)()()(

],[

1

],[

1

],[

0

uh

u

uhuh

SJLC

SJLCSJLCSJLC




. 

From this we can observe that this proposition can be utilized 

for finding the joint linear complexity of a un periodic 

multisequence over a finite field qF  if u does not divide              

q – 1. In practice we want to obtain all binary component 

multisequences directly from the 2.3  periodic binary m fold 

multisequence. The smallest integer such that 3|2m – 1 is             

m = 2. We will get 
2

210 ,1   bandbb . Since                  

b0 = 1 the multisequence ],[

0

uhS  is binary. Rest of the proof 

follows from that for the single sequence case as the results 

used there can be extended directly to the multisequence case. 

Time complexity of this algorithm is )(mNO   where m is the 

number of sequence in the given multisequence and 2N .  

4. k-error joint linear complexity 

Let   ),...,,( )()2(1 mSSSS   and   ),...,,( )()2(1 mTTTT    be 

two m fold multisequence over 
qF   of the same length. A 

term in S is defined to be a term of mjS j 1,)( .  Then the 

term distance between S and T denoted by ),( TST is defined 

as the number of terms in S that are different from the 

corresponding terms in T( [19]). 

4.1 Definition 1 

Let S be an m fold N periodic multisequence over qF . For an 

integer k with mNk 0 , the k error joint linear complexity 

of S is defined to be the smallest possible joint linear 

complexity obtained by changing k or fewer terms of S in its 

first period of length N and then continuing the changes 

periodically with period N. In other words 

)(min)(, TLSL
T

kN  where the minimum is taken over all m 

fold N periodic multisequences T over qF  with term distance

kTST ),( . 
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We can also define the error joint linear complexity of 

periodic multisequences in terms of error sequence as follows 

4.2 Definition 2 

Let ),...,,( )()2()1( meeee  denote an m fold binary 

multisequence of period N = 2n where

),...,,( )(

1

)(

1

)(

0

)( i

N

iii eeee  , i = 1, 2 , …. , m.  Then                   

k  error joint linear complexity of an     m  fold N periodic 

binary multisequence S is  

 )(min)(
)(

, )(
eSJLCSL

i
i

H kEW
kN 



, 

mimNkkkNk
i

ii ,...,2,1,0,,0    

4.3 Definition 3 

Define kmin(S) as the minimum value of k such that  

mNkSJLCSL kN  0),()(,
. 

4.4 Remark 1 

We know that [7] 

              

.)0)1(,2))()1((

2))1((

)(

)(





fxfxW

andxW

tWt

tWt

H

H

 

Let S be an m fold N = 2n periodic binary multisequence. 

Then  

             
tm

NNN

xxSxS

xSxxSx

)1())(...),(

),(,1gcd())(,1gcd(

)()2(

)1(




  

for some integer t. 

 Then   JLC(S) = N – t ………….(1) 

Also  
zNNN xxexSx )1())()(,1gcd(    for 

some integer z.  

Then   

             zNSJLC  )(  ……….(2) 

So   )(min)(
)(

, )(



SJLCSL

i
i

H kEW
kN

    

                       = )(min
)( )(

zN
i

i
H kEW




= zN
i

i
H kEW 


)( )(

max             

                                                    ……(3) 

From equations (1) and (3), we can conclude that 

)()(, SJLCSL kN  if and only if there exist an m fold                

N = 2n   periodic error multisequence e  such that z > t.  

4.5 Theorem 2 

)()( SJLCeSJLC   if and only if 
tN xxe )1()( 

 (x) where  (x) = (g1(x), g2(x), … , gm(x)) and  (1) ≠ 0. 

Proof: It is equivalent to show that z > t if and only if 

tN xxe )1()(    (x), (1) ≠ 0 where z is such that 

)( eSJLC  = N – z and t is such that JLC(S) = N – t . 

