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ABSTRACT 

Arithmetic coding is a very efficient and most popular entropy 

coding technique.  Arithmetic coding method is based on the 

fact that the cumulative probability of a symbol sequence 

corresponds to a unique subinterval of the initial interval [0, 

1). In this method, when encoding a symbol, it first computes 

new interval [low, high) based on cumulative probability 

segment of the symbol. Thereafter it iterates in a loop to 

output code bits till the interval becomes 2b-2 wide, where b is 

number of bits used to store range of an interval. In 

conventional implementation of arithmetic coding algorithm, 

in single loop iteration, only one bit is processed at a time. 

When most significant bit (msb) of low and high of a 

subinterval matches, it writes this msb in coded message and 

doubles the interval by extracting msb. When underflow 

occurs, it extracts second msb to expand an interval. 

Processing such single bit and expanding an interval is also 

called renormalization in a loop. In this paper, an upgradation 

of this conventional arithmetic coding algorithm is proposed, 

wherein more than one bit is processed at a time instead of 

just single bit in single iteration. This proposed multi-bit 

processing arithmetic coding algorithm is implemented here 

to reduce the iterations needed in renormalizing an interval.  It 

is observed that processing multiple output bits at a time leads 

to big improvement in execution time. To determine the 

number of maximum possible matching most significant bits 

to output, two alternatives are used here; (i) Using shift 

operation in a loop (ii) Using log function. It is found that first 

technique is far better than second one with respect to 

execution time. As compared to conventional 

implementations processing single bit at a time, about 52% 

overall saving in execution time is observed when processing 

multi-bits using shift operation in a loop; whereas about 31% 

overall loss in performance is observed with the technique of 

using log function. We have also tried these two alternative 

ways to determine the number of consecutive occurrences of 

underflow and process them all in single iteration; but it has 

not shown any significant gain in speed. As expected, in using 

any of the above methods, there is no compromise in 

compression ratio. 
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1. INTRODUCTION 
Arithmetic coding was introduced by Rissanen [1] in 1976. 

Arithmetic coding [2]-[5] is a very efficient entropy coding 

technique. It is optimal in theory and nearly optimal in 

practice, in that it encodes arbitrary data with minimal average 

code length. It works with any sample space so it can be used 

for the coding of text in arbitrary character sets as well as 

binary files. It encodes data using a variable number of bits. 

The number of bits used to encode each symbol varies 

according to the probability assigned to that symbol. The idea 

is to assign short codeword to more probable events and long 

codeword to less probable events [5]. 

Arithmetic coding has been developed extensively since its 

introduction several decades ago, and is notable for offering 

extremely high coding efficiency.  That is why it is most 

popular for entropy coding and widely used in practice. There 

are many data compression methods that first transform input 

data by some algorithm, and then compress resulting data 

using arithmetic coding [18]. For instance, the run length 

code, many implementations of Lempel-Ziv codes, the 

context-tree weighting method [6], Grammar—based codes 

[7]-[8] and many methods of image compression, audio and 

video compression. While many earlier-generation image and 

video coding standards such as JPEG, H.263, and MPEG-2, 

MPEG-4 relied heavily on Huffman coding for the entropy 

coding steps in compression, recent generation standards 

including JPEG2000 [9] and H.264 [10]-[13] utilize 

arithmetic coding.  It is also considered as a suitable candidate 

for a possible encryption-compression [14]-[16] combine 

providing security [17] and reduced size for internet 

applications.  

Arithmetic coding has a major advantage over other entropy 

coding methods, such as Huffman coding. Huffman coding 

uses an integer number of bits for each code, and therefore 

only has a chance of reaching entropy performance when 

probability of a symbol is a power of 2 for all the symbols. 

Arithmetic code encodes arbitrary data with minimal average 

code length, so its coding efficiency is generally higher. The 

main disadvantage of arithmetic coding is its relatively high 

computational complexity. It is usually slower than Huffman 

coding and other fixed-length to variable-length coding 

schemes [19]. Compression ratio cannot be further improved 

as compression ratio that can be reached by any encoder under 

a given statistical model is actually bounded by the quality of 

that model. However one can optimize one’s algorithms in at 

least two dimensions: memory usage and speed [20]. Here we 

have worked to increase execution speed. 

