
International Journal of Computer Applications (0975 – 8887)

Volume 62– No.15, January 2013

14

Computing Number of Bits to be Processed using Shift

and Log in Arithmetic Coding

Jyotika Doshi

GLS Inst.of Computer Technology
Opp. Law Garden, Ellisbridge
Ahmedabad-380006, INDIA

Savita Gandhi
Department of Computer Science

Gujarat University
Ahmedabad-380009, INDIA

ABSTRACT

Arithmetic coding is a very efficient and most popular entropy

coding technique. Arithmetic coding method is based on the

fact that the cumulative probability of a symbol sequence

corresponds to a unique subinterval of the initial interval [0,

1). In this method, when encoding a symbol, it first computes

new interval [low, high) based on cumulative probability

segment of the symbol. Thereafter it iterates in a loop to

output code bits till the interval becomes 2b-2 wide, where b is

number of bits used to store range of an interval. In

conventional implementation of arithmetic coding algorithm,

in single loop iteration, only one bit is processed at a time.

When most significant bit (msb) of low and high of a

subinterval matches, it writes this msb in coded message and

doubles the interval by extracting msb. When underflow

occurs, it extracts second msb to expand an interval.

Processing such single bit and expanding an interval is also

called renormalization in a loop. In this paper, an upgradation

of this conventional arithmetic coding algorithm is proposed,

wherein more than one bit is processed at a time instead of

just single bit in single iteration. This proposed multi-bit

processing arithmetic coding algorithm is implemented here

to reduce the iterations needed in renormalizing an interval. It

is observed that processing multiple output bits at a time leads

to big improvement in execution time. To determine the

number of maximum possible matching most significant bits

to output, two alternatives are used here; (i) Using shift

operation in a loop (ii) Using log function. It is found that first

technique is far better than second one with respect to

execution time. As compared to conventional

implementations processing single bit at a time, about 52%

overall saving in execution time is observed when processing

multi-bits using shift operation in a loop; whereas about 31%

overall loss in performance is observed with the technique of

using log function. We have also tried these two alternative

ways to determine the number of consecutive occurrences of

underflow and process them all in single iteration; but it has

not shown any significant gain in speed. As expected, in using

any of the above methods, there is no compromise in

compression ratio.

General Terms

Data Compression Algorithm

Keywords

Arithmetic coding, computing number of output bits,

computing number of consecutive occurrences of underflow,

faster execution, lossless data compression, multi-bit

processing, renormalizing interval

1. INTRODUCTION
Arithmetic coding was introduced by Rissanen [1] in 1976.

Arithmetic coding [2]-[5] is a very efficient entropy coding

technique. It is optimal in theory and nearly optimal in

practice, in that it encodes arbitrary data with minimal average

code length. It works with any sample space so it can be used

for the coding of text in arbitrary character sets as well as

binary files. It encodes data using a variable number of bits.

The number of bits used to encode each symbol varies

according to the probability assigned to that symbol. The idea

is to assign short codeword to more probable events and long

codeword to less probable events [5].

Arithmetic coding has been developed extensively since its

introduction several decades ago, and is notable for offering

extremely high coding efficiency. That is why it is most

popular for entropy coding and widely used in practice. There

are many data compression methods that first transform input

data by some algorithm, and then compress resulting data

using arithmetic coding [18]. For instance, the run length

code, many implementations of Lempel-Ziv codes, the

context-tree weighting method [6], Grammar—based codes

[7]-[8] and many methods of image compression, audio and

video compression. While many earlier-generation image and

video coding standards such as JPEG, H.263, and MPEG-2,

MPEG-4 relied heavily on Huffman coding for the entropy

coding steps in compression, recent generation standards

including JPEG2000 [9] and H.264 [10]-[13] utilize

arithmetic coding. It is also considered as a suitable candidate

for a possible encryption-compression [14]-[16] combine

providing security [17] and reduced size for internet

applications.

Arithmetic coding has a major advantage over other entropy

coding methods, such as Huffman coding. Huffman coding

uses an integer number of bits for each code, and therefore

only has a chance of reaching entropy performance when

probability of a symbol is a power of 2 for all the symbols.

Arithmetic code encodes arbitrary data with minimal average

code length, so its coding efficiency is generally higher. The

main disadvantage of arithmetic coding is its relatively high

computational complexity. It is usually slower than Huffman

coding and other fixed-length to variable-length coding

schemes [19]. Compression ratio cannot be further improved

as compression ratio that can be reached by any encoder under

a given statistical model is actually bounded by the quality of

that model. However one can optimize one’s algorithms in at

least two dimensions: memory usage and speed [20]. Here we

have worked to increase execution speed.

