
International Journal of Computer Applications (0975 – 8887)  

Volume 62– No.15, January 2013 

21 

Bagged SVM Classifier for Software Fault Prediction 

Shanthini. A 
Research scholar, 

Department of Computer 
Science and Engineering, 

Annamalai University, 
Annamalai nagar,  
Tamil Nadu, India 

 

Vinodhini.G 
Assistant professor, 

Department of Computer 
Science and Engineering, 

Annamalai University,  
Annamalai nagar , 
Tamil Nadu, India 

Chandrasekaran.RM 
Professor, 

Department of Computer 
Science and Engineering, 

Annamalai University, 
Annamalai nagar,  
Tamil Nadu, India 

 

ABSTRACT 

Defective modules in the software pose considerable risk by 

decreasing customer satisfaction and by increasing the 

development and maintenance costs. Therefore, in software 

development life cycle, it is essential to predict defective 

modules in the early stage so as to improve software 

developers’ ability to identify the defect-prone modules and 

focus quality assurance activities. Many researchers focused 

on classification algorithm for predicting the software defect. 

On the other hand, classifiers ensemble can effectively 

improve classification performance when compared with a 

single classifier. This paper mainly addresses using ensemble 

approach of Support Vector Machine (SVM) for fault 

prediction. Ensemble classifier was examined for Eclipse 

Package level dataset and NASA KC1 dataset. From the 

research, it is clear that proposed ensemble of Support Vector 

Machine is superior to individual approach for software fault 

prediction in terms of classification rate through Root Mean 

Square Error Rate (RMSE), Area Under ROC Curve (AUC- 

ROC) and Area Under Precision and Recall curve (AUC-PR). 
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1. INTRODUCTION 

Faults and failures in software are costly factors. They 

account for a significant amount of any project budget. This 

cost cannot be removed completely as methods are needed to 

ensure the quality of the software. The costs for fault handling 

should be possible to decrease considerably by introducing 

and improving methods for early fault identification. Thus, 

fault prediction can be used for process improvement and 

hence cost reduction. Based on the above reasoning, it is clear 

that methods are needed to predict, control and improve fault 

handling in general [6]. Thus, methods for identification of 

fault-and failure prone modules and models for fault 

prediction are a potential way to improve software quality and 

to reduce cost. Effective fault prediction methods on defect 

prone modules can help developers to focus quality on 

assurance activities and thus improve software quality by 

using resources more efficiently. The fault prediction methods 

often use metrics obtained from source code. The metrics 

includes size, coupling, cohesion, inheritance, and complexity 

metrics which have been associated with risk factors, such as 

defects and changes [7][10]. 

Data Mining has become a very powerful technique to reduce 

information overload and improve decision making by 

extracting and refining useful knowledge from extensive 

dataset through a process of searching for relationships and 

patterns. In recent years data mining techniques have been 

successfully used in software fault prediction. There are many 

data mining methods used to predict the faults in the modules 

[4] [8] [9] [6]. The primary objective of this paper is to show 

that ensemble of Support Vector Machine is superior to 

individual machine learning approach. The rest of this paper is 

organized as follows. Subsequent sections describe related 

work. The 3rd section is for the data source. The 4th section 

present details about metrics and machine learning approaches 

used. Performance evaluation is discussed in the 5th section. 

Conclusions are given in the 6th section. 

2. REVIEW OF RELATED LITERATURE 

Considerable research has been performed on software 

metrics and defect prediction models. Catal et al. [3] 

examined Chidamber-Kemerer metrics suite and some 

method-level metrics (the McCabe’s and Halstead’s ones) for 

a defect model which is based on Artificial Immune 

Recognition System (AIRS) algorithm. The authors 

investigated together 84 metrics from the method-level 

metrics transformation and 10 metrics from the class-level 

metrics. According to obtained results the authors concluded 

that the best fault prediction is achieved when CK metrics are 

used with the lines of code (LOC) metric.  

In [2], the author has used various machine learning 

techniques for an intelligent system for the software 

maintenance prediction and proposed the logistic model Trees 

(LMT) and Complimentary Naïve Bayes (CNB) algorithms 

on the basis of Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE) and Accuracy percentage. 

Menzies et al. [4] showed that Naive Bayes with logNums 

filter provides the best performance on NASA datasets for 

software fault prediction problem. 

 Olague et al. [5] found that the complexity metrics have a 

good performance in distinguishing between fault-prone and 

not fault-prone classes. In addition, they also found that lesser 

known metrics such as SDMC and AMC were better 

predictors than the commonly used metrics LOC and WMC. 

Elish et al. [8] stated that the performance of Support Vector 

Machines (SVM) is generally better than, or at least is 

competitive against the other statistical and machine learning 

models in the context of four NASA datasets.  

