
International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 14, January 2013

Schedulability Analysis of Distributed Real-Time
applications under Dependence and Several Latency

Constraints

Omar Kermia
CDTA

Algiers, Algeria

ABSTRACT
This paper focuses on the analysis of real-time non preemptive mul-
tiprocessor scheduling with precedence and several latency con-
straints. It aims to specify a schedulability condition which enables
a designer to check a priori -without executing or simulating- if
its scheduling of tasks will hold the precedences between tasks as
well as several latency constraints imposed on determined pairs of
tasks. It is shown that the required analysis is closely linked to the
topological structure of the application graph. More precisely, it
depends on the configuration of tasks paths subject to latency con-
straints. As a result of the study, a sufficient schedulability con-
dition is introduced for precedences and latency constraints in the
hardest configuration in term of complexity with an optimal num-
ber of processors in term of applications parallelism. In addition,
the proposed conditions provides a practical lower bounds for gen-
eral cases. Performances results and comparisons with an optimal
approach demonstrate the effectiveness of the proposed approach.

General Terms:
Distributed Systems, Real-Time

Keywords:
Real-Time Systems, Multiprocessor Scheduling, Schedulability
Analysis, Combinatorial Problems, Latency Constraints

1. INTRODUCTION
Nowadays, computer applications in which computation must
satisfy stringent timing constraints are widespread. In such ap-
plications, failure to meet the specified deadlines can lead to a
serious degradation of the system, and can also result in catas-
trophic loss of life or property. The increasing of computing re-
quirements leads to the distribution of real-time applications over
multi-core platforms. However, in addition to the complexity of
parallelizing such applications, system designers are faced to the
problem of how to deal with applications parameters in such a
way that their temporal constraints are met. Yet, the formaliza-
tion of the performance of parallelisable applications date to year
1967 with the Amdahl law [2] and which was followed by a large
number of works one of them is in [23].
The challenge is to ensure that the real-time requirements of dis-
tributed applications are satisfied by providing formal methods.
In order to schedule, a scheduling algorithm is required which in-
cludes a set of rules defining the execution of tasks at the system
runtime. At the same time, it is important to provide a schedula-
bility analysis, which determines, whether a set of tasks with pa-

rameters describing their temporal behavior will meet their tem-
poral constraints. The result of such a test is typically a yes or a
no. This answer indicates whether, the constraints will be satis-
fied or not. These schemes and tests demand precise assumptions
about task properties, which hold for the entire system lifetime.
In addition, a set of processors are available for executing a set
of distributed real-time applications or software. Each computing
element might be a processor in a multi-processor architecture,
a host or a core in a multi-core machine. Without loss of gener-
ality, the term ‘processor’ is used in the present paper instead of
the other ones.
In this paper, a theoretical study is performed for solving the
problem of analyzing a system of real-time tasks under prece-
dence and several latency constraints. Latency constraints ad-
dressed in this work are that imposed by the system designer be-
tween predefined pairs among tasks of the application graph. La-
tency constraints analysis can be used to test, both at design time
and for on-line execution, whether the time lapses between tasks
pairs executions does not exceed an already specified values and,
so, meet their deadlines. It constitutes a serious alternative to
extensive testing and simulation by providing analytical latency
bounds which contribute considerably in process monitoring and
control applications required by real-time performance guaran-
tees.
As it is mentioned previously, the paper is interested in non-
preemptive scheduling. This choice is motivated by a variety of
reasons including [18]:

— In many practical real-time scheduling problems such as I/O
scheduling, properties of device hardware and software either
make preemption impossible or prohibitively expensive. The
preemption cost is either not taken into account or still not
really controlled;

— Non-preemptive scheduling algorithms are easier to imple-
ment than preemptive algorithms, and can exhibit dramatically
lower overhead at runtime;

— The overhead of preemptive algorithms is more difficult to
characterize and predict than that of non-preemptive algo-
rithms. Since scheduling overhead is often ignored in schedul-
ing models, an implementation of a non-preemptive scheduler
will be closer to the formal model than an implementation of
a preemptive scheduler.