Existing conventional implementations [20]-[27] output one

bit at a time. Arithmetic encoding algorithm is explained in

detail in section 3. It processes single output bit or single

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.15, January 2013

15

underflow occurrence in single iteration as shown in section

V.

Authors in the earlier paper [28] had proposed enhancement

of traditional arithmetic coding by processing more than one

bit in single iteration. This implementation [28] was done

using four nested-if statements and thus processing maximum

up to four bits at a time in single renormalizing iteration. It

showed an overall gain of 17% in the execution speed of

encoding, which led us to think further trying of maximum

possible bits to process in a single iteration.

Thus, in this paper, we have proposed and implemented a

multi-bit processing arithmetic coding algorithm which

computes maximum number of possible bits that can be

processed at a time in single loop iteration. This number of

desirable bits is determined using two ways: (i) using shift

operation in a loop (ii) using log function. Corresponding

algorithm and programming code is given in section 6 and 7.

Here we have implemented our modified multi-bit processing

arithmetic coding algorithm using 16 bit wide interval, so we

can extract and process maximum up to 16 bits in single

iteration. However, given logic and code can be applied for

any number of bits depending upon the width (number of bits

used) of an interval.

As compared to conventional method of outputting single bit

at a time during compression, outputting multiple bits at a

time using shift operations in a loop shows an overall gain of

about 52% in performance in execution time, whereas use of

log function shows an overall loss of nearly 31% in execution

time.

We also tried to compute maximum possible number of

consecutive occurrences of underflow and renormalize the

interval accordingly in single iteration, but it has not shown

considerable significant difference in the performance as

compared to processing single underflow at a time.

2. STATISTICAL MODEL
Arithmetic coding method is based on the fact that the

cumulative probability of a symbol sequence corresponds to a

unique subinterval of the initial interval [0, 1). Before starting

encoding process, symbols are assigned segments on interval

[0, 1) according to their cumulative probabilities. It doesn’t

matter which symbols are assigned which segment of the

interval as long as it is done in the same manner by both the

encoder and the decoder [24]. If S = (S1, S2, . . ., Sn) is the

alphabet of a source having n symbols with an associated

cumulative probability distribution P = (P1, P2, … , Pn), an

initial interval [0, 1) is divided into n subintervals as [0, P1),

[P1, P2), [P2, P3), …,[Pn-1, Pn) where Pi is the cumulative

probability of symbol Si. Each subinterval length is

proportional to the probability of the symbols [22].

When arithmetic coding is implemented using integer

arithmetic, a coding interval is usually represented by [L,H),

where L and H are two b-bit integers denoting the interval’s

lower end and higher end, respectively. An initial interval is

[0,1). Cumulative probability is a ratio of cumulative

frequency and total frequency. So instead of using cumulative

probability, cumulative frequencies are used in computation.

Thus the probability model is described by an array, [F0,

F1,F2, . . . ,Fn], where Fi (0 ≤ i ≤ n) is f-bit integer (f ≤ b − 2)

representing the lower and upper bounds of cumulative

frequency segments. For symbol Si, Fi-1 is lower bound and

Fi is upper bound.

Here arithmetic coding algorithm is implemented with order-0

model for 256 symbol alphabet. Statistical model is built

using source data before starting compression. The model

goes in compressed file for use by decompression algorithm.

3. CONVENTIONAL ALGORITHM
Existing conventional algorithm processes only one bit at a

time and renormalize interval in single renormalizing iteration

during encoding and decoding. Here a traditional algorithm is

given to show how it is enhanced later.

3.1 Encoding Algorithm
• Interval=[0,1)

• Qtr1=range/4, Qtr2=2*Qtr1, Qtr3=3*Qtr1

• cnt=0, a count for occurrences of underflow

• Repeat till not EOF

– Read symbol

– Compute corresponding new interval [low, high)

– Repeat till interval becomes more than half

(renormalization loop)

• Case 1: low and high falls in upper half [0.5,1),

i.e. low >= Qtr2. Here matching most significant

bit (msb) is 1.

- output bit 1

- o/p bit 0 cnt times, cnt=0

- expand an interval by doubling low and

high; i.e. left shift low and high by 1

position. (padding on right: low with 0 and

right with 1)

• Case2: low and high falls in lower half [0, 0.5),

i.e. high < Qtr2. Here matching msb is 0

- output bit 0

- o/p bit 1 cnt times, cnt=0

- left shift low and high by 1 position, i.e.

double low and high (padding on right: low

with 0 and right with 1)

• Case3: low falls in [Qtr1, Qtr2) and high falls in

[Qtr2, Qtr3), i.e. (high < Qtr3) and (low ≥ Qtr1).