Existing conventional implementations [20]-[27] output one 

bit at a time. Arithmetic encoding algorithm is explained in 

detail in section 3. It processes single output bit or single 
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underflow occurrence in single iteration as shown in section 

V. 

Authors in the earlier paper [28] had proposed enhancement 

of traditional arithmetic coding by processing more than one 

bit in single iteration. This implementation [28] was done 

using four nested-if statements and thus processing maximum 

up to four bits at a time in single renormalizing iteration. It 

showed an overall gain of 17% in the execution speed of 

encoding, which led us to think further trying of maximum 

possible bits to process in a single iteration.  

Thus, in this paper, we have proposed and implemented a 

multi-bit processing arithmetic coding algorithm which 

computes maximum number of possible bits that can be 

processed at a time in single loop iteration. This number of 

desirable bits is determined using two ways: (i) using shift 

operation in a loop (ii) using log function. Corresponding 

algorithm and programming code is given in section 6 and 7.  

Here we have implemented our modified multi-bit processing 

arithmetic coding algorithm using 16 bit wide interval, so we 

can extract and process maximum up to 16 bits in single 

iteration. However, given logic and code can be applied for 

any number of bits depending upon the width (number of bits 

used) of an interval. 

As compared to conventional method of outputting single bit 

at a time during compression, outputting multiple bits at a 

time using shift operations in a loop shows an overall gain of 

about 52% in performance in execution time, whereas use of 

log function shows an overall loss of nearly 31% in execution 

time.  

We also tried to compute maximum possible number of 

consecutive occurrences of underflow and renormalize the 

interval accordingly in single iteration, but it has not shown 

considerable significant difference in the performance as 

compared to processing single underflow at a time. 

2. STATISTICAL MODEL 
Arithmetic coding method is based on the fact that the 

cumulative probability of a symbol sequence corresponds to a 

unique subinterval of the initial interval [0, 1). Before starting 

encoding process, symbols are assigned segments on interval 

[0, 1) according to their cumulative probabilities. It doesn’t 

matter which symbols are assigned which segment of the 

interval as long as it is done in the same manner by both the 

encoder and the decoder [24]. If S =  (S1, S2, . . ., Sn) is the 

alphabet of a source having n symbols with an associated 

cumulative probability distribution P = ( P1, P2, … , Pn), an 

initial interval [0, 1) is divided into n subintervals as [0, P1), 

[P1, P2), [P2, P3), …,[Pn-1, Pn) where Pi is the cumulative 

probability of symbol Si. Each subinterval length is 

proportional to the probability of the symbols [22].  

When arithmetic coding is implemented using integer 

arithmetic, a coding interval is usually represented by [L,H), 

where L and H are two b-bit integers denoting the interval’s 

lower end and higher end, respectively. An initial interval is 

[0,1). Cumulative probability is a ratio of cumulative 

frequency and total frequency. So instead of using cumulative 

probability, cumulative frequencies are used in computation. 

Thus the probability model is described by an array, [F0, 

F1,F2, . . . ,Fn], where Fi (0 ≤ i ≤ n) is f-bit integer (f ≤ b − 2) 

representing the lower and upper bounds of cumulative 

frequency segments. For symbol Si, Fi-1 is lower bound and 

Fi is upper bound. 

Here arithmetic coding algorithm is implemented with order-0 

model for 256 symbol alphabet. Statistical model is built 

using source data before starting compression. The model 

goes in compressed file for use by decompression algorithm. 

3. CONVENTIONAL ALGORITHM 
Existing conventional algorithm processes only one bit at a 

time and renormalize interval in single renormalizing iteration 

during encoding and decoding. Here a traditional algorithm is 

given to show how it is enhanced later. 

3.1 Encoding Algorithm 
• Interval=[0,1) 

• Qtr1=range/4, Qtr2=2*Qtr1, Qtr3=3*Qtr1 

• cnt=0, a count for occurrences of underflow 

• Repeat till not EOF 

– Read symbol 

– Compute corresponding new interval [low, high) 

– Repeat till interval becomes more than half 

(renormalization loop)  

• Case 1: low and high falls in upper half [0.5,1), 

i.e. low >= Qtr2. Here matching most significant 

bit (msb) is 1.  