For these reasons, designers often use non-preemptive ap-
proaches, even though elegant theoretical results on preemp-
tive approaches do not extend easily to them [4]. Designers also
choose directed acyclic graphs (DAG) to model different kinds of
structures in mathematics and computer science. Indeed, in many
real time systems, applications are developed using DAGs [21]

1

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 14, January 2013

where vertices represent sequential code segments and edges
represent precedence constraints. Throughout the paper, it is ex-
plained that the latency constraint is strongly linked to the topol-
ogy of the applications graph or more accurately to the parts of
the graph concerned by latency constraints.
There is a large literature in the real-time community on schedul-
ing tasks on multi-processor architectures. Sporadic and aperi-
odic real-time tasks are considered in respectively [5] and [6]
whereas energy-efficient scheduling is proposed in [17]. In [1]
QoS management is proposed and [8] targets to minimize ei-
ther the overall bandwidth consumption or the required num-
ber of cores. However, to our knowledge, schedulability analysis
dealing with several latency constraints (as it is defined in this
paper) has not been considered. In fact, Among the constraints
addressed in real-time scheduling issues, latency constraints are
less studied comparing with the periodicity constraint for exam-
ple [19]. Nevertheless, latency is a major concern in several fields
such as in embedded signal processing applications [14] for ex-
ample. In the literature, most often, authors talk about an end-
to-end deadline which ensures that the time lapse from sensors
and actuators does not exceed a certain value [16]. The main dif-
ferences between latency and end-to-end deadline is that latency
constraints are as much as system designer wants meaning that
they can be imposed between any pair of connected tasks in the
system (not necessarily sensor and actuator tasks only). In [11],
a definition of this constraint is given and the existence of a link
between deadlines and latency is proven. In addition, distributed
architectures involve inter-processor communications the cost of
which must be taken into account accurately. Furthermore, con-
cerning synchronization cost reduction, the approach proposed
in [9] is efficient in term of finding a minimal set of interproces-
sor synchronization, however, this approach assumes that some
dependence can be removed even though data are exchanged.
Moreover, it is not suitable for latency constraints satisfaction
because it imposes a tasks scheduling not exploiting the poten-
tial tasks parallelism which is essential in minimizing their total
execution time. Moreover, it was not possible to exploit results
from parallelism community, essentially because of precedence
constraints which are not taken into account [10].
The main contributions of this paper are the proposition of a
schedulability conditions for latency constraints in the hardest
configuration with an optimal number of processors in terms of
application parallelism. This configuration stands for the hardest
configuration among the other possible configurations because
of the interdependence of latency constraints. Also, from these
conditions, practical lower bounds for latency constraints val-
ues were deduced, the efficiency and the rapidity of which were
showed by evaluation tests.
The paper is organized as follows: Section 2 introduces the
model and defines the latency constraint. Section 3 introduces
the schedulability analysis through the different possible cases.
Section 4 describes the performance evaluation.

2. DEFINITIONS AND MODEL
The paper deals with systems of real-time tasks with precedence
and several latency constraints. A task ti is characterized by a
worst case execution time (WCET) C(ti) ∈ N. The precedences
between tasks are represented by a directed acyclic graph (DAG)
denoted G such that G = (V,E). V is the set of tasks character-
ized as above, and E ⊆ V × V the set of edges which represent
the precedence (dependence) constraints between tasks. There-
fore, the directed pair of tasks (ta, tb) ∈ E means that tb must
be scheduled, only if ta was already scheduled and ta is called a
predecessor of tb. The set of tasks belonging to all paths from ta
to tb including ta and tb is denoted by V′. Note that the architec-
ture plate-form is composed of identical processors.
A communication cost is involved when dependent tasks are
scheduled on two processors, whereas, the communication cost

is considered to be negligible if dependent tasks are scheduled
on the same processor. In our study the overall communication
overhead involved by the interaction between processors is taken
into account. IfM is the function of time needed for communi-
cation thenM can vary linearly with the number of processors:
M(m) = Q.(m − 1) where Q is a constant dependent on the
architecture and stands for an average communication cost be-
tween a pair of processors and m is the number of processors. In
addition, M can, also, vary logarithmically since communica-
tions can be designed in order to get a logarithmic impact on the
total execution time. For example, communications can be par-
allelized in the case of hierarchical topology architectures and
function M becomes M(m) = Q. logm. Nevertheless, it is
important to notice that in targeted applications, granularity is
chosen in such a way to get high computation to communication
ratio. Because, when the granularity is large the computation cost
becomes dominant and the relatively small (but non-negligible)
communication cost actually encourages the use of more proces-
sors to help the reduction of scheduling time. This implies more
opportunity for performance increase but, nevertheless, involves
hard efficient load balancing [7].
Each task ti has a start time S(ti) determined by the schedul-
ing algorithm. A latency constraint is defined only between two
tasks connected in the tasks graph which means that it exists at
least one path connecting the two tasks. By imposing a latency
constraint L(ta, tb), the time elapsing from the execution start of
ta and the execution start of tb must be less or equal than an inte-
ger denoted also by L(ta, tb) and which is already known. As in
the graph tasks ta and tb are connected by one or several paths,
hence, P(ta, tb) denotes the set of paths pi which connect ta
to tb. Hence, P(ta, tb) is also a set of sets of tasks meaning that
ti ∈ (pj ∈ P(ta, tb)).
The length of pi is denoted by |pi| such that |pi| =∑

tj∈pi C(tj). Among paths pi, lp denotes the longest one.
More formally, a latency constraint L(ta, tb) is met if and only
if:

S(tb)− S(ta) ≤ L (1)

In the tasks graph of the figure 1
P(t1, t7)={p1, p2, p3, p4, p5, p6} such that: p1 = {t1, t2,
t3, t4, t5, t6, t7}, p2= {t1, t8, t9, t4, t5, t6, t7}, p3={t1, t2, t3,
t4, t5, t10, t7}, p4= {t1, t8, t9, t4, t5, t10, t7}, p5={t1, t2, t11,
t4, t5, t6, t7}, p6={t1, t2, t11, t4, t5, t10, t7} and p7={t1, t2,
t11, t6, t7}.

 2 1 4 3 5 7

9 8

11

01

0

10

0

L

6

Fig. 1: Tasks under latency constraint

3. SCHEDULABILITY STUDY
The studied problem is close to the problem ”P | prec | Cmax”
(using Lenstra’s 3-fields notation [15]) which is known to be NP-
hard [15]. The ”P | prec |Cmax” problem aims to minimize max-
imum completion time of all tasks whereas the objective is to de-
termine the schedulability of the graph tasks by findingl whether

2

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 14, January 2013

a scheduling of all tasks of the graph on a multiprocessor plat-
form, satisfying the precedence and latency constraints, exists
or not. Consequently, our problem in a one latency case is also
NP-hard. Moreover, in the several latency constraints case, the
problem becomes NP-hard in the strong sens because of links
between latency constraints .
Since the studied problem is NP hard, no algorithm can resolve
it in a polynomial time (unless NP=P) and this is, also, true for
the schedulability condition. This means that, in a general case,
it is impossible to propose a necessary and sufficient condition
allowing to check if a set of tasks under a latency constraint is
schedulable or not in a polynomial time.

3.1 One latency Constraint Case
The matter of dealing with a latency constraint is closely linked
to the structure of the graph. That is the reason why a partition-
ing method is proposed considering graph paths. Without loss of
generality, in the present paper it is considered that the whole
graph is under the latency constraint L(ta, tb) which means that
the considered graph has one root vertice ta and one leaf ver-
tice tb (see figure 1). In the case of graphs with large tasks and
edges numbers, the number of paths is also very large. However,
determining all paths is not an NP hard problem [25]. Besides,
according to [24], it exists several approaches for determining all
paths of a graph, among which the topological sort of the graph
can be mentioned. However, in practice, the number of paths is
less than the number of vertices in a graph. Even in a simple de-
sign with a small quantity of components, the number of vertices
in G is more than 10 times the number of paths in the architecture
[22].
The allocation algorithm (Algorithm 1) has as inputs all paths of
the graph and as outputs the selection of some of them which,
each one, will be associated to a distinct processor. First, the al-
gorithm begins by sorting paths in P(ta, tb) according to a de-
creasing order of their lengths then it selects them one by one
and it allocates paths tasks to a processor to which it is associ-
ated. After that, at each step, tasks belonging to a path pi and
which were not allocated before via another path (the case of
tasks belonging to several paths) will be allocated to the proces-
sor to which pi is associated. The algorithm stops when all tasks
under a latency constraint are allocated meaning that all paths
will not be necessarily selected.
As a result, each task of the application graph will be allocated
to only one processor. Also, an integer m is returned equiva-
lent to the number of selected paths which returns the number of
required processors. In other words, Algorithm 1 parallelizes the
execution of the application by allocating its tasks to a set of pro-
cessors. Besides, this parallelization follows the configuration of
paths which compose the application graph.

Algorithm 1 Allocation Algorithm
1: m← 0
2: Sort paths in P in a decreasing order of length
3: Select lp and initialize a set of tasks Φ = lp
4: while Φ 6= V′ do
5: For each path pi not already selected :

λ(pi) =
∑

tj∈pi ∧ tj/∈Φ

C(tj)

6: Select pi such that λ(pi) = max(λ)
7: Φ = Φ ∪ pi (include pi’s tasks in Φ)
8: m← m+ 1
9: end while

An example of Algorithm 1 application is illustrated in figure
2. Processors P1, P2 and P3 were required whereas seven paths
were detected (see example of section 2). For this example it is
assumed that the execution times of tasks are equal. From now

 2 1 4 3 5 7

9 8

11

01

0

10

0

L

6

Pr2

Pr1

Pr3

Fig. 2: Paths Allocation

the set of pathsP(ta, tb) is considered composed ofm paths (the
ones selected by Algorithm 1). Also, we notice by p̂i the set of
tasks exclusively belonging to pi, more formally, if ti ∈ p̂i then
∀pj ∈ P(ta, tb) \ pi, ti /∈ pj .
One can ask what makes the number of tasks returned by Al-
gorithm 1 so distinctive. The answer is that the value of m rep-
resents the optimal number of processors since it allows to ex-
ploit the total parallelism inherent to the application graph. This
means that if two tasks are not linked by a path in the graph (no
one is the predecessor or the successor of the other) then they
are allocated to distinct processors. Moreover, Adding other pro-
cessors than the m processors required by Algorithm 1 does not
improve the exploitation of the parallelism inherent to the appli-
cation graph. Proposition 1 introduces the optimality of m.