Here msb is not matching and 2nd bit differ by

1, thus underflow occurs.

- cnt++ (underflow)

- extract 2nd bit from low and high and then

double, i.e subtract Qtr1 from low and high,

double low and high

• Other cases: (low<Qtr2) and (high ≥ Qtr3), i.e.

interval is more than half; more than 2b-2

- Break loop

• At EOF

– cnt++

– if low < Qtr1; i.e. if its most significant bit is 0,

then output bit 0 and cnt times 1. Otherwise output

bit 1 and cnt times 0

3.2 Decoding Algorithm
During decoding, it reads and processes b bit code from coded

message till end of compressed file. Computation of new

interval, extracting bits and renormalizing interval using

coded message is performed in exactly the same way as that

done during encoding.

4. RENORMALIZING INTERVAL
As explained in section 3, in arithmetic coding, while

encoding and decoding each symbol, it processes a single bit

and expands the current interval. This is considered as

renormalization of an interval.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.15, January 2013

16

An algorithm renormalizes an interval in a loop till interval

length becomes more than half (i.e. 2b-2) of the interval.

In conventional implementations [20]-[27], renormalization is

performed through the renormalization loop in a bitwise

manner, i.e., during each execution of the renormalization

loop, only one code bit is generated and the current interval is

doubled. Case 1 and 2 of algorithm explained in section 3 are

usually combined to output most significant matching bit

(msb) whether it is 0 or 1.

5. CONVENTIONAL “C” LANGUAGE

IMPLEMENTATIONS
Traditional algorithms implemented using 16 bit wide range is

considered here. There are some implementations using 32bit

wide range, which require 64 bit (long long) integer in some

integer multiplications to avoid overflow. This long long data

type is not available with many C compilers. Arithmetic

coding being lossless compression technique, its traditional

implementations use integer arithmetic for accuracy purpose.

Many implementations like E. Bodden [20] compare low and

high bound of the interval with quarter (1/4th), half and 3/4th

of an interval as explained in algorithm in section III. This

may execute slower as compared to implementations [24, 26]

using bitwise operations for better performance.

While encoding a symbol, it requires computing new value of

low and high bound of an interval. After that, following loop

(using bitwise operations [24, 26]) is executed till interval

becomes more than half wide. In single iteration of this loop,

either matching single bit is processed or one underflow

occurrence is processed at a time.

Renormalizing loop [24, 26] to process single bit after

computing new value of low and high bound of new interval

is given below. Variables low, high are unsigned 16 bit

integers; cnt is used to store the value of underflow counts.

 for (; ;) // renormalizing loop

 {

 /* case 1 and 2, msb matching */

 if ((high & 0x8000) == (low & 0x8000))

 {

 output_bit(stream, (unsigned short) (high & 0x8000));

 while (cnt > 0) // cnt: underflow count

 {

 output_bit(stream,(unsigned short) (~high & 0x8000));

 cnt--;

 }

 }

 /* case 3: underflow, msb not matching, 2nd bit differs by 1*/

 else if ((low & 0x4000) && !(high & 0x4000))

 {

 cnt++;

 low &= 0x3fff;

 high |= 0x4000;

 }

 else // neither case 1,2 nor case 3, return

 break; // interval becomes more than half wide

/* rescale low, high: rightpad low with 0s and high with 1s */

 low <<= 1;

 high <<= 1;

 high |= 1; // have 1 as lsb

} // end for, renormalizing loop

6. PROPOSED “MULTI-BIT

PROCESSING ARITHMETIC CODING

ALGORITHM”
As mentioned earlier, in conventional implementations, only

one bit is processed at a time in single iteration. Here it is

proposed to extract and output more than one bit and expand

the interval accordingly in a single iteration. This reduces the

number of iterations used in renormalization. The best part of

our proposed implementation is that it does not compromise

on compression ratio at all. We have used two alternatives to

compute number of matching most significant bits in low and

high: (i) using shift operation in a loop and (ii) using log

function.

An additional attempt is made to compute number of

consecutive occurrences of underflow and expand an interval

accordingly. Here interval is expanded by extracting multiple

bits from 2nd position onwards in low and high in single loop

iteration.

Proposed multi-bit processing arithmetic coding algorithm

is given here.