- output bit 1 

- o/p bit 0 cnt times, cnt=0 

- expand an interval by doubling low and 

high; i.e. left shift low and high by 1 

position. (padding on right: low with 0 and 

right with 1) 

• Case2: low and high falls in lower half [0, 0.5), 

i.e. high < Qtr2. Here matching msb is 0  

- output bit 0 

- o/p bit 1 cnt times, cnt=0 

- left shift low and high by 1 position, i.e. 

double low and high ( padding on right: low 

with 0 and right with 1) 

• Case3: low falls in [Qtr1, Qtr2) and high falls in 

[Qtr2, Qtr3), i.e. (high < Qtr3) and (low ≥ Qtr1). 

Here msb is not matching and 2nd bit differ by 

1, thus underflow occurs. 

- cnt++ (underflow) 

- extract 2nd bit from low and high and then 

double, i.e subtract Qtr1 from low and high, 

double low and high 

• Other cases: (low<Qtr2) and (high ≥ Qtr3), i.e. 

interval is more than half; more than 2b-2 

-  Break loop 

• At EOF 

– cnt++ 

– if  low < Qtr1; i.e. if its most significant bit is 0, 

then output bit 0 and cnt times 1. Otherwise output 

bit 1 and cnt times 0 

3.2 Decoding Algorithm 
During decoding, it reads and processes b bit code from coded 

message till end of compressed file. Computation of new 

interval, extracting bits and renormalizing interval using 

coded message is performed in exactly the same way as that 

done during encoding. 

 

4. RENORMALIZING INTERVAL 
As explained in section 3, in arithmetic coding, while 

encoding and decoding each symbol, it processes a single bit 

and expands the current interval. This is considered as 

renormalization of an interval.  
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An algorithm renormalizes an interval in a loop till interval 

length becomes more than half (i.e. 2b-2) of the interval.  

In conventional implementations [20]-[27], renormalization is 

performed through the renormalization loop in a bitwise 

manner, i.e., during each execution of the renormalization 

loop, only one code bit is generated and the current interval is 

doubled. Case 1 and 2 of algorithm explained in section 3 are 

usually combined to output most significant matching bit 

(msb) whether it is 0 or 1. 

5. CONVENTIONAL “C” LANGUAGE 

IMPLEMENTATIONS 
Traditional algorithms implemented using 16 bit wide range is 

considered here.  There are some implementations using 32bit 

wide range, which require 64 bit (long long) integer in some 

integer multiplications to avoid overflow. This long long data 

type is not available with many C compilers. Arithmetic 

coding being lossless compression technique, its traditional 

implementations use integer arithmetic for accuracy purpose.  

Many implementations like E. Bodden [20] compare low and 

high bound of the interval with quarter (1/4th), half and 3/4th 

of an interval as explained in algorithm in section III.  This 

may execute slower as compared to implementations [24, 26] 

using bitwise operations for better performance.  

While encoding a symbol, it requires computing new value of 

low and high bound of an interval. After that, following loop 

(using bitwise operations [24, 26]) is executed till interval 

becomes more than half wide. In single iteration of this loop, 

either matching single bit is processed or one underflow 

occurrence is processed at a time. 

Renormalizing loop [24, 26] to process single bit after 

computing new value of low and high bound of new interval 

is given below. Variables low, high are unsigned 16 bit 

integers; cnt is used to store the value of underflow counts. 

 for ( ; ; )  // renormalizing loop 

 { 

     /* case 1 and 2, msb matching */ 

     if ( ( high & 0x8000 ) == ( low & 0x8000 ) )  

    { 

         output_bit( stream, (unsigned short) (high & 0x8000) ); 

         while ( cnt > 0 ) // cnt: underflow count 

         { 

           output_bit(stream,(unsigned short) (~high & 0x8000)); 

           cnt--; 

          } 

     } 

  /* case 3: underflow, msb not matching, 2nd bit differs by 1*/ 

     else if ( ( low & 0x4000 ) && !( high & 0x4000 )) 

     { 

          cnt++; 

          low &= 0x3fff; 

          high |= 0x4000; 

     } 

    else   // neither case 1,2 nor case 3, return 

          break;  // interval becomes more than half wide 

 

/* rescale low, high: rightpad low with 0s and high with 1s */ 

    low <<= 1; 

    high <<= 1; 

    high |= 1;    // have 1 as lsb 

}  // end for, renormalizing loop 

 

6. PROPOSED “MULTI-BIT 

PROCESSING ARITHMETIC CODING 

ALGORITHM”  
As mentioned earlier, in conventional implementations, only 

one bit is processed at a time in single iteration. Here it is 

proposed to extract and output more than one bit and expand 

the interval accordingly in a single iteration. This reduces the 

number of iterations used in renormalization. The best part of 

our proposed implementation is that it does not compromise 

on compression ratio at all. We have used two alternatives to 

compute number of matching most significant bits in low and 

high: (i) using shift operation in a loop and (ii) using log 

function. 