PROPOSITION 1. The application of Algorithm 1 on an ap-
plication graph returns the optimal number of processors allow-
ing the task parallelism exploitation.

Proof Algorithm 1 allocates tasks according to paths to which
they belong. Notice that the considered paths are those which in-
clude, at least, a task which does not belong to any other path.
Let assume that for a given graphG algorithm 1 returnedm pro-
cessors. Also, let assume that, it exists a number of processors
m‘ such that m‘ < m for which the exploitation of the paral-
lelism of the graph G is optimal. This means that each pair of
tasks (ti, tj) not linked by a path in G are allocated to two dis-
tinct processors among the m‘ processors. As assessed earlier,
the graph G has only one root task ta and only one leaf task tb
and, hence, it exist two distinct paths which link ta and tb and in-
clude ti for the first and tj for the second (This is due to the fact
that ti and tj are not linked). This implies that all distinct paths
in G will be concerned. Consequently, (m−m‘) processors are
missing in order to parallelize all pairs (ti, tj) �
From now on, Algorithm 1 is systematically applied to allocate
tasks.
The following proposition introduces a necessary and sufficient
schedulability condition in the case of one latency constraint.

PROPOSITION 2. Let L be a latency constraint imposed on
the tasks pair (ta, tb). Latency constraint L(ta, tb) is met if and
only if: ∀pj ∈ P(ta, tb),∑

ti∈
⋂

pj

C(ti) + max
pj

(
∑
ti∈p̂j

C(ti)) +M(m) ≤ L (2)

Proof this result is quite intuitive and can be obtained by exam-
ining the inequality S(tb) − S(ta) ≤ L. Indeed S(tb) − S(ta)
which is the scheduling time of tasks under latency constraint L
is equal to the sum of execution times of:

(1) Tasks which are non-parallelisable with any other tasks (se-
quential tasks which are linked by a path in the application
graph). These are represented by tasks shared between all
paths in P(ta, tb) (ti ∈ {

⋂
pj}),

3

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 14, January 2013

(2) Among parallel tasks, the longest sub-path is selected from
the m paths. On each processor mi tasks of the set P̂i are
allocated and the largest sum of executions time of tasks of
each P̂i is kept. This is due to the precedence between tasks
which prevents of distributing parallel tasks between proces-

sors to get a more balanced distribution such as

∑
ti∈V′

C(ti)

m
(V ′ is the set of tasks which are in parallel in the graph ap-
plication),

(3) Communication overhead�

3.2 Several Latency Constraints Case
In [12], authors have stated that all possible combinations for
two pairs of tasks under, each one, a latency constraint can be
covered by three cases:

— In parallel, when there is no path linking tasks under the first
latency constraint to those under the second latency constraint.

— In Z, when there is one (or more) path linking tasks under the
first latency to those under the second latency or vice versa.

— In X , there is one (or more) path linking tasks under the first
(resp. second) latency to those under the second (resp. first)
latency.

For the Z and parallel relations the schedulability study can be
performed as for the one latency case. This statement issues from
the fact that latency constraints in these cases can be addressed
one after the other in order to check the schedulability of the
whole system. In addition, the X configuration is the hardest
one to be studied because the two latency constraints are depen-
dent. In fact, satisfying one of these latencies is not related to the
scheduling of tasks under this constraint only but it is related,
also, to some tasks which are under other latency constraints.
Usually, in this case, it is about multi-objective optimization and
the problem becomes harder than in a single optimization case
[13].
Let’s take an example of a tasks graph subject to a pair of latency
constraints inX . The figure 3 depicts a pair of latency constraints
L1 and L2 in X imposed between (t1, t4) and (t9, t11).

 2 1 4 3 5

 7

9 8 11

01

0

10

0

12

L1

L2

6

Fig. 3: A pair of latency constraints in X

The following proposition introduces a necessary and sufficient
schedulability condition in the case of two latency constraints in
X .