Suppose 
cN xxe )1()(    (x) and  SN(x) = (1-x)t (x) 

where  (1) ≠ 0 

Let c > t.  We have  

)()( xexS NN  = (1-x)t (x)+ (1-x)c  (x)  

                              = (1-x)t (x) where  (1) ≠ 0.                                                       

So JLC(S) = N – t which implies z = t. Similarly when c > t 

we get z < t. 

When c = t we get )()( xexS NN  = (1-x)t [ (x)+  (x)]. 

Case 1: When (1) + (1) = 0,  we get                 

)()( xexS NN  = (1-x)t+1 (x),  (1) ≠ 0. 

 Then   JLC(S) = N – (t+1) which shows z = t+1 > t.  

Case  2:  When   (1)+  (1) ≠ 0,  we get  JLC(S) = N – t , 

which shows z = t. 

4.6 Theorem 3 

 If N = 2n , then 
))((

min 2)(
SJLCNWHSk


 . 

Proof:  

From Theorem 2 we get  

          )(min Sk  min {W [(1-x)t  (x)],  (1) ≠ 0}  

where W [(1-x)t  (x)] = min { W [(1-x)t gi (x)], i = 1,2,….     

N –1. Then by extending the concept used in remark to the 

multisequence polynomial case, we get   
))((

min 2)(
SJLCNWHSk


 . 

4.7 Remark 2 
In [19] it is given that for an m fold 1, npn  periodic 

multisequence S over qF ,  where p is an odd prime for which 

q is a primitive root modulo p2 and if for a unique integer r, 

nr 1   with  1)()1(   rnrn pSLpp , then 

1

min )(  rpSk and )()( 1

, 1 SJLCpSL rn

pp rn  


.  

In the next section we are applying Extended Stamp Martin 

Algorithm for multisequences of period 2n so that given a 

constant c the proposed algorithm gives out the minimum 

number of errors needed so that the joint linear complexity of 

the given multisequence will be at least c.  

4.8 An  Algorithm for computing an 

error multisequence e of minimum cost 

such that ceSJLC  )( ([17]) 
Ana Salagean [1] derived an algorithm for computing an error 

sequence e of minimum cost for a binary sequence of period 

2n such that ceSLC  )( . Here we derive an extension of 

above algorithm to the case of multisequences. Given an             

m fold  binary multisequence of period 2n and a given 

constant c, this algorithm computes the minimum number k of 

errors needed  so that the  joint linear complexity of given 

multisequence is less than or equal to c and the corresponding 

error multisequence. For this purpose we suitably modified 

the Extended Stamp Martin algorithm derived in [15]. 

Consider an m fold l = 2n periodic multisequence 
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                    ),...,,( )()2()1( mSSSS   

 where ),...,,( )(

1

)(

1

)(

0

)( h

N

hhh sssS   , h = 1, 2, … , m. 

First we are initializing l = 2n, 0,0  kc  , cost [i][j] = 1, 

flag [i][p] = 0, error[i][p][k]  for  i = 1, 2, …,m ,   j = 0 , 1, …,  

l – 1,  p = 0, 1, ... , n – 1and 12...,,1,0  pnk . 

For  j = 0 , 1, ..., n – 1 do the following 

Let l = l/2 and for p = 0 ,1, ..., l – 1  compute b = L(S)  R(S) 

= (b(1) , b(2) , … , b(m)) where  
)(

1

)(

1

)(

0

)( ,....,, h

l

hhh bbbb    and 

)()()( h

lp

h

p

h

p ssb     and 

 







m

k

l

p

lpktpktpkbT
1

1

0

])][[cos],][[min(cos]][[  

 If T = 0 or clc  , then Tkk   

     flag [k][j] = 1 for k = 1 to m 

         for k = 1,2,...,m 

 for i = 0, 1, ...,l – 1   

     If b[k][i] = 1 , then 

       If cost [k][i] ≤ cost[k][i + l] 