An additional attempt is made to compute number of 

consecutive occurrences of underflow and expand an interval 

accordingly. Here interval is expanded by extracting multiple 

bits from 2nd position onwards in low and high in single loop 

iteration.  

Proposed multi-bit processing arithmetic coding algorithm 

is given here. 

6.1 Using Statistical Model 
Same as in conventional implementation (as in section 2) 

6.2 Renormalizing Interval 
Here is the difference between implementation of 

conventional and our proposed multi-bit arithmetic coding 

algorithm. Here, renormalization is done by processing 

multiple bits at a time in single iteration. 

Renormalization loop in proposed implementation is as given 

below: Variable nBits is used to store the value of number of 

matching most significant bits of low and high; k is used to 

store the value of number of consecutive occurrences of 

underflow at a time. 

• Repeat till case 1 or 2 or 3 described in section 3 

(renormalization loop) 

– Case 1, 2: most significant bits are matching 

• Compute number of most significant matching 

bits, say nBits 

• output first msb  

• o/p cnt times the complement of msb, cnt=0 

• o/p remaining (nBits-1) msb 

• expand interval by shifting low and high to left 

by nBits position (padding on right: low with 0 

and high with 1) 

– Case 3: an occurrence of underflow; msb is not 

matching and 2nd bit differ by 1; i.e. low falls in 

[Qtr1, Qtr2) and high falls in [Qtr2, Qtr3) 

• Compute number of consecutive occurences of 

underflow, say k; add it to cnt. 

• Extract k bits from 2nd bit onwards from low and 

high. While doing so, right pad low bound with 

zeros and high bound with ones. 

6.3 Computing number of matching msb 
As we know, when bitwise xor operation is performed on bits, 

resulting bit is 0 when both operand bits are matching and 1 

otherwise. Thus (low xor high) will result in 0 wherever it has 

matching bits. So to compute how many msb are matching, 

the only task is to determine occurrences of leading 

consecutive zeros or finding the position of first occurrence of 

bit 1 from left. This can be done as shown below. 

• tmp=low XOR high 
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• Determine the number of matching most significant bits 

in high and low using either log function or shift 

operation as mentioned here 

– Using shift in a loop: left shift tmp, increment a 

counter, terminate loop when first bit of tmp is 1. 

Resulting counter is number of matching most 

significant bits in high and low. 

– Using log function: Determine 1st occurrence of bit 

1 from left in tmp using expression int(log2(tmp)). 

Assuming low and high are represented using b bits, 

nBits=b-int(log2(tmp))+1 will be the number of 

consecutive zeros on left in tmp, i.e. number of 

matching most significant bits in high and low. 

There might be a problem in using log2(x) function, as it is 

not be available in all C (ex. TurboC 3.0). In such cases, use 

log(tmp)/log(2) where log is natural logarithm. Using constant 

0.693147 for log(2) will reduce one function call. 

6.4 Computing number of consecutive 

occurrences of underflow 
Underflow occurs when low and high comes closer but it is 

not detected with most significant bit, i.e. most significant bit 

is not matching but next bit differs by 1. Thus most significant 

bit is 0 in low and 1 in high; and next bit is 1 in low and 0 in 

high. Our interest is to determine number of consecutive 1s in 

low and 0s in high after most significant bit. Then number of 

consecutive occurrences of underflow is lowest of these two 

numbers. Thus number of consecutive occurrences of 

underflow can be computed as minimum of leading 1s in 

(low<<1) and leading 0s in (high<<1). Required operations: 

• Left shift low and high by one position 

• Using left shift in a loop, compute consecutive 

occurrences of 1s in low. Let it be m. 

• Using left shift in a loop, compute consecutive 

occurrences of 0s in high. Let it be n. 

• Number of consecutive occurrences of underflow = k = 

minimum of m and n. 