6.1 Using Statistical Model
Same as in conventional implementation (as in section 2)

6.2 Renormalizing Interval
Here is the difference between implementation of

conventional and our proposed multi-bit arithmetic coding

algorithm. Here, renormalization is done by processing

multiple bits at a time in single iteration.

Renormalization loop in proposed implementation is as given

below: Variable nBits is used to store the value of number of

matching most significant bits of low and high; k is used to

store the value of number of consecutive occurrences of

underflow at a time.

• Repeat till case 1 or 2 or 3 described in section 3

(renormalization loop)

– Case 1, 2: most significant bits are matching

• Compute number of most significant matching

bits, say nBits

• output first msb

• o/p cnt times the complement of msb, cnt=0

• o/p remaining (nBits-1) msb

• expand interval by shifting low and high to left

by nBits position (padding on right: low with 0

and high with 1)

– Case 3: an occurrence of underflow; msb is not

matching and 2nd bit differ by 1; i.e. low falls in

[Qtr1, Qtr2) and high falls in [Qtr2, Qtr3)

• Compute number of consecutive occurences of

underflow, say k; add it to cnt.

• Extract k bits from 2nd bit onwards from low and

high. While doing so, right pad low bound with

zeros and high bound with ones.

6.3 Computing number of matching msb
As we know, when bitwise xor operation is performed on bits,

resulting bit is 0 when both operand bits are matching and 1

otherwise. Thus (low xor high) will result in 0 wherever it has

matching bits. So to compute how many msb are matching,

the only task is to determine occurrences of leading

consecutive zeros or finding the position of first occurrence of

bit 1 from left. This can be done as shown below.

• tmp=low XOR high

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.15, January 2013

17

• Determine the number of matching most significant bits

in high and low using either log function or shift

operation as mentioned here

– Using shift in a loop: left shift tmp, increment a

counter, terminate loop when first bit of tmp is 1.

Resulting counter is number of matching most

significant bits in high and low.

– Using log function: Determine 1st occurrence of bit

1 from left in tmp using expression int(log2(tmp)).

Assuming low and high are represented using b bits,

nBits=b-int(log2(tmp))+1 will be the number of

consecutive zeros on left in tmp, i.e. number of

matching most significant bits in high and low.

There might be a problem in using log2(x) function, as it is

not be available in all C (ex. TurboC 3.0). In such cases, use

log(tmp)/log(2) where log is natural logarithm. Using constant

0.693147 for log(2) will reduce one function call.

6.4 Computing number of consecutive

occurrences of underflow
Underflow occurs when low and high comes closer but it is

not detected with most significant bit, i.e. most significant bit

is not matching but next bit differs by 1. Thus most significant

bit is 0 in low and 1 in high; and next bit is 1 in low and 0 in

high. Our interest is to determine number of consecutive 1s in

low and 0s in high after most significant bit. Then number of

consecutive occurrences of underflow is lowest of these two

numbers. Thus number of consecutive occurrences of

underflow can be computed as minimum of leading 1s in

(low<<1) and leading 0s in (high<<1). Required operations:

• Left shift low and high by one position

• Using left shift in a loop, compute consecutive

occurrences of 1s in low. Let it be m.

• Using left shift in a loop, compute consecutive

occurrences of 0s in high. Let it be n.

• Number of consecutive occurrences of underflow = k =

minimum of m and n.

7. PRACTICAL IMPLEMENTATION OF

PROPOSED ALGORITHM USING “C”
As said before, proposed multi-bit processing arithmetic

coding algorithm is implemented using b=16 bit wide range.

So possible maximum number of output bits at a time is 16. C

code for computing number of matching most significant bits,

consecutive occurrences of underflow and rescaling the

interval is as follows: Variables low, high, tmp are all

unsigned short (16 bit) integers. Array element mask[i] is

assigned a value having all rightmost i bits set to1 and other

bits set to 0.

7.1 Computing number of matching most

significant bits
tmp = low ^ high; // high and low are in [0,0xffff]

if (tmp == 0)

 nBits=16; // maximum 16 matching bits

else

 { //using shift loop

 nBits=0;

 while (tmp < 0x8000) // msb not 0

 {

 nBits++;

 tmp = tmp<<1; // remove leading zero

 }

 }

To compute nBits using log function, replace code in else part

with the following code.