PROPOSITION 3. Let (L1, L2) be two latency constraints in
X imposed, respectively, on tasks pairs (ta, tb) and (tc, td). La-
tency constraints L1(ta, tb) and L2(tc, td) are met if and only
if:

(1) Condition of proposition 2 is met for tasks under L1 andm1

processors and for tasks under L2 and m2 processors

(2) and

 max
pi∈P(tc,tb)

|pi|+M(m) ≤ L1

max
pi∈P(ta,td)

|pi|+M(m) ≤ L2
(3)

m, m1 and m2 are obtained by applying Algorithm 1 on the
graph under latency constraints L1 and L2. m1 is the number of
processors to which tasks underL1 are allocated,m2 the number
of ones to which tasks under L2 are allocated and m represents
all required processors. Notice thatm < m1 +m2 because there
exist tasks under the two latency constraints.

Proof As expected, the one latency case schedulability condition
(condition 2) becomes a necessary condition in the case of two
latency constraints in X . Indeed, if one of the two latency
constraints is not met then all the system is considered as
non-schedulable. Then, in order to prove the sufficiency of the
condition proposed here, equations (3) is assumed as satisfied,
and constraints L1 and L2 are, nevertheless, not met. The con-
straints L1 and L2 are not met means that S(tb) − S(ta) > L1

and S(td)− S(tc) > L2.

S(tb)− S(ta) > L1 means that:
Either,
∃pi ∈ P(ta, tb), |pi| +M(m1) > L1. This hypothesis is in
contradiction with the condition 2 because:
(2)⇒ ∀pi ∈ P(ta, tb), |pi| ≤ L1

Or,
as tc is a predecessor of the task tb, hence, the start execution of
tb is related to the execution of tc and other tasks which are under
the latency constraint L2. Therefore, in the present case, the start
execution of tb is delayed by the execution of tasks under latency
constraint L2 whereas all predecessor tasks of tb under latency
constraint L1 were executed. This is, more formally, described
by the following inequality:
∃tx ∈ (P(ta, tb) ∩ P(tc, td)),

max
pi∈P(tc,tx)

|pi|+M(m2) < max
pi∈P(ta,tx)

|pi|+M(m1) (4)

Furthermore,
S(tb)− S(ta) > L1 and (4)⇒
∃pj ∈ P(tc, tx) and ∃pk ∈ P(tx, tb),

|pj |+M(m1) + |pk|+M(m2) > L1 (5)

Otherwise, it is clear that:

|pj |+M(m1)+|pk|+M(m2) ≤ max
pi∈P(tc,tb)

|pi|+M(m) (6)

from condition 3, equation 5 is in contradiction with equation 6.
The same reasoning can be followed to prove that (S(tc) −
S(td) > L2) is in contradiction with the assumption that the
constraint L2 is met�

The result of proposition 3is easily generalizable to a tasks graph
subject to n latency constraints, two by two, in X configuration.
Indeed, It suffices to check conditions of proposition 3 for each
pair of latency in X then to conclude the schedulability of the
whole system. So, using results of propositions 2 and 3 any appli-
cation graph can be dealt with whatever the number of imposed
latency constraints is and whatever these latency constraints are
configured.

The schedulability study performed earlier introduces schedula-
bilty conditions over a processors number which stands for the
optimal number to exploit all the parallelism inherent to the ap-
plication graph, but the proposed conditions does not fit a sys-
tem with a static architecture (i.e., the number of processors is

4

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 14, January 2013

known beforehand and fixed). When system designers face such
systems, they tend towards fast analysis methods even thought
these methods are not as exact as optimal methods. So, know-
ing that the targeted problem is NP-hard in the strong sens the
schedulability analysis of such systems throughout optimal ap-
proaches or even heuristics takes a very long time. Instead of an
optimal schedulability analysis, conditions the paper proposes
practical lower bounds for latency constraints values Li what-
ever the number of processors is. Hence, system designers can
refer to the proposed conditions to adjust the latency constraints
values while saving a considerable time. The following proposi-
tion introduces lower bounds for latency constraints values ac-
cording to the different configurations.

PROPOSITION 4. 1. if L is a latency constraint imposed on
the tasks pair (ta, tb). The lower bound of L(ta, tb) is:

Llb =
∑

ti∈
⋂

pj

C(ti) + max
pj

(
∑
ti∈p̂j

C(ti)) +M(m) (7)

2. If (L1, L2) are two latency constraints in X imposed, respec-
tively, on tasks pairs (ta, tb) and (tc, td). The lower bounds of
L1(ta, tb) and L2(tc, td) are:

Llb
1 = max(

pj∈P(ta,tb)∑
ti∈

⋂
pj

C(ti) + max
pj∈P(ta,tb)

(
∑

ti∈p̂j
C(ti)) +M(m1),

max
pj∈P(tc,tb)

|pj |+M(m))

(8)

Llb
2 = max(

pj∈P(tc,td)∑
ti∈

⋂
pj

C(ti) + max
pj∈P(tc,td)

(
∑

ti∈p̂j
C(ti)) +M(m2),

max
pj∈P(ta,td)

|pj |+M(m))