7. PRACTICAL IMPLEMENTATION OF 

PROPOSED ALGORITHM USING “C”  
As said before, proposed multi-bit processing arithmetic 

coding algorithm is implemented using b=16 bit wide range.  

So possible maximum number of output bits at a time is 16. C 

code for computing number of matching most significant bits, 

consecutive occurrences of underflow and rescaling the 

interval is as follows: Variables low, high, tmp are all 

unsigned short (16 bit) integers. Array element mask[i] is 

assigned a value having all rightmost i bits set to1 and other 

bits set to 0. 

7.1 Computing number of matching most 

significant bits 
tmp = low ^ high; // high and low are in [0,0xffff] 

if (tmp == 0) 

       nBits=16;  // maximum 16 matching bits  

else 

   {  //using shift loop 

 nBits=0; 

 while (tmp < 0x8000)  // msb not 0 

 { 

    nBits++; 

               tmp = tmp<<1;  // remove leading zero 

 }  

     } 

 

To compute nBits using log function, replace code in else part 

with the following code. 

// using log tmp to base 2 

{   

    nBits=log(tmp)/0.693147; // natural log 2 = 0.693147 

    nBits = 15 - nBits;  // b=16 

} 

7.2 Rescaling interval in single iteration 
low <<= nBits;  // double nBit times 

high <<= nBits; // double nBits times 

high |= mask[nBits];   // pad rightmost nBits with 1 

7.3 Computing consecutive occurrences of 

underflow 
//compute underflow count = k 

//= min(leading 1s in (low<<1), leading 0s in (high<<1)) 

m=0; tmp=low<<1; 

while (tmp >= 0x8000) 

  {    m++;  tmp = tmp<<1;  } 

n = 0; tmp = high<<1; 

if (tmp==0) 

n=15; 

else 

  { 

 while (tmp < 0x8000) 

 {  n++; tmp = tmp<<1;  } 

  } 

   k=m; 

if ( n < m) k=n; 

7.4 Rescaling interval by extracting k bits 

from 2nd position onwards 
//starting from 2nd bit, extract k bits from low and high, 

//rightpad high with 1s 

low = low << k; 

low = low & 0x7FFF;  // to have msb 0 

high = high << k; 

high = high | 0x8000;          // to have msb 1 

high = high | mask[k];   // pad rightmost k bits with 1 

8. Experimental Results 
Both the conventional and our proposed multi-bit processing 

arithmetic coding algorithms are implemented using 16 bit 

Turbo C compiler on Intel(R) Pentium (R) D, CPU 3.00 GHz, 

1 GB RAM. Execution time is measured in seconds for 17 

files with varying sizes and file types. Some of the test files 

are selected from act, Calgary and Canterbury corpus, a 

widely used benchmark. These files are downloaded from 

website http://compression.ca/act/act-files.html. Selected test 

files are of various types like text files, image files, audio 

files, excel files, power point files, word documents, 

executable files etc. Used benchmark files are: 

act2may2002.xls (name shortened to act2may2.xls), 

calbook2.txt, ca-obj2, cal-pic, every.wav, frymire.tif, 

kennedy.xls, lena3.tif, monarch.tif, pine.bin, ptt5, world95.txt. 

Here term ACEN is used for existing conventional 

implementation of arithmetic coding for encoding data. In 

ACEN, single bit is output at a time and single occurrence of 

underflow is considered at a time.  Variations of multi-bit 

processing are denoted here as ACB1C1, ACB2C1, ACB1C2 

where B1, B2, C1, C2 are used to denote the following 

alternatives used: B1- number of matching most significant 

bits is computed using shift operation, B2 – number of 

matching most significant bits is computed using log function, 
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C1 - single underflow is considered at a time, C2 - more than 

one consecutive occurrences of underflow is considered at a 

time.  

Table 1 lists files used for testing of both existing and various 

proposed multi-bit implementations. It is to be noted that 

compressed file size remains same with all implementations.  

Execution time given in table 2 and table 3 is taken as an 

average of five trials of executing a program for each test file.  

