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ABSTRACT 

Variable Bandwidth Filters (VBFs) find applications in 

software defined radios, trans-multiplexers etc. The key 

features essential for fractional changes in the bandwidth of a 

VBF are low complexity, easy re-configurability and fine 

tuning capability.  A VBF which has the capability to reduce 

the bandwidth has been reported recently.  This paper 

proposes the design of a multiplier-less, sharp VBF based on 

FRM.  It is capable of both bandwidth reduction and 

enhancement.  To make the filter totally multiplier-less, the 

filter coefficients are synthesized in the Canonic Signed Digit 

(CSD) format.  This is formulated as an optimization problem.  

Recently, Artificial Bee Colony (ABC) algorithm has been 

proposed for the discrete optimization of the FRM filter 

performance.  In this paper, Gravitational Search Algorithm 

(GSA) is deployed to get the optimized filter coefficient 

values. 
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1. INTRODUCTION 
Finite Impulse Response (FIR) filters are widely acceptable in 

many areas of signal processing and communication due to 

their exact linear phase and high stability under certain 

conditions. FIR filters with variable frequency characteristics 

also have wide range of applications like software defined 

radio (SDR) channelizers, trans-multiplexers etc. which 

require online tuning of frequency characteristics and re-

configurability. In the design of a variable FIR filter, we 

should preserve the finite length and linear phase of the FIR 

filter for any desired frequency characteristics. For this, high 

priority should be given for the optimal design of the filter.  

For the desired spectral characteristics, the design and the 

updating routine should be simple and the filter should be 

suitable for real time applications. 

  

The methods for designing variable digital filters can 

generally be classified into two types: transformation and 

spectral parameter approximation. In the case of 

transformation method, a prototype filter with certain 

frequency characteristics is first designed and the selected 

transformation is then applied for obtaining the variable cut 

off frequencies. For the spectral parameter approximation 

method, the variable bandwidth filter is assumed to be a 

weighted combination of fixed coefficient filters, and the 

weights are directly proportional to the spectral parameters of 

the variable bandwidth filter.  

 

The methods based on transformation [1]-[3], change the 

length of the filter and require real time computations to find 

the new filter coefficients. The methods based on spectral 

parameter approximation [4]-[6] also require real time 

calculations to find the new impulse response of the overall 

filter system using the fixed impulse response of sub filters.  

 

A new method based on changing the sampling frequency of 

the input signal, which will allow continuous variation of the 

bandwidth of a FIR filter without changing its coefficients and 

length is discussed in [7]. This is accomplished by 

interpolating the input series to obtain an intermediate time 

series at a new sample rate proportional to the required 

bandwidth. The interpolated series are processed by the fixed 

length FIR filter now operating at the changed sample rate. 

The output of the filtered time series is then interpolated back 

to the original input sample rate. This effectively changes the 

bandwidth. The complexity reductions as well as the sharp 

transition bandwidth are achieved by using a FRM based FIR 

filter which is having large number of zero valued multiplier 

coefficients [8]. 

 

This paper proposes a further reduction in complexity and 

power consumption by realizing the filter without multipliers. 

This is achieved by converting the maximum precision filter 

coefficients into finite precision coefficients using signed 

power of two (SPT) systems. The SPT system allows the 

multiplications to be replaced by shift and add operations [9], 

which reduces circuit complexity. Hence low power hardware 

realization is possible, because the multipliers are the major 

power and silicon area consuming components in the physical 

realizations of filters. CSD representation is a special case of 

the SPT system which uses both additions and subtractions 

[10], and this will give minimum number of SPT terms with 

precision. 

 

Direct rounding of the filter coefficients to the CSD format 

with restricted number of SPT terms, can result in the 

deterioration of the filter performance. This necessitates the 

use of suitable optimization techniques to improve the 

performance of the restricted CSD represented filters. The 

classical gradient based optimization techniques cannot be 

directly applied, because here, the search space consists of 

integers. Meta-heuristic algorithm is a good choice for getting 

the optimized performance. Proper selection of the tuning 

parameters can lead to a global solution to the particular 

design problem. 
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Genetic algorithms (GA) have been established as a good 

