
International Journal of Computer Applications (0975 – 8887)

Volume 62– No.15, January 2013

21

Bagged SVM Classifier for Software Fault Prediction

Shanthini. A
Research scholar,

Department of Computer
Science and Engineering,

Annamalai University,
Annamalai nagar,
Tamil Nadu, India

Vinodhini.G
Assistant professor,

Department of Computer
Science and Engineering,

Annamalai University,
Annamalai nagar ,
Tamil Nadu, India

Chandrasekaran.RM
Professor,

Department of Computer
Science and Engineering,

Annamalai University,
Annamalai nagar,
Tamil Nadu, India

ABSTRACT

Defective modules in the software pose considerable risk by

decreasing customer satisfaction and by increasing the

development and maintenance costs. Therefore, in software

development life cycle, it is essential to predict defective

modules in the early stage so as to improve software

developers’ ability to identify the defect-prone modules and

focus quality assurance activities. Many researchers focused

on classification algorithm for predicting the software defect.

On the other hand, classifiers ensemble can effectively

improve classification performance when compared with a

single classifier. This paper mainly addresses using ensemble

approach of Support Vector Machine (SVM) for fault

prediction. Ensemble classifier was examined for Eclipse

Package level dataset and NASA KC1 dataset. From the

research, it is clear that proposed ensemble of Support Vector

Machine is superior to individual approach for software fault

prediction in terms of classification rate through Root Mean

Square Error Rate (RMSE), Area Under ROC Curve (AUC-

ROC) and Area Under Precision and Recall curve (AUC-PR).

Keywords

Defect prediction, Software metrics, Machine learning, Class

level metrics, Method level metrics.

1. INTRODUCTION

Faults and failures in software are costly factors. They

account for a significant amount of any project budget. This

cost cannot be removed completely as methods are needed to

ensure the quality of the software. The costs for fault handling

should be possible to decrease considerably by introducing

and improving methods for early fault identification. Thus,

fault prediction can be used for process improvement and

hence cost reduction. Based on the above reasoning, it is clear

that methods are needed to predict, control and improve fault

handling in general [6]. Thus, methods for identification of

fault-and failure prone modules and models for fault

prediction are a potential way to improve software quality and

to reduce cost. Effective fault prediction methods on defect

prone modules can help developers to focus quality on

assurance activities and thus improve software quality by

using resources more efficiently. The fault prediction methods

often use metrics obtained from source code. The metrics

includes size, coupling, cohesion, inheritance, and complexity

metrics which have been associated with risk factors, such as

defects and changes [7][10].

Data Mining has become a very powerful technique to reduce

information overload and improve decision making by

extracting and refining useful knowledge from extensive

dataset through a process of searching for relationships and

patterns. In recent years data mining techniques have been

successfully used in software fault prediction. There are many

data mining methods used to predict the faults in the modules

[4] [8] [9] [6]. The primary objective of this paper is to show

that ensemble of Support Vector Machine is superior to

individual machine learning approach. The rest of this paper is

organized as follows. Subsequent sections describe related

work. The 3rd section is for the data source. The 4th section

present details about metrics and machine learning approaches

used. Performance evaluation is discussed in the 5th section.

Conclusions are given in the 6th section.

2. REVIEW OF RELATED LITERATURE

Considerable research has been performed on software

metrics and defect prediction models. Catal et al. [3]

examined Chidamber-Kemerer metrics suite and some

method-level metrics (the McCabe’s and Halstead’s ones) for

a defect model which is based on Artificial Immune

Recognition System (AIRS) algorithm. The authors

investigated together 84 metrics from the method-level

metrics transformation and 10 metrics from the class-level

metrics. According to obtained results the authors concluded

that the best fault prediction is achieved when CK metrics are

used with the lines of code (LOC) metric.

In [2], the author has used various machine learning

techniques for an intelligent system for the software

maintenance prediction and proposed the logistic model Trees

(LMT) and Complimentary Naïve Bayes (CNB) algorithms

on the basis of Mean Absolute Error (MAE), Root Mean

Square Error (RMSE) and Accuracy percentage.