Proof
Llb represents a lower bound to the scheduling time between
ta and tb (S(tb) − S(ta)). This means that the value that sys-
tem designer will give to L(ta, tb) must not be lower than Llb

otherwise the latency will necessarily be not met. As high com-
putation applications are targeted, the use of more processors
involves the reduction of scheduling time. Reciprocally the re-
duction of the number of processors will increase the scheduling
time. This proves that llb in the different seen configurations is
a minimum of scheduling time for systems where the number of
processors is less than m.
In addition, as m represents the optimal number of processors
to get the optimal parallelism within the application graph, the
fact of using more processors thanm processors does not lead to
reduce the scheduling time�

3.3 Performance Evaluation
In order to evaluate the performances of applying the schedula-
bility condition of proposition 3 we implemented an application
designated as the proposed approach which, for a given graph of
tasks under a pair of latency constraints in X , checks conditions
of proposition 3 and outputs, following the obtained result, the
schedulability of the system. Then, two kinds of tests are per-
formed:

— an evaluation of time performances of the proposed solution,
— a comparison with solutions provided by the constraint pro-

gramming approach.

Tasks graphs (DAGs) used for the evaluation were generated ran-
domly according to the two following parameters: number of
tasks and density. In our case the graph density is a ratio be-
tween the number of edges in the graph and the number of pos-
sible edges (in the complete graph). For example, a graph of 12
tasks with 0.5 density has 33 edges whereas a complete graph

of 12 tasks has 66 edges. Notice that the number of edges in a
complete graph is n(n−1)

2
, where n is the number of tasks.

Inside the graph, 40 % of tasks is put under the constraint L1 and
40 % under the constraint L2. Next, the remaining 20% are put
under the two constraints L1 and L2. An example of a generated
graph with 12 tasks and 0.25 of density (17 edges) is given in
figure 4: 5 tasks are exclusively under the constraint L1, 5 other
tasks are exclusively under L2 and 2 tasks are under both of L1

and L2.
In the generated graph the number of edges is determined by
the density (as explained in the previous paragraph) whereas the
configuration of these edges is defined randomly as follows:

a
 b

 c

d

L1

L2

Fig. 4: Example of generated 12 tasks graph

— a set of randomly generated edges within the restriction of
ensuring the X configuration of latency constraints (the edges
in continued line in the graph of figure 4),

— a set of randomly generated edges between tasks under the
same latency constraints (the edges in discontinued line in the
graph of figure 4) and which satisfy the DAG properties of the
graph.

The first test concerns time performances of the proposed ap-
proach functions of the graph’s number of tasks and the graph’s
density. The diagram of figure 5 depicts the evolution of the run-
time by a 3d curve. It showed that the increasing density has a
more important impact, than those of the number of graph tasks,
on the runtime of the proposed approach. This is mainly ex-
plained by the fact that the number of paths increases when the
graph has a higher density. Moreover, the runtime of the pro-
posed approach are very reasonable even when the density is
hight. Notice that the runtime follows a logarithmic scale and
results were collected on a machine with a 3,4 GHz Intel Core i7
processor and 10GB main memory.
The second test targets the efficiency of the proposed approach
in term of schedulability and lower bounds. To do so, we chose
to use the constraint programming for resolving the latency con-
straints scheduling problem and to compare the obtained results
to the proposed approach results.
The constraint programming is a programming language that is
oriented to relationships or constraints among entities [3]. The
most important reason is that constraint programming has a rich
modeling language which is very convenient to express the prob-
lem. Moreover, the underlying CP solver is relatively robust with
respect to the addition of new constraints, and the search can be
controlled entirely by the user.
Our problem was solved using ILOG OPL Studio commercial
software according to the following CP formulation. The objec-
tive is to minimize the scheduling of tasks under L1 by mini-
mizing the start time of tb and in the same time minimizing the

5

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 14, January 2013

Graph Density

Tasks

Number

 Runtim

(seconds)

0.1

1

10

100

1000

0.2
0.3

0.4
0.5

200 400
600

800

Fig. 5: Proposed approach runtime evolution

Table 1. : Definition of Variables and Domains
Variable Domain
NbTasks N+

NbProcs N+

duration(ti) N+

task(ti, procj) [StartOf(ti), EndOf(ti)] ⊂ N+

Table 2. : Definition of Constraints
Constraint Description
· if (ti, tj) ∈ E · tj is a predecessor of ti
then EndOf(ti) ≤ StartOf(tj)
·∀ti ∈ V, ∀procj , · each task needs only one
alternative(task(ti, procj)) processor to be executed
· ∀proci, noOverlap(proci) · no overlap on processors

scheduling of tasks under L2 by minimizing the start time of
td (knowing that latency constraint are imposed on (ta, tb) and
(tc, td)). Hence, the multiple objectives are expressed in a sin-
gle objective by summing them together and applying weights to
each objective to signify its relative importance. It was assessed,
first, that the two objectives have the same importance and, con-
sequently, the same weight. But, the runtime of CP approach ex-
ploded, even for small graphs. Hence, CP approach minimizes
L1 first then L2. Thus, the objective function is:

Min (x ∗ StartOf(tb) + y ∗ StartOf(td))

Where (x, y) = (1, 0) then (x, y) = (0, 1). In addition, vari-
ables domains and constraints are given in table 1 and 2. Con-
straints of table 2 are provided by ILOG OPL Studio for schedul-
ing modeling [20]. The number of processors is defined by Al-
gorithm 1.
To do so, within the CP approach the objective was to look for the
scheduling which minimizes the start dates of tb and td then to
compute the values of Lopt

1 = StartOf(tb) and Lopt
2 =StartOf(td).

These values are the optimal (smallest) values that L1 and L2

can have. Then, they were compared to the values of Llb
1 and Llb

2

resulting from the calculation of equations 8.

2 4 6 m
1

1.25

1.5

Processors Number

ε

ε(L2) ε(L1)

12 tasks
14 tasks
16 tasks

Fig. 6: Proposed approach schedulability performances

After that, the value of ρ is computed which the ratio between

Lopt
i and Llb

i such that ρ(Li) =
L

opt
i

Llb
i

in order to get an idea
of how far are the proposed approach results from the optimal
ones. For each case of the tasks number list [12,14,16] until 20
different graphs were generated and both approaches were ap-
plied on them. Notice that the chosen density of all tested graphs
was 0.4. At the beginning, the two approaches were executed on
a m processors architecture (m is given by Algorithm 1). After
that, the number of processor was reduced and fixed from the
list [4,3,2], and only the optimal approach was executed. Notice
that the proposed approach cannot be execute since it fixes itself
the number of processors. Results are illustrated by diagrams on
figure 6 (ρ(L1) is marked in black and ρ(L2) is in white).
As expected, ρ is equal to 1 when the number of processors is
equal to m meaning that our approach as the optimal approach
return the optimal latency values in the case of m processors.
After that, once the number of processors was reduced, ρ values
increase meaning that the values returned by CP is larger than
Llb

i and Llb
i which confirm their positions of lower bounds. No-

tice that the values of ρ increase, also, from the first set of tests
(12 tasks) to the second set of tests (14 tasks) then increase again
in the third set of tests (16 tasks). This is explained by the fact
that when the number of tasks increase, the number of paths fol-
lows and it leads to increase the value of the optimal number of
processors m.
In addition, it emerges that the proposed approach provides an
interesting results considering that, among the three sets of tests,
optimal approach returned results varying from 1.25 and 1.5
times the proposed approach results. This means that, on all per-
formed experiments, the proposed approach gives a value to Li

which is, at worst, around 1.5 times smaller than the one given by
the CP approach. Hence, the proposed lower bounds can be con-
sidered as efficient seeing the difference between runtimes of the
two approaches. The light difference between ρ(L1) and ρ(L2)
is explained by the fact that in CP approach priority is given to
the minimization of (StartOf(tb)) at the cost of minimization of
(StartOf(td)). As with any other optimal method, runtime of CP
approach explodes exponentially as soon as the number of tasks
becomes more important which prevented us to consider more
than 16 tasks graphs.

6

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 14, January 2013

4. CONCLUSION
The paper presents a theoretical study of the real-time non pre-
emptive multiprocessor scheduling with precedence and several
latency constraints. After assessing the NP-hardness of this prob-
lem, an algorithm is proposed for allocating application graph
tasks to a number of processors allowing the optimal task paral-
lelism exploitation. The schedulability study, proposed here, in-
troduces a first condition in the case of one latency constraint.
Then, after giving the different possible configurations in the
case of several latency constraints, it introduces a second con-
dition to check the schedulability of latency constraints in the
hardest configuration in term of complexity. Finally, from the
proposed conditions a practical lower bounds were deduced.
The first phase of tests demonstrates that the proposed approach
has a very competitive runtime. In addition, the second phase
concerned a comparison with an optimal approach which is the
Constraint Programming approach. These tests showed that the
proposed approach provides an interesting results in term of
schedulability and lower bounds.
The performed study assumes that the number of processors is
at least equal to the number of paths selected by the allocation
algorithm. Hence, it is plan to explore the possibilities of includ-
ing the number of processors in the schedulability condition as a
fixed parameter.

5. REFERENCES
[1] Luca Abeni, Tommaso Cucinotta, Giuseppe Lipari, Luca

Marzario, and Luigi Palopoli. Qos management through
adaptive reservations. Real-Time Systems, 29(2-3):131–
155, 2005.