alternative for the optimization of multimodal, multivariable 

problems. This is a population based evolutionary algorithm 

where, in each iteration, candidate solutions are generated 

using Genetic operations like reproduction, crossover and 

mutation. A binary coded GA has been used for the design of 

CSD based FRM filter by Yu et.al. [11]. Even though the 

performance of the optimization technique is good, the 

convergence speed is low. To improve the performance of the 

GA, a hybrid scheme was proposed in [12] which combined 

the GA and Oscillation Search (OS) algorithm. Here, though 

the convergence is fast, it uses ternary encoding of the filter 

coefficients. This calls for the use of some restoration 

techniques to avoid non canonic CSD coefficients and hence 

results in more computational load. This drawback is avoided 

in the novel GA reported by Mercier.et.al [12] where the 

chromosome is formed by binary encoding of the FRM filter 

coefficients using a look up table approach. This method is 

capable of obtaining good performance in the frequency 

domain, but the running time required for the optimization is 

very large.  

 

So a search for better alternatives for the design of multiplier-

less FRM filter to be used as a VBF, has resulted in this work. 

For this, modern meta-heuristic algorithms like Artificial Bee 

Colony algorithm [13] and Gravitational Search algorithm 

[14] have been used. The reduced computation time and the 

non usage of restoration algorithms are the key features of the 

proposed approaches. Comparative study of the fixed length 

fixed bandwidth FRM based FIR filter in terms of 

optimization parameters and performance parameters are 

compared. 

 

The paper is organized as follows. Section 2 gives a review of 

the variable bandwidth filter. Section 3 gives an overview of 

the frequency response masking technique. In Section 4, the 

CSD representation is briefed. Section 5 gives a brief 

overview of the meta- heuristic algorithms. The design of the 

continuous coefficient FRM filter is given in Section 6. The 

statement of the problem is done in Section 7.  Section 8 

illustrates the optimized design of multiplier-less FRM filter 

using the meta-heuristic algorithms ABC and GSA. Section 9 

is concerned with the results and analysis of the optimized 

FRM filter. Variable bandwidth filter using optimized 

multiplier-less FRM filter is presented in Section 10 and 

Section 11 concludes the paper. 

2. Review of Variable Bandwidth Filter 
In the case of constant form factor FIR filter, the length of the 

filter is inversely proportional to the transition bandwidth, 

which is proportional to the bandwidth of the filter. Thus if the 

bandwidth of the filter is changed by a factor, the length of the 

filter is also changed by the same factor. 

In order to realize a variable bandwidth filter without changing 

the number of coefficients or coefficient values, we can utilize 

the relationship between the sample rate and bandwidth [7]. 

This can be further elaborated to mean that the interval 

between the main lobe peak and the first zero crossing of the 

impulse response is the reciprocal of the filter bandwidth. Also 

the interval between the samples is the reciprocal of the 

sample rate. The  number  of  taps  of  the  filter  (TP)  is  given  

by  TP   =  fs /△f ,  where  ’fs’  is  the  sampling  frequency  

and  ’△f ’  is  the  transition  bandwidth.  If the bandwidth is 

changed, the transition bandwidth is also changed by the same 

factor. Hence if the number of taps of the filter is fixed, one 

method of changing the bandwidth is to change the sampling 

rate. So we can change the absolute bandwidth of a filter by 

operating it at a different sampling rate. The technique used in 

[8] is used for changing the bandwidth continuously in 

decreasing and increasing fashion. 

The implementation of the process is represented in Figure 1. 

An input signal which is initially oversampled is applied to an 

arbitrary sample rate converter (up or down). The modified 

signal is processed by the fixed length, fixed bandwidth FRM 

based FIR filter and the output of the filter is then converted 

back to the original input sampling rate by using another 

arbitrary sample rate converter (down or up). This effectively 

changes the bandwidth. 

 

 

 

 

Figure 2 shows the implementation of an arbitrary sample rate 

converter [15]. Three M - path  polyphase  filters  are  used  

for  calculating  the  sample  values  of  the interpolant  and  

the  sample  derivatives  at  the  offset  position  k/M  from  

the interpolating output phase centre. The computed output is 

formed from a local Taylor series as given by Equation (1). 

    
 

 
 

 

 
   

    
 

 
       

 

 
  

  

  
    

 

 
               

The increment d−acc satisfies the following relation shown in 

Equation (2) and the required bandwidth can be achieved by 

just changing the parameter d_acc  as shown in Equation (3). 