TABLE 1. Test Files used 

No. File 

File Size 

(Bytes) 

Compressed 

 File Size  

(Bytes) 

1 act2may2.xls 1348036 789951 

2 calbook2.txt 610856 367017 

3 cal-obj2 246814 194255 

4 cal-pic 513216 108508 

5 cycle.doc 1483264 891974 

6 every.wav 6994092 6716811 

7 family1.jpg 198372 197239 

8 frymire.tif 3706306 2200585 

9 kennedy.xls 1029744 478038 

10 lena3.tif 786568 762416 

11 linuxfil.ppt 246272 175407 

12 monarch.tif 1179784 1105900 

13 pine.bin 1566200 1265047 

14 ptt5 513216 108508 

15 sadvchar.pps 1797632 1771055 

16 shriji.jpg 4493896 4481092 

17 world95.txt 3005020 1925940 
 

Table 2. Compression (Encoding) Time in Seconds: 

ACB1C1 and ACB1C2 

    ACB1C1 ACB1C2 

No. File name Seconds Seconds 

1 act2may2.xls 1.2088 1.2088 

2 calbook2.txt 0.5495 0.6044 

3 cal-obj2 0.2747 0.2747 

4 cal-pic 0.3297 0.3297 

5 cycle.doc 1.3187 1.3187 

6 every.wav 6.9231 7.0879 

7 family1.jpg 0.2198 0.2198 

8 frymire.tif 3.1868 3.1868 

9 kennedy.xls 0.8791 0.8242 

10 lena3.tif 0.7692 0.8242 

11 linuxfil.ppt 0.2198 0.2198 

12 monarch.tif 1.1538 1.1538 

13 pine.bin 1.4835 1.4835 

14 ptt5 0.3297 0.3297 

15 sadvchar.pps 1.7582 1.8132 

16 shriji.jpg 4.3956 4.5055 

17 world95.txt 2.8571 2.9670 

     Total 

Seconds 
27.8571 28.3516 

 

 

 

 

 

Table 2 presents the compression time (seconds) of multi-bit 

variations namely ACB1C1 and ACB1C2. As there is no 

significant difference observed in the execution performance, 

C2 is not considered in combination with B2 here. Figure 1 

shows comparison of execution time of encoding using multi-

bit processing variations ACB1C1 and ACB1C2. 

 
 

Fig. 1.Encoding time of ACB1C1 and ACB1C2 

Table 3 shows the compression time (seconds) of 

conventional ACEN (single bit processing in single iteration) 

and multi-bit processing variations ACB1C1 and ACB2C1. 

Figure 2 represents these data in a graph for better 

visualization of differences in execution time. 

Table 3. Compression (Encoding) Time in Seconds: 

ACEN,  ACB1C1 and ACB2C1 

    ACEN ACB1C1 ACB2C1 

No. File name Seconds Seconds Seconds 

1 act2may2.xls 2.307 1.209 3.297 

2 calbook2.txt 1.099 0.549 1.538 

3 cal-obj2 0.495 0.275 0.604 

4 cal-pic 0.659 0.330 0.879 

5 cycle.doc 2.637 1.319 3.516 

6 every.wav 15.000 6.923 18.791 

7 family1.jpg 0.439 0.220 0.549 

8 frymire.tif 6.648 3.187 8.791 

9 kennedy.xls 1.640 0.879 2.418 

10 lena3.tif 1.703 0.769 2.143 

11 linuxfil.ppt 0.439 0.220 0.604 

12 monarch.tif 2.528 1.154 3.187 

13 pine.bin 3.077 1.484 4.066 

14 ptt5 0.604 0.330 0.879 

15 sadvchar.pps 3.791 1.758 4.835 

16 shriji.jpg 9.505 4.396 12.088 

17 world95.txt 5.604 2.857 7.802 

    Total 

Seconds 
58.176 27.857 75.989 
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Fig. 2.  Encoding time of ACEN, ACB1C1 and ACB2C1 

 

9. RESULT ANALYSIS 
From Table 2 and Figure 1, it is observed that there is no 

significant difference in the performance of algorithms 

implemented with processing of single underflow at a time 

and multiple underflow occurrences at a time. This may be 

due to the calculations required in computing number of 

consecutive occurrences of underflow. Thus C2 (i.e. 

computing multiple underflow count and renormalizing 

interval accordingly at once) has no significant benefit over 

C1 (i.e. processing single underflow at a time). 