The use of Machine Learning for the purpose of predicting or 

estimating software module’s fault-proneness is proposed by 

[9], which views fault-proneness as both a continuous 

measure and a binary classification task. Using a NASA 

public dataset, a NN is used to predict the continuous measure 

while a SVM is used for the classification task. Gondra’s [9] 
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experimental results showed that Support Vector Machines 

provided higher performance than the Artificial Neural 

Networks for software fault prediction.  

Kanmani et al. [6] validated Probabilistic Neural Network 

(PNN) and Back propagation Neural Network (BPN) using a 

dataset collected from projects of graduate students, in order 

to compare their results with results of statistical techniques. 

According to Kanmani et al.’s [6] study, PNN provided better 

performance. 

3. FAULT PREDICTION DATASET 

The data set used in this research is obtained from the 

NASA IV & V Facility Metrics Data Program (MDP) data 

repository. The primary objective of the MDP is to collect, 

validate, organize, store and deliver software metrics data. 

The repository contains software metrics and associated error 

data for several projects. The data is made available to general 

users and has been sanitized by officials representing the 

projects from which the data originated. For each project in 

the database, unique numeric identifiers are used to describe 

product entries. A product refers to anything with which 

defect data and metrics can be associated. In most cases, it 

refers to code-related project modules such as functions. For 

each module, metric values were extracted and mapped to a 

defect log. Because the recorded metric values for a module 

correspond to those obtained before eliminating faults in the 

module, there is no risk of the metric values changing as a 

result of structural changes in the module that may occur 

during fault elimination. In this research, the data associated 

with the KC1 project is considered for evaluation. This is a 

real-time project written in C++ consisting of approximately 

315,000 LOC. There are 10,878 modules and 145 classes.  

Another data set used in this research is obtained from the 

bug database of Eclipse. The data set lists the number of pre- 

and post-release defects for every package in the Eclipse 3.0. 

All data is publicly available and used for defect prediction 

models.  Dataset consists of following attributes. Each case 

contains the following information: 

name: The name of the file or package, respectively ,to which 

this case corresponds. It can be used to identify the source 

code in the release and may be needed for additional data 

collection. 

pre-release defects: The number of non-trivial defects that 

were reported in the last six months before release. 

post-release defects: The number of non-trivial defects that 

were reported in the first six months after release. 

complexity metrics:  Metrics that are computed for classes or 

methods are aggregate by using average (avg), maximum 

(max), and accumulation (sum) to package level. 

structure of abstract syntax tree(s): For each case, we list 

the size (=number of nodes) of the abstract syntax tree(s) of 

the package, respectively. 

3. CLASSIFICATION METHODS 

3.1 SVM 

Support vector machine (SVM) is also well known tool for 

performing data classification, and have been successfully 

used in many applications. SVM constructs an N-dimensional 

hyper plane that optimally separates the data set into two 

categories. The purpose of SVM modeling is to find the 

optimal hyper plane that separates clusters of vector in such a 

way that cases with one category of the dependent variable on 

one side of the plane and the cases with the other category on 

the other side of the plane. The support vectors are the vectors 

near the hyper plane. The SVM modeling finds the hyper 

plane that is oriented so that the margin between the support 

vectors is maximized. When the points are separated by a 

nonlinear region, SVM handles this by using a kernel function 

in order to map the data into a different space when a hyper 

plane can be used to do the separation[8],[9],[6]. 

4.2 Ensemble SVM 

Ensemble learning techniques have been shown to increase 

machine learning accuracy by combining arrays of specialized 

learners. Bagging and boosting [7] are examples of ensemble 

methods. Bagging is a “bootstrap” ensemble method that 

creates individuals for its ensemble by training each classifier 

on a random redistribution of the training set.  

Algorithm: Bagging.  

The bagging algorithm creates an ensemble of models 

(classifiers or predictors) for a learning scheme where each 

model gives an equally weighted prediction.  

Input:  

D, a set of d training tuples;  

K, the number of models in the ensemble;  

A learning scheme (e.g., decision tree algorithm, back 

propagation, etc.)  

Output: A composite model, M*.  

Method:  

(1) for i = 1 to k do // create k models:  

(2) create bootstrap sample, Di, by sampling D with 

replacement; 

(3) use Di to derive a model, Mi;  

(4) end for  

To use the composite model on a tuple, X:  

(1) if classification then  

(2) let each of the k models classify X and return the majority 

vote;  

(3) if prediction then  

(4) let each of the k models predict a value for X and return 

the average predicted value 

Several researchers have investigated the combination of 

different classifiers to from an ensemble classifier. An 

important advantage for combining redundant and 

complementary classifiers is to increase robustness, accuracy 

and better overall generalization. In this approach, the Support 

Vector Machine is constructed and 10-fold cross validation 

technique is applied and evaluated error rate from the mean 

square error. Secondly, bagging is performed with Support 

Vector Machine to obtain a very good generalization 

performance.  