     

 
 

    

   

 
    

     

                                         

                                                     
Where M − number of polyphase filters  

 fsin  − input sampling rate to interpolate 

 fsout − output sampling rate of interpolator 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Functional block diagram of variable 

bandwidth filter 

 

Fig. 2 Implementation of arbitrary sampling rate 

converter 
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3.  Overview of FRM Technique 
In  this  section,  we  provide  a  brief  review  of  FRM  

technique  [16],[17],  which is one of the most efficient 

techniques  for the synthesis of sharp linear phase digital 

filters using several wide transition band sub filters. 

Compared to the conventional direct-form realization, it gives 

a large reduction in the computational complexity because of 

the large number of sparse coefficients. 

 

 

 

 

 

 

 

Figure 3 shows the basic realization structure of the FRM 

technique. Ha(z
M) is an M- fold version of a  given prototype 

low pass filter H(z) with symmetrical impulse response and 

linear phase. ′ θ′  and ′φ′  are  the pass band and  stop  band  

edges respectively  and   the  transition  bandwidth  of      Ha 

(zM)  is  (φ - θ)/M,  which  is  a  factor  of  M narrower  than  

the  transition  width  of  the  prototype filter. The 

complementary filter of Ha(z
M), denoted by Hc(z

M), can be 

expressed as Hc (z
M) = z−M (Na−1)/2 - Ha(z

M), where Na  is the 

length of the impulse response of Ha(z
M) which has to be odd.  

Two  masking  filters  Hma(z) and  Hmc(z)  are cascaded to  

Ha(z
M) and Hc(z

M) respectively and added together to form the 

FRM filter with an overall transfer function as given in 

Equation (4). The FRM based filter responses are illustrated in 

Figure 4. 

    H (z) = Hma (z).Ha (z
M

) + Hmc (z).Hc(z
M

)                (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Canonic Signed Digit Representation  
The multipliers are the most power consuming circuits and 

occupy large silicon area. If it is possible to represent the 

multiplication coefficients as SPT terms, then the multiplier 

circuits can be implemented by using shifters and 

adders/subtraction circuits. CSD representation is an encoding 

where a binary number contains the fewest number of non-

zero bits [9]. The number of partial product addition and hence 

adders are determined by the total number of non zero bits in 

the filter coefficient representation. It is possible to represent a 

filter coefficient with minimum number of SPT terms using 

CSD representation [12]. A filter coefficient ‘q’ can be 

uniquely represented in CSD format as (5). 

               
    

   
                                                                                                                                   

where  i Є { -1, 0, 1}  called ternary coding and   i  i-1 = 0.  

  is the word length of the CSD number d1, d2, d3,- - dw.   

determines the SPT terms used in CSD numbers. The canonic 

property    i  i-1 = 0, ensures that all non-zero digits in the 

CSD numbers are separated by at least one zero digit. The 

maximum number of non zero bits in the CSD representation 

of a    bit number is         and the maximum number of 

adder / subtraction needed to realize the CSD represented    

bit number is only         -1. 

5. Overview of meta-heuristic optimization 

algorithms 
Heuristic algorithms are typically intended to find a good 

solution to an optimization problem by ‘trial-and-error’ in a 

reasonable amount of time. Meta-heuristics are considered as 

higher level techniques or strategies which are intended to 

combine lower level techniques and tactics for exploration 

and exploitation of the huge space for parameter search. The 

population based algorithms ABC and GSA, which are used 

in this work, come under this category. 

 

There are two important components in modern meta-

heuristics, and they are: intensification (exploitation) and 

diversification (exploration) [18]. For an algorithm to be 

efficient and effective, it must be able to generate a diverse 

range of solutions including the potentially optimal solutions, 

so as to explore the whole search space effectively, while it 

intensifies its search around the neibourhood of an optimal or 

near optimal solution. In order to do so, every part of the 

search space must be accessible though not necessarily visited 

during search. Diversification is often in the form of 

randomization with a random component attached to a 

deterministic component in order to explore the search space 

effectively and efficiently, while intensification is the 

exploitation of past solutions so as to select the potentially 

good solution via elitism or use of memory or both.  Any 

successful meta-heuristic algorithm requires a good balance of 

the above two components. Typically, the solution starts with 

some randomly generated, or educated guess and gradually 

reduces their diversification while increases their 

intensification at the same time, though how quick to do so is 

an important issue. By proper selection of the optimization 

parameters, these algorithms will result in a global solution 

and the same can be used for other engineering applications 

also. The heuristic algorithms do not require the objective 

function to be derivable or even continuous and can be 

employed directly on the fitness function to be optimized. The 

following gives an overview about the meta-heuristic 

algorithms used.  