// using log tmp to base 2

{

 nBits=log(tmp)/0.693147; // natural log 2 = 0.693147

 nBits = 15 - nBits; // b=16

}

7.2 Rescaling interval in single iteration
low <<= nBits; // double nBit times

high <<= nBits; // double nBits times

high |= mask[nBits]; // pad rightmost nBits with 1

7.3 Computing consecutive occurrences of

underflow
//compute underflow count = k

//= min(leading 1s in (low<<1), leading 0s in (high<<1))

m=0; tmp=low<<1;

while (tmp >= 0x8000)

 { m++; tmp = tmp<<1; }

n = 0; tmp = high<<1;

if (tmp==0)

n=15;

else

 {

 while (tmp < 0x8000)

 { n++; tmp = tmp<<1; }

 }

 k=m;

if (n < m) k=n;

7.4 Rescaling interval by extracting k bits

from 2nd position onwards
//starting from 2nd bit, extract k bits from low and high,

//rightpad high with 1s

low = low << k;

low = low & 0x7FFF; // to have msb 0

high = high << k;

high = high | 0x8000; // to have msb 1

high = high | mask[k]; // pad rightmost k bits with 1

8. Experimental Results
Both the conventional and our proposed multi-bit processing

arithmetic coding algorithms are implemented using 16 bit

Turbo C compiler on Intel(R) Pentium (R) D, CPU 3.00 GHz,

1 GB RAM. Execution time is measured in seconds for 17

files with varying sizes and file types. Some of the test files

are selected from act, Calgary and Canterbury corpus, a

widely used benchmark. These files are downloaded from

website http://compression.ca/act/act-files.html. Selected test

files are of various types like text files, image files, audio

files, excel files, power point files, word documents,

executable files etc. Used benchmark files are:

act2may2002.xls (name shortened to act2may2.xls),

calbook2.txt, ca-obj2, cal-pic, every.wav, frymire.tif,

kennedy.xls, lena3.tif, monarch.tif, pine.bin, ptt5, world95.txt.

Here term ACEN is used for existing conventional

implementation of arithmetic coding for encoding data. In

ACEN, single bit is output at a time and single occurrence of

underflow is considered at a time. Variations of multi-bit

processing are denoted here as ACB1C1, ACB2C1, ACB1C2

where B1, B2, C1, C2 are used to denote the following

alternatives used: B1- number of matching most significant

bits is computed using shift operation, B2 – number of

matching most significant bits is computed using log function,

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.15, January 2013

18

C1 - single underflow is considered at a time, C2 - more than

one consecutive occurrences of underflow is considered at a

time.

Table 1 lists files used for testing of both existing and various

proposed multi-bit implementations. It is to be noted that

compressed file size remains same with all implementations.

Execution time given in table 2 and table 3 is taken as an

average of five trials of executing a program for each test file.

TABLE 1. Test Files used

No. File

File Size

(Bytes)

Compressed

 File Size

(Bytes)

1 act2may2.xls 1348036 789951

2 calbook2.txt 610856 367017

3 cal-obj2 246814 194255

4 cal-pic 513216 108508

5 cycle.doc 1483264 891974

6 every.wav 6994092 6716811

7 family1.jpg 198372 197239

8 frymire.tif 3706306 2200585

9 kennedy.xls 1029744 478038

10 lena3.tif 786568 762416

11 linuxfil.ppt 246272 175407

12 monarch.tif 1179784 1105900

13 pine.bin 1566200 1265047

14 ptt5 513216 108508

15 sadvchar.pps 1797632 1771055

16 shriji.jpg 4493896 4481092

17 world95.txt 3005020 1925940

Table 2. Compression (Encoding) Time in Seconds:

ACB1C1 and ACB1C2

 ACB1C1 ACB1C2

No. File name Seconds Seconds

1 act2may2.xls 1.2088 1.2088

2 calbook2.txt 0.5495 0.6044

3 cal-obj2 0.2747 0.2747

4 cal-pic 0.3297 0.3297

5 cycle.doc 1.3187 1.3187

6 every.wav 6.9231 7.0879

7 family1.jpg 0.2198 0.2198

8 frymire.tif 3.1868 3.1868

9 kennedy.xls 0.8791 0.8242

10 lena3.tif 0.7692 0.8242

11 linuxfil.ppt 0.2198 0.2198

12 monarch.tif 1.1538 1.1538

13 pine.bin 1.4835 1.4835

14 ptt5 0.3297 0.3297

15 sadvchar.pps 1.7582 1.8132

16 shriji.jpg 4.3956 4.5055

17 world95.txt 2.8571 2.9670

 Total

Seconds
27.8571 28.3516

Table 2 presents the compression time (seconds) of multi-bit

variations namely ACB1C1 and ACB1C2. As there is no

significant difference observed in the execution performance,

C2 is not considered in combination with B2 here. Figure 1

shows comparison of execution time of encoding using multi-

bit processing variations ACB1C1 and ACB1C2.