Menzies et al. [4] showed that Naive Bayes with logNums

filter provides the best performance on NASA datasets for

software fault prediction problem.

 Olague et al. [5] found that the complexity metrics have a

good performance in distinguishing between fault-prone and

not fault-prone classes. In addition, they also found that lesser

known metrics such as SDMC and AMC were better

predictors than the commonly used metrics LOC and WMC.

Elish et al. [8] stated that the performance of Support Vector

Machines (SVM) is generally better than, or at least is

competitive against the other statistical and machine learning

models in the context of four NASA datasets.

The use of Machine Learning for the purpose of predicting or

estimating software module’s fault-proneness is proposed by

[9], which views fault-proneness as both a continuous

measure and a binary classification task. Using a NASA

public dataset, a NN is used to predict the continuous measure

while a SVM is used for the classification task. Gondra’s [9]

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.15, January 2013

22

experimental results showed that Support Vector Machines

provided higher performance than the Artificial Neural

Networks for software fault prediction.

Kanmani et al. [6] validated Probabilistic Neural Network

(PNN) and Back propagation Neural Network (BPN) using a

dataset collected from projects of graduate students, in order

to compare their results with results of statistical techniques.

According to Kanmani et al.’s [6] study, PNN provided better

performance.

3. FAULT PREDICTION DATASET

The data set used in this research is obtained from the

NASA IV & V Facility Metrics Data Program (MDP) data

repository. The primary objective of the MDP is to collect,

validate, organize, store and deliver software metrics data.

The repository contains software metrics and associated error

data for several projects. The data is made available to general

users and has been sanitized by officials representing the

projects from which the data originated. For each project in

the database, unique numeric identifiers are used to describe

product entries. A product refers to anything with which

defect data and metrics can be associated. In most cases, it

refers to code-related project modules such as functions. For

each module, metric values were extracted and mapped to a

defect log. Because the recorded metric values for a module

correspond to those obtained before eliminating faults in the

module, there is no risk of the metric values changing as a

result of structural changes in the module that may occur

during fault elimination. In this research, the data associated

with the KC1 project is considered for evaluation. This is a

real-time project written in C++ consisting of approximately

315,000 LOC. There are 10,878 modules and 145 classes.

Another data set used in this research is obtained from the

bug database of Eclipse. The data set lists the number of pre-

and post-release defects for every package in the Eclipse 3.0.

All data is publicly available and used for defect prediction

models. Dataset consists of following attributes. Each case

contains the following information:

name: The name of the file or package, respectively ,to which

this case corresponds. It can be used to identify the source

code in the release and may be needed for additional data

collection.

pre-release defects: The number of non-trivial defects that

were reported in the last six months before release.

post-release defects: The number of non-trivial defects that

were reported in the first six months after release.

complexity metrics: Metrics that are computed for classes or

methods are aggregate by using average (avg), maximum

(max), and accumulation (sum) to package level.

structure of abstract syntax tree(s): For each case, we list

the size (=number of nodes) of the abstract syntax tree(s) of

the package, respectively.

3. CLASSIFICATION METHODS

3.1 SVM

Support vector machine (SVM) is also well known tool for

performing data classification, and have been successfully

used in many applications. SVM constructs an N-dimensional

hyper plane that optimally separates the data set into two

categories. The purpose of SVM modeling is to find the

optimal hyper plane that separates clusters of vector in such a

way that cases with one category of the dependent variable on

one side of the plane and the cases with the other category on

the other side of the plane. The support vectors are the vectors

near the hyper plane. The SVM modeling finds the hyper

plane that is oriented so that the margin between the support

vectors is maximized. When the points are separated by a

nonlinear region, SVM handles this by using a kernel function

in order to map the data into a different space when a hyper

plane can be used to do the separation[8],[9],[6].

4.2 Ensemble SVM

Ensemble learning techniques have been shown to increase

machine learning accuracy by combining arrays of specialized

learners. Bagging and boosting [7] are examples of ensemble

methods. Bagging is a “bootstrap” ensemble method that

creates individuals for its ensemble by training each classifier

on a random redistribution of the training set.