          
)()( k

li

k

i ss  ,                                                 

                        cost[k][i] = cost[k][i + l] – cost [k][i] ,  

                         error [k][j][i] = 1 

                     else 

                         
)()( k

i

k

i ss  ,  

                          cost [k][i] = cost [k][i] – cost [k][i+l], 

                          error [k][j][i + l] = 1 

                   else   

           lcc   

                        for k = 1, 2, ...,m 

               for i = 0, 1, ..., l – 1   

                   
)()( i

k

k

i bs    

                    If cost [k][i] ≤ cost [k][i + l ]  ,                        

                                      then error[k][j][i] = 1 

                    else cost [k][i] = cost [k][i + l ] ,       

                                  error[k][j][i + l] = 1 

for i = 1, 2, ...., m let  e[i][0] = 0 

for i = 1, 2, ..., m 

If  1)(

0 is  and  clc  ,then    

          1]0][[,]0][[cos  ieitkk , 

else e[i][0]  = 0  

for k = 0,1, …,m – 1, let  p = 1; 

  for  j = n – 1, n – 2  ,..,0 ,let p = p * 2; 

    for i = p/2, p/2+1,..., p – 2, let e[k][i] = e[k][i-1]; 

      if flag[k][j] =1 

         for i = 0 to p – 1, e[k][i] = e[k][i] + error[k][j][i] 

      else 

         for i = 0 to p – 1,e [k][i] = e [k][i]*error[k][j][i]. 

We prove this algorithm using the principle of mathematical 

induction on n. We can easily see that the cost vector values 

cost[i][j] is updated at any step so that this value reflects the 

cost of changes in the original multisequence S in order to 

change the current element s[i][j] without disturbing the 

results of the previous steps.  

We are going to show that the quantity k   computed by the 

above algorithm is minimal such that ctSLC nk



)cos,(

2,
. 

When n = 0, the result is obvious. Now suppose that the result 

is true for n – 1. Consider the first execution of the main for 

loop, when j = 0. Here the cost [i][j] vector calculates the 

“cost"---in terms of the number of bit changes required in the 

original sequence S---of changing the current element of the 

sequence without disturbing the results of any previous steps. 

We denote by S(0) and cost(0) the values of S and cost at the 

beginning of the first run of the  for loop, and by S(1) and 

cost(1) their values at the end of the first run. The value T 

represents the minimal cost of making changes in the current 

sequence S(0) such as to make its left half multisequence 

equal to the right half. The condition “if            T = 0 or

clc  ” will decide whether we make these changes or 

not.  If T = 0, we obviously should make these changes, as 

they decrease the complexity of the multisequence at no cost. 

If clc   it means S(0) has to be changed so that it has 

period 2n-1 or less. So we have to force the left half to be equal 

to the right half. Now we are left with the case when T > 0 but 

2n-1 < c. Not doing changes in this case will mean that we add 
12 n

 to the current value c of the complexity and then 

process the sequences S(1) = b, effectively computing the 

value k  as the minimal quantity such that
1

2,
2))1(cos),1((1






n

k
ctSLC n

. By the induction 

hypothesis, this algorithm computes k   correctly. Note that T 

is exactly the minimum cost of changing all entries of S(1) = b 

to 0. Hence Tk  . That is not doing changes at this step is 

guaranteed to lead to a final cost no greater than the cost of 

doing changes at this step, while still keeping the complexity 

below the target c. The correctness of the computation of the 

error multisequence follows directly from the correctness 

proof as in the single sequence case. This algorithm has the 

time complexity )(mNO , where m is the number of sequence 

in the given multisequence and N = 2n.  

5. Conclusion 
In this paper we derived algorithms for finding the complexity 

measures of binary multisequences of different period lengths 

with the help of Modified Games Chan Algorithm and 

Extended Stamp Martin Algorithm. Above algorithms for 2n 

periodic multi sequences can also be further extended to the 

case of pn periodic multisequences. 
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