International Journal of Computer Applications (0975 – 8887)  

Volume 62– No.15, January 2013 

23 

5. EXPERIMENTS 

In this research paper, the WEKA machine learning library is 

used as the source of algorithms for experimentation.  The 

bagging and SVM classification algorithms are implemented 

in WEKA with default parameters. 

5.1 Root Mean Square Error Rate 

RMSE is frequently used measure of differences between 

values predicted by a model or estimator and the values 

actually observed from the thing being modelled or estimated. 

It is just the square root of the mean square error as shown in 

equation given below.  

Assuming that the actual output is a, expected output is c. 

     
n

cacaca nn

22

22

2

11 ... 
 

The data set described in section 2 is being used to test the 

performance of Ensemble of Support Vector Machine. Root 

Mean square error (RMSE) was evaluated using 10-fold cross 

validation as cross validation is the best technique to get a 

reliable error estimate. Root Mean square error was evaluated 

using ensemble Method. The Root Mean square error in the 

figure 1 reflects the best performance of bagging with Support 

Vector Machine in terms classification rate. The error can be 

reduced to zero as the number of classifiers combined to 

infinity. 

 

Figure. 1. RMSE for SVM & Bagged SVM 

5.2 Area Under Curve (AUC) 

The data set described in section 2 is being used to test the 

performance of bagging with Support Vector Machine. The 

ROC curve in this experiment is used to evaluate the 

performance of ensemble algorithm. AUC-ROC is used as a 

performance metrics (area under ROC curve), an integral of 

ROC curve with false positive rate as x axis and true positive 

rate as y axis. If ROC curve is more close to top-left of 

coordinate, the corresponding classifier must have better 

generalization ability so that the corresponding AUC will be 

lager. Therefore, AUC can quantitatively indicate the 

generalization ability of corresponding classifier. 

Figure 2 and 3 shows the ROC curves for class 0 and class 1, 

evaluating the performance curve of SVM and Bagged SVM 

classifier on the eclipse data set (JAVA). Figure 4 and 5 

shows the Area under ROC curves evaluating the performance 

curve of SVM and bagged SVM classifiers on the KC1 data 

set (C++).       

Receiver Operator Characteristic curves are commonly used 

to present results for binary decision problems in machine 

learning. However, when dealing with highly skewed datasets, 

Precision-Recall (PR) curves give a more informative picture 

of an algorithm's performance. We show that a deep 

connection exists between ROC space and PR space, such that 

a curve dominates in ROC space if and only if it dominates in 

PR space. A ROC and PR curves are typically generated to 

evaluate the performance of a machine learning algorithm on 

a given dataset. Figure 6 and Figure 7 shows the precision and 

recall curve for Eclipse and KC1 data set for class 0 and class 

1. Area under the ROC curves and Precision Recall curve 

(AUC-ROC and AUC-PR) are calculated and the results were 

shown in the table 1. From the AUC values (AUC-ROC and 

AUC-PR) it is evident that, for both the data set (Eclipse data 

set and KC1 data set) Bagged SVM classifier gives better 

performance. 

    

Figure. 2. ROC for Eclipse dataset (class 0)   

                    

 

Figure. 3. ROC for Eclipse dataset (class 1) 

 

Figure. 4. ROC for KC1 dataset (class 0) 



International Journal of Computer Applications (0975 – 8887)  

Volume 62– No.15, January 2013 

24 

 

Figure. 5. ROC for KC1 dataset (class 1) 

     

Figure. 6. PR curve for Eclipse dataset (class 0& class1) 

 

Figure. 7. PR curve for KC1 dataset (class 0& class1) 

Table 1. Area under the curve (AUC- ROC and  AUC-PR) 

CLASSIFIER 

AUC- 

ROC 

(Eclipse) 

AUC-PR 

(Eclipse) 

AUC-

ROC 

(KC1) 

AUC-

PR 

(KC1) 

 SVM 

(CLASS 0) 
0.721 0.58 0.798 .67 

Bagged SVM 

(CLASS 0) 
0.78 0.70 0.832 0.84 

 SVM 

(CLASS 1) 
0.721 0.761 0.798 0.79 

Bagged SVM 

(CLASS 1) 
0.78 0.81 0.832 0.73 

6. CONCLUSIONS 

The goal of this research is to analyze the performance of 

various classifiers for various metrics level data set on defect 

prediction. The performance of the classifiers   using Root 

Mean Square Error is analyzed. Roc is also used as an 

alternative metric. A ROC and PR curves are typically 

generated to evaluate the performance of a machine learning 

algorithm on a given dataset. The area under the ROC curves 

(AUC-ROC) and (AUC–PR) are calculated by using the 

trapezoidal method. From the ROC curves (AUC-ROC and 

AUC-PR) it is evident that, for both the data set (Eclipse data 

set and KC1 data set) Bagged SVM classifier gives better 

performance. Many researchers apply machine learning 

methods for constructing the model to predict faulty classes. 

The extension of this research is to predict the models based 

on other machine learning algorithms such as ensemble using 

neural networks and genetic algorithms. 
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