Algorithm: Bagging.

The bagging algorithm creates an ensemble of models

(classifiers or predictors) for a learning scheme where each

model gives an equally weighted prediction.

Input:

D, a set of d training tuples;

K, the number of models in the ensemble;

A learning scheme (e.g., decision tree algorithm, back

propagation, etc.)

Output: A composite model, M*.

Method:

(1) for i = 1 to k do // create k models:

(2) create bootstrap sample, Di, by sampling D with

replacement;

(3) use Di to derive a model, Mi;

(4) end for

To use the composite model on a tuple, X:

(1) if classification then

(2) let each of the k models classify X and return the majority

vote;

(3) if prediction then

(4) let each of the k models predict a value for X and return

the average predicted value

Several researchers have investigated the combination of

different classifiers to from an ensemble classifier. An

important advantage for combining redundant and

complementary classifiers is to increase robustness, accuracy

and better overall generalization. In this approach, the Support

Vector Machine is constructed and 10-fold cross validation

technique is applied and evaluated error rate from the mean

square error. Secondly, bagging is performed with Support

Vector Machine to obtain a very good generalization

performance.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.15, January 2013

23

5. EXPERIMENTS

In this research paper, the WEKA machine learning library is

used as the source of algorithms for experimentation. The

bagging and SVM classification algorithms are implemented

in WEKA with default parameters.

5.1 Root Mean Square Error Rate

RMSE is frequently used measure of differences between

values predicted by a model or estimator and the values

actually observed from the thing being modelled or estimated.

It is just the square root of the mean square error as shown in

equation given below.

Assuming that the actual output is a, expected output is c.

     
n

cacaca nn

22

22

2

11 ... 

The data set described in section 2 is being used to test the

performance of Ensemble of Support Vector Machine. Root

Mean square error (RMSE) was evaluated using 10-fold cross

validation as cross validation is the best technique to get a

reliable error estimate. Root Mean square error was evaluated

using ensemble Method. The Root Mean square error in the

figure 1 reflects the best performance of bagging with Support

Vector Machine in terms classification rate. The error can be

reduced to zero as the number of classifiers combined to

infinity.

Figure. 1. RMSE for SVM & Bagged SVM

5.2 Area Under Curve (AUC)

The data set described in section 2 is being used to test the

performance of bagging with Support Vector Machine. The

ROC curve in this experiment is used to evaluate the

performance of ensemble algorithm. AUC-ROC is used as a

performance metrics (area under ROC curve), an integral of

ROC curve with false positive rate as x axis and true positive

rate as y axis. If ROC curve is more close to top-left of

coordinate, the corresponding classifier must have better

generalization ability so that the corresponding AUC will be

lager. Therefore, AUC can quantitatively indicate the

generalization ability of corresponding classifier.

Figure 2 and 3 shows the ROC curves for class 0 and class 1,

evaluating the performance curve of SVM and Bagged SVM

classifier on the eclipse data set (JAVA). Figure 4 and 5

shows the Area under ROC curves evaluating the performance

curve of SVM and bagged SVM classifiers on the KC1 data

set (C++).

Receiver Operator Characteristic curves are commonly used

to present results for binary decision problems in machine

learning. However, when dealing with highly skewed datasets,

Precision-Recall (PR) curves give a more informative picture

of an algorithm's performance. We show that a deep

connection exists between ROC space and PR space, such that

a curve dominates in ROC space if and only if it dominates in

PR space. A ROC and PR curves are typically generated to

evaluate the performance of a machine learning algorithm on

a given dataset. Figure 6 and Figure 7 shows the precision and

recall curve for Eclipse and KC1 data set for class 0 and class

1. Area under the ROC curves and Precision Recall curve

(AUC-ROC and AUC-PR) are calculated and the results were

shown in the table 1. From the AUC values (AUC-ROC and

AUC-PR) it is evident that, for both the data set (Eclipse data

set and KC1 data set) Bagged SVM classifier gives better

performance.