It is seen from Table 3 and Figure 2 that B2 (i.e. computing 

matching number of most significant bits using log function 

and renormalizing interval accordingly at once) has worst 

performance. It is not even better as compared to traditional 

single bit processing at a time (ACEN). Using B1 (computing 

matching number of most significant bits using shift operation 

in a loop and then renormalizing an interval accordingly at 

once) shows very large improvement of about 52% in 

execution speed. 

Execution time saved with the use of shift operations 

(ACB1C1) as compared to ACEN and ACB2C1 is analyzed 

in Table 4. Expressions used in computations are shown 

below:  

Percentage of gain of ACB1C1 over ACEN = 100 x (exec. 

time of ACEN – exec. time of ACB1C1)/exec. time of ACEN 

Overall % gain of ACB1C1 over ACEN = 100 x (total exec. 

time of ACEN – total exec. time of ACB1C1) / total exec. 

time of ACEN 

Overall ratio = total exec. time of ACB1C1 / total exec. time 

of ACEN 

Interpretations: 

Percentage in gain measures the % of time saved using 

ACB1C1 over ACEN. Overall ratio gives the fraction of 

ACEN execution time taken by ACB1C1. 

Standard Deviation (SD) and Coefficient of variance (CV) are 

statistical measures. SD is a square root of mean of squared 

deviations taken from mean. It measures how dispersed the 

observations are from their mean. CV = 100*SD/mean. It 

measures consistency in data set. 

Following observations are based on the analysis in table 4: 

 Overall execution time taken by ACB1C1 is 47.88% of 

execution time of conventional ACEN. Thus using 

ACB1C1, it saves 52.12% execution time as compared to 

ACEN. It can also be seen that performance gain using 

ACB1C1 is very consistent in all the test files. It varies in 

the range of 44.44 to 54.83, has standard deviation 3 and 

just 6% coefficient of variance. 

 Overall execution time taken by ACB1C1 is 36.67% of 

execution time of ACB2C1. Computing number of 

matching significant bits using shift in a loop gives 

overall performance benefit of 63.33% over 

computations using log function. This performance gain 

is found to be consistent in a range (54.54, 64.28) with 

standard deviation 2.25 and a small 3.59% coefficient of 

variance. 

 Overall execution time taken by ACB2C1 is 130.60% of 

execution time of ACEN. Computing number of 

matching significant bits using log function shows 

overall 30.60% loss in execution speed over conventional 

ACEN. The variation in performance loss is found to be 

large in various test files. It ranges in (22.222, 46.667) 

with standard deviation 7.482 and a 22.64% coefficient 

of variance. 

Table 4. Result Analysis 

    % gain of 

ACB1C1 over  

% loss with 

ACB2C1 

over ACEN  No. File name ACEN ACB2C1 

1 act2may2.xls 47.619 63.333 42.857 

2 calbook2.txt 50.000 64.286 40.000 

3 cal-obj2 44.444 54.545 22.222 

4 cal-pic 50.000 62.500 33.333 

5 cycle.doc 50.000 62.500 33.333 

6 every.wav 53.846 63.158 25.275 

7 family1.jpg 50.000 60.000 25.000 

8 frymire.tif 52.066 63.750 32.231 

9 kennedy.xls 46.667 63.636 46.667 

10 lena3.tif 54.839 64.103 25.806 

11 linuxfil.ppt 50.000 63.636 37.500 

12 monarch.tif 54.348 63.793 26.087 

13 pine.bin 51.786 63.514 32.143 

14 ptt5 45.455 62.500 45.455 

15 sadvchar.pps 53.623 63.636 27.536 

16 shriji.jpg 53.757 63.636 27.168 

17 world95.txt 49.020 63.380 39.216 

          

  overall gain% 52.125 63.341 (loss)30.595 

  overall ratio% 47.875 36.659 130.595 

  S.D. 3.047 2.248 7.482 

  CV 6.040 3.586 22.640 

  minimum 44.444 54.545 22.222 

  maximum 54.839 64.286 46.667 

 

10. CONCLUSION 
Our proposed multi-bit processing arithmetic coding 

algorithm executes faster when number of matching bits is 

computed using shift operation instead of using log function. 

As compared to existing conventional implementations of 

arithmetic coding, it has resulted into a tremendous gain of 

about 52% in execution speed while encoding without any 

compromise in compression ratio. Multi-bit processing at 
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once using log function is found to be very poor as compared 

to even conventional single-bit at a time processing. 
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