[2] G. M. Amdahl. Validity of the single-processor ap-
proach to achieving large scale computing capabilities. In
AFIPS Conference Proceedings, volume 30, pages 483–
485. AFIPS Press, 1967.

[3] Krzysztof Apt. Principles of constraint programming.
2003.

[4] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-
vincentelli. Scheduling for embedded real-time systems.
IEEE Design and Test of Computers, 15(1):71–82, 1998.

[5] Sanjoy K. Baruah and Joel Goossens. The edf scheduling of
sporadic task systems on uniform multiprocessors. In IEEE
Real-Time Systems Symposium, pages 367–374, 2008.

[6] Sanjoy K. Baruah and Giuseppe Lipari. Executing aperi-
odic jobs in a multiprocessor constant-bandwidth server
implementation. In ECRTS, pages 109–116, 2004.

[7] Lawrence Livermore National Laboratory Blaise Barney.
Introduction to parallel computing. Web, 2010.

[8] Giorgio C. Buttazzo, Enrico Bini, and Yifan Wu. Parti-
tioning real-time applications over multicore reservations.
IEEE Trans. Industrial Informatics, 7(2):302–315, 2011.

[9] H-Yi Chao and M P. Harper. Minimizing redundant depen-
dencies and interprocessor synchronizations. International
Journal of Parallel Programming, 23:245–262, 1994.

[10] Tommaso Cucinotta. Optimum scalability point for par-
allelisable real-time components. In Proceedings of the
International Workshop on Synthesis and Optimization
Methods for Real-time and Embedded Systems (SOMRES
2011), Vienna, Austria, November 2011.

[11] L. Cucu, N. Pernet, and Y. Sorel. Periodic real-time
scheduling: from deadline-based model to latency-based
model. Annals of Operations Research, 2007.

[12] L. Cucu and Y. Sorel. Non-preemptive scheduling algo-
rithms and schedulability conditions for real-time systems
with precedence and latency constraints. (RR-5403):33,
2004.

[13] Christian Glasser, Christian Reitwiessner, Heinz Schmitz,
and Maximilian Witek. Approximability and hardness
in multi-objective optimization. In Proceedings of the
Programs, proofs, process and 6th international conference
on Computability in Europe, CiE’10, 2010.

[14] S. M. Goddard and Jr. On the management of latency in
the synthesis of real-time signal processing systems from
processing graphs, 1998.

[15] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H.
G. Ronnooy Kan. Optimization and approximation in de-
terministic sequencing and scheduling: a survey. In Annals
of Discrete Mathematics, 1979.

[16] Chih-wen Hsueh and Kwei-jay Lin. Scheduling real-
time systems with end-to-end timing constraints using
the distributed pinwheel model. IEEE Transactions on
Computers, 49(1):51–66, 2000.

[17] Kai Huang, Jian-Jia Chen, and Lothar Thiele. Energy-
efficient scheduling algorithms for periodic power manage-
ment for real-time event streams. In RTCSA (1), pages 83–
92, 2011.

[18] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-
preemptive scheduling of periodic and sporadic tasks. In
Proceedings of the 12 th IEEE Symposium on Real-Time
Systems, pages 129–139, December 1991.

[19] O. Kermia. Optimizing distributed real-time embedded
system handling dependence and several strict periodic-
ity constraints. Advances in Operations Research, page
10.1155/2011/561794, 2011.

[20] Philippe Laborie. Ibm ilog cp optimizer for detailed
scheduling illustrated on three problems. In Integration
of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, Lecture Notes in
Computer Science. 2009.

[21] Cong Liu and James H. Anderson. Supporting graph-based
real-time applications in distributed systems. Real-Time
Computing Systems and Applications, International
Workshop on, 1:143–152, 2011.

[22] Yuchun Ma, Zhuoyuan Li, Jason Cong, Xianlong Hong,
G. Reinman, Sheqin Dong, and Qiang Zhou. Micro-
architecture pipelining optimization with throughput-aware
floorplanning. In Proceedings of the 2007 Asia and South
Pacific Design Automation Conference, 2007.

[23] Yuan Shi. Reevaluating amdahl’s law and gustafson’s
law. Technical report, Temple University, Philadelphia, PA
19122, October 1996.

[24] F Tutzauer. Entropy as a measure of centrality in networks
characterized by path-transfer flow. Social Networks,
29(2), 2007.

[25] S. V. N. Vishwanathan, N. Schraudolph, R. Kondor, and
K. Borgwardt. Graph kernels. Journal of Machine Learning
Research, 11:1201–1242, 2010.

7

	Introduction
	Definitions and Model
	Schedulability study
	One latency Constraint Case
	Several Latency Constraints Case
	Performance Evaluation

	Conclusion
	References