Fig. 1.Encoding time of ACB1C1 and ACB1C2

Table 3 shows the compression time (seconds) of

conventional ACEN (single bit processing in single iteration)

and multi-bit processing variations ACB1C1 and ACB2C1.

Figure 2 represents these data in a graph for better

visualization of differences in execution time.

Table 3. Compression (Encoding) Time in Seconds:

ACEN, ACB1C1 and ACB2C1

 ACEN ACB1C1 ACB2C1

No. File name Seconds Seconds Seconds

1 act2may2.xls 2.307 1.209 3.297

2 calbook2.txt 1.099 0.549 1.538

3 cal-obj2 0.495 0.275 0.604

4 cal-pic 0.659 0.330 0.879

5 cycle.doc 2.637 1.319 3.516

6 every.wav 15.000 6.923 18.791

7 family1.jpg 0.439 0.220 0.549

8 frymire.tif 6.648 3.187 8.791

9 kennedy.xls 1.640 0.879 2.418

10 lena3.tif 1.703 0.769 2.143

11 linuxfil.ppt 0.439 0.220 0.604

12 monarch.tif 2.528 1.154 3.187

13 pine.bin 3.077 1.484 4.066

14 ptt5 0.604 0.330 0.879

15 sadvchar.pps 3.791 1.758 4.835

16 shriji.jpg 9.505 4.396 12.088

17 world95.txt 5.604 2.857 7.802

 Total

Seconds
58.176 27.857 75.989

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17

S

e

c

o

n

d

s

Test Files

Execution time of
ACB1C1 and

ACB1C2

AC
B…

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.15, January 2013

19

Fig. 2. Encoding time of ACEN, ACB1C1 and ACB2C1

9. RESULT ANALYSIS
From Table 2 and Figure 1, it is observed that there is no

significant difference in the performance of algorithms

implemented with processing of single underflow at a time

and multiple underflow occurrences at a time. This may be

due to the calculations required in computing number of

consecutive occurrences of underflow. Thus C2 (i.e.

computing multiple underflow count and renormalizing

interval accordingly at once) has no significant benefit over

C1 (i.e. processing single underflow at a time).

It is seen from Table 3 and Figure 2 that B2 (i.e. computing

matching number of most significant bits using log function

and renormalizing interval accordingly at once) has worst

performance. It is not even better as compared to traditional

single bit processing at a time (ACEN). Using B1 (computing

matching number of most significant bits using shift operation

in a loop and then renormalizing an interval accordingly at

once) shows very large improvement of about 52% in

execution speed.

Execution time saved with the use of shift operations

(ACB1C1) as compared to ACEN and ACB2C1 is analyzed

in Table 4. Expressions used in computations are shown

below:

Percentage of gain of ACB1C1 over ACEN = 100 x (exec.

time of ACEN – exec. time of ACB1C1)/exec. time of ACEN

Overall % gain of ACB1C1 over ACEN = 100 x (total exec.

time of ACEN – total exec. time of ACB1C1) / total exec.

time of ACEN

Overall ratio = total exec. time of ACB1C1 / total exec. time

of ACEN

Interpretations:

Percentage in gain measures the % of time saved using

ACB1C1 over ACEN. Overall ratio gives the fraction of

ACEN execution time taken by ACB1C1.

Standard Deviation (SD) and Coefficient of variance (CV) are

statistical measures. SD is a square root of mean of squared

deviations taken from mean. It measures how dispersed the

observations are from their mean. CV = 100*SD/mean. It

measures consistency in data set.

Following observations are based on the analysis in table 4:

 Overall execution time taken by ACB1C1 is 47.88% of

execution time of conventional ACEN. Thus using

ACB1C1, it saves 52.12% execution time as compared to

ACEN. It can also be seen that performance gain using

ACB1C1 is very consistent in all the test files. It varies in

the range of 44.44 to 54.83, has standard deviation 3 and

just 6% coefficient of variance.

 Overall execution time taken by ACB1C1 is 36.67% of

execution time of ACB2C1. Computing number of

matching significant bits using shift in a loop gives

overall performance benefit of 63.33% over

computations using log function. This performance gain

is found to be consistent in a range (54.54, 64.28) with

standard deviation 2.25 and a small 3.59% coefficient of

variance.

 Overall execution time taken by ACB2C1 is 130.60% of

execution time of ACEN. Computing number of

matching significant bits using log function shows

overall 30.60% loss in execution speed over conventional

ACEN. The variation in performance loss is found to be

large in various test files. It ranges in (22.222, 46.667)

with standard deviation 7.482 and a 22.64% coefficient

of variance.