Figure. 2. ROC for Eclipse dataset (class 0)

Figure. 3. ROC for Eclipse dataset (class 1)

Figure. 4. ROC for KC1 dataset (class 0)

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.15, January 2013

24

Figure. 5. ROC for KC1 dataset (class 1)

Figure. 6. PR curve for Eclipse dataset (class 0& class1)

Figure. 7. PR curve for KC1 dataset (class 0& class1)

Table 1. Area under the curve (AUC- ROC and AUC-PR)

CLASSIFIER

AUC-

ROC

(Eclipse)

AUC-PR

(Eclipse)

AUC-

ROC

(KC1)

AUC-

PR

(KC1)

 SVM

(CLASS 0)
0.721 0.58 0.798 .67

Bagged SVM

(CLASS 0)
0.78 0.70 0.832 0.84

 SVM

(CLASS 1)
0.721 0.761 0.798 0.79

Bagged SVM

(CLASS 1)
0.78 0.81 0.832 0.73

6. CONCLUSIONS

The goal of this research is to analyze the performance of

various classifiers for various metrics level data set on defect

prediction. The performance of the classifiers using Root

Mean Square Error is analyzed. Roc is also used as an

alternative metric. A ROC and PR curves are typically

generated to evaluate the performance of a machine learning

algorithm on a given dataset. The area under the ROC curves

(AUC-ROC) and (AUC–PR) are calculated by using the

trapezoidal method. From the ROC curves (AUC-ROC and

AUC-PR) it is evident that, for both the data set (Eclipse data

set and KC1 data set) Bagged SVM classifier gives better

performance. Many researchers apply machine learning

methods for constructing the model to predict faulty classes.

The extension of this research is to predict the models based

on other machine learning algorithms such as ensemble using

neural networks and genetic algorithms.

7. REFERENCES

[1] Knab, P., Pinzger, M., and Bernstein, A., 2006.

“Predicting defect densities in source code files with

decision tree learners,” in the 2006 International

Workshop on Mining Software Repositories.

[2] Sandhu, Parvinder Singh, Sunil Kumar and Hardeep

Singh, 2007 “Intelligence System for Software

Maintenance Severity Prediction”,Journal of Computer

Science, Vol. 3 (5), pp. 281-288.

[3] Catal, C., Diri, B., and Ozumut, B., 2007. “An Artificial

Immune System Approach for Fault Prediction in

Object-Oriented Software,” in 2nd International

Conference on Dependability of Computer Systems

DepCoS-RELCOMEX.

[4] Menzies, T., Greenwald, J., & Frank, A. (2007). Data

mining static code attributes to learn defect predictors.

IEEE Transactions on Software Engineering, 33(1),

[5] Olague, H.M., Etzkorn, L.H., Gholston, S., Quattlebaum,

S., 2007. Empirical validation of three software metrics

suites to predict fault-proneness of object-oriented

classes developed using highly iterative or agile software

development processes. IEEE Transactions on Software

Engineering 33 (6), 402– 419.

[6] S.Kanmani, V.R. Uthariaraj, V.Sankaranarayanan,

P.Thambidurai, Objected-oriented software fault

prediction using neural networks, Information and

software Technology 49 (5 (2007)) 483 – 492.

[7] Dr Kadhim M. Breesam, “Metrics for Object Oriented

design focusing on class Inheritance metrics”, 2nd

International conference on dependability of computer

system IEEE, 2007.

[8] K.O. Elish, M.O. Elish, Predicting defect-prone software

modules using support vector machines, Journal of

Systems and Software 81 (5) (2008) 649– 660.

[9] I.Gondra, Applying machine learning to software fault-

proneness prediction, Journal of System and Software

81(2) (2008) 186-195.

[10] Amjan Shaik, Dr C.R.K. Reddy, Dr A Damodaran,

“Statistical Analysis for Object Oriented Design

Software security metrics”, International journal of

engineering and technology, vol. 2, pg 1136-1142,2010

[11] Cagatay Catal, “Software fault prediction: A literature

review and current trends”, Expert Systems with

Applications 38 (2011) 4626 – 4636.