Table 4. Result Analysis

 % gain of

ACB1C1 over

% loss with

ACB2C1

over ACEN No. File name ACEN ACB2C1

1 act2may2.xls 47.619 63.333 42.857

2 calbook2.txt 50.000 64.286 40.000

3 cal-obj2 44.444 54.545 22.222

4 cal-pic 50.000 62.500 33.333

5 cycle.doc 50.000 62.500 33.333

6 every.wav 53.846 63.158 25.275

7 family1.jpg 50.000 60.000 25.000

8 frymire.tif 52.066 63.750 32.231

9 kennedy.xls 46.667 63.636 46.667

10 lena3.tif 54.839 64.103 25.806

11 linuxfil.ppt 50.000 63.636 37.500

12 monarch.tif 54.348 63.793 26.087

13 pine.bin 51.786 63.514 32.143

14 ptt5 45.455 62.500 45.455

15 sadvchar.pps 53.623 63.636 27.536

16 shriji.jpg 53.757 63.636 27.168

17 world95.txt 49.020 63.380 39.216

 overall gain% 52.125 63.341 (loss)30.595

 overall ratio% 47.875 36.659 130.595

 S.D. 3.047 2.248 7.482

 CV 6.040 3.586 22.640

 minimum 44.444 54.545 22.222

 maximum 54.839 64.286 46.667

10. CONCLUSION
Our proposed multi-bit processing arithmetic coding

algorithm executes faster when number of matching bits is

computed using shift operation instead of using log function.

As compared to existing conventional implementations of

arithmetic coding, it has resulted into a tremendous gain of

about 52% in execution speed while encoding without any

compromise in compression ratio. Multi-bit processing at

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S

e

c

o

n

d

s

Test Files

Execution Time of
ACEN, ACB1C1,

ACB2C1
AC
EN

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.15, January 2013

20

once using log function is found to be very poor as compared

to even conventional single-bit at a time processing.

11. REFERENCES
[1] J. Rissanen, “Generalized kraft inequality and arithmetic

coding”, IBM J. Res. Develop., vol. 20, pp. 198–203,

May 1976.

[2] G. G. Langdon, Jr., and J. Rissanen, “Compression of

black-white images with arithmetic coding”, IEEE Trans.

Commun., vol. COMM-29, pp. 858–867, 1981.

[3] C. B. Jones, “An efficient coding system for long source

sequences”, IEEE Trans. Inform. Theory, vol. IT–27, pp.

280–291, 1981.

[4] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic

coding for data compression” Commun. ACM, vol. 30,

pp. 520–540, 1987.

[5] P. G. Howard and J. S. Vitter, “Arithmetic coding for

data compression”, Proc. IEEE, vol. 82, pp. 857–865,

1994.

[6] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens,

“The context-tree weighting method: Basic properties”,

IEEE Trans. Inform. Theory, vol.41, pp. 653–664, May

1995.

[7] J. C. Kieffer and E. H. Yang, “Grammar-based codes: A

new class of universal lossless source codes”, IEEE

Trans. Inform. Theory, vol. 46, pp. 737–754, 2000.

[8] J. C. Kieffer, E. H. Yang, G. J. Nelson, and P. Cosman,

“Universal lossless compression via multilevel pattern

matching”, IEEE Trans. Inform.Theory, vol. 46, pp.

1227–1245, July 2000.

[9] D. S. Taubman and M. W. Marcellin, JPEG2000: Image

Compression Fundamentals, Standards and Practice.

Norwell, MA: Kluwer Academic, 2002.

[10] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra,

“Overview of the H.264/AVC video coding standard,”

IEEE Trans. Circuits Syst.Video Technol., vol. 13, no. 7,

pp. 560–576, Jul. 2003.

[11] Detlev Marpe, Heiko Schwarz, and Thomas Wiegand,

“Context-Based Adaptive Binary Arithmetic Coding in

the H.264/AVC Video Compression Standard”, IEEE

Trans. On Circuits and Systems for Video Technology,

vol. 13, no. 7, pp. 620-636, July 2003

[12] M. Dyer,D. Taubman, and S. Nooshabadi, “Improved

throughput arithmetic coder for JPEG2000”, Proc. Int.

Conf. Image Process., Singapore, Oct. 2004, pp. 2817–

2820.

[13] R. R. Osorio and J. D. Bruguera, “A newarchitecture for

fast arithmetic coding in H.264 advanced video coder”,

Proc. 8th Euromicro Conf. Digital System Design, Porto,

Portugal, Aug. 2005, pp. 298–305.

[14] Ranjan Bose,Saumitr Pathak, “A Novel Compression and

Encryption Scheme Using Variable Model Arithmetic

Coding and Coupled Chaotic System”, IEEE Trans.

Circuits and Systems, vol. 53, no. 4, pp. 848-857, April

2006

[15] Kwok-Wo Wong, Qiuzhen Lin, Jianyong Chen,

“Simultaneous Arithmetic Coding and Encryption Using

Chaotic Maps”, IEEE Trans. On Circuits and Systems,

vol. 57, no. 2, pp. 146-150, February 2010

[16] M. Grangetto, E. Magli, and G. Olmo, “Multimedia

selective encryption by means of randomized arithmetic

coding,” IEEE Trans. Multimedia, vol. 8, no. 5, pp. 905–

917, Oct. 2006.

[17] Hyungjin Kim, Jiangtao Wen, John D. Villasenor,

“Secure Arithmetic Coding”, IEEE Trans. On Signal

Processing, vol. 55, no. 5, pp. 2263-2272, May 2007

[18] Boris Ryabko and Jorma Rissanen, “Fast Adaptive

Arithmetic Code for Large Alphabet Sources With

Asymmetrical Distributions” , IEEE

COMMUNICATIONS LETTERS, VOL. 7, NO. 1,

JANUARY 2003 pp. 33-35

[19] A. Moffat, N. Sharman, I. H. Witten, and T. C. Bell, “An

empirical evaluation of coding methods for multi-symbol

alphabets,” Inf. Process.Manage., vol. 30, pp. 791–804,

1994.

[20] E.Bodden, MalteClasen, Joachim Kneis, “Arithmetic

Coding revealed-A guided tour from theory to praxis”,

Sable Technical Report No. 2007-5, May 2007, available

at http://www.bodden.de/legacy/arithmetic-coding/

[21] I.MengyiPu, Fundamental Data Compression,

Butterworth-Heinemann, 2006

[22] D. Salomon, Data Compression-The Complete

Reference, 3rd Edition, Springer, 2004

[23] A.Drozdek, Elements of data compression, Brooks/Cole,

2002

[24] M. Nelson and Jean-loupGailly, The Data Compression

Book,2nd edition, M&T Books, New York, NY 1995

[25] Compression and Coding Algorithms: Kluwer Academic

Publishers, 2002.

[26] A. Moffat, R. Neal, and I. Witten, “Arithmetic coding

revisited,” ACM Trans. Inform. Syst., vol. 16, no. 3, pp.

256–294, July 1998.

[27] A. Said, “Introduction to Arithmetic Coding - Theory

and Practice”, available at

http://www.hpl.hp.com/techreports/2004/HPL-2004-

76.pdf

[28] Jyotika Doshi, Savita Gandhi, “Improved Performance

Of Arithmetic Coding By Extracting Multiple Bits At A

Time”, International Journal of Engineering Research &

Technology (IJERT) ISSN: 2278-0181, Vol. 1 Issue 8,

October – 2012

AUTHOR’S PROFILE
Jyotika Doshi, M.Sc. (Statistics) from M.S.University at

Vadodara, Gujarat, India; PGDCA (Computer Science) from

Allagappa Unibversity, Tamilnadu, India; MCA (Computer

Science) from IGNOU, India; pursuing Ph.D. (Computer

Science) from Gujarat University, Ahmedabad, Gujarat, India.

She has 3 years of industry experience in software

development and about 25 years experience in academics. At

present she is working as ASSOCIATE PROFESSOR at GLS

Institute of Computer Technology at Ahmebabad, Gujarat,

India. Her four research papers are published in international

journals.

Ms. Doshi is life member of CSI.

Savita Gandhi (MIEEE’ 2003 SMIEEE’ 2005) is Professor

& Head at the Department of Computer Science, Gujarat

University and Joint Director, K.S. School of Business

Management, Gujarat University. She is with Gujarat

University for about 24 years. Before that she has worked

with M.S. University of Baroda, Department of Mathematics

for about 10 years. She has been actively associated with

IEEE activities at Gujarat Section. She is M.Sc.

(Mathematics), Ph.D (Mathematics) and A.A.S.I.(Associate

Member of Actuarial Society of India by the virtue of having

completed the "A" group examinations comprising six

subjects conducted by Institute of Actuaries , London). She

was awarded Gold Medal for standing first class first securing

93% marks in M.Sc. and several prizes at M.Sc. as well as

B.Sc. Examinations for obtaining highest marks.