 

 

 

 Fig. 3 Realization structure of FRM filter  

 

Fig. 4 Illustration of FRM approach 
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5.1 Artificial Bee Colony Algorithm  
Artificial Bee Colony (ABC) Algorithm is a population based 

meta-heuristic optimization algorithm based on the intelligent 

behaviour of honey bee foraging. This model was introduced 

by Karaboga in 2005 and is based on inspecting the 

behaviours of real bees on finding nectar amounts and sharing 

the information of food sources to the other bees in the hive. 

The specialized bees try to maximize the nectar amount stored 

in the hive by performing efficient division of labour and self-

organisation [13 ].  

 
The colony of artificial bees contains three groups of bees: 

employed bees, onlookers and scouts. The employed bees are 

associated with specific food sources, onlooker bees watching 

the dance of employed bees within the hive to choose a food 

source, and scout bees searching for food source randomly 

[13]. The onlooker bees and the scout bees are unemployed 

bees. Initially the scout bees discover the position of all food 

sources, thereafter the job of employed bee starts. An artificial 

employed bee probabilistically obtains some modifications on 

the position in its memory to target a new food source. Later 

the onlooker bee evaluates the information taken from all 

employed bees and then chooses a final food source with the 

highest probability related to its nectar quality. If the fitness 

value of the new one is higher than that of the previous one, 

the bee forgets the old one and memorizes the new position. 

This is called greedy selection.  Then the employed bee whose 

food source has been exhausted becomes a scout bee to search 

for further food source once again. 
 

In ABC, the positions of food sources represent the possible 

solutions and the nectar quality of the food source 

corresponds to the fitness of the associated solution. The 

onlookers and employed bees perform the exploitation 

process in the search space, the scouts carry out the 

exploration process. The number of employed and onlooker 

bees are the same, and the number is equal to the number of 

food sources which is equal to the number of solution vectors 

in the population. Once the searches for better solutions by all 

the employed bees are completed, the onlooker bees search 

for better solutions. Employed bees whose solutions cannot be 

improved through a predetermined number of trials, specified 

by the user, called “limit”, become scouts and their solutions 

are abandoned. The scout randomly searches for the location 

of a new food source. When it finds a new food source, it 

again becomes an employed bee associated with that food 

source. When all the scouts become employed bees, the 

position of the best food source found out so far is updated 

and another iteration of ABC algorithm begins. The whole 

process is repeated again and again till the termination 

condition is satisfied. 
The main steps of the algorithm are 

1.     Initialize the parameters and food source positions. 

2. Place the employed bees on their food source and 

 exploit the better source. 

3. Place the onlooker bees on the food sources 

depending on their nectar amount. 

4. Determine the sources to be abandoned and send the 

scouts to the search area for discovering new food 

 sources. 

5. Memorize the best food source found so far. 

6. Repeat steps 2-5 until the stopping criterion is met. 

 

 

5.2 Gravitational Search Algorithm (GSA) 

Gravitational search algorithm is a newly developed 

population based heuristic optimization method based on the 

law of gravity and mass interactions [14]. In this approach, the 

search agents are a collection of masses which interact with 

each other based on the Newtonian gravity, “Every particle in 

the universe attracts every other particle with a force that is 

directly proportional to the product of their masses and 

inversely proportional to the square of the distance between 

them” and the law of motion “ The current velocity of any 

mass is equal to the sum of the fraction of its previous 

velocity and the acceleration, and the acceleration of any mass 

is equal to the force acted on the system divided by the mass 

of inertia”. Each agent/object has four specifications: position 

of the masses, inertial mass, active gravitational mass and 

passive gravitational mass. The position of the masses 

constitutes the solution space and the performance of each 

solution is measured in terms of their masses using fitness 

function. All of the objects attract each other by the gravity 

force, while this force causes a global movement, all objects 

towards the objects with heavier mass, which corresponds to 

the optimum solution to the problem- move more slowly than 

the lighter ones; this guarantees the exploitation step of the 

algorithm. Each mass represents a solution and the algorithm 

is navigated by properly adjusting the gravitational and 

inertial masses. The position of the agents is updated with 

every iteration. The algorithm terminates when a fixed 

amount of iteration is reached. Once the algorithm terminates, 

the best fitness at the final iteration is taken and the position 

of the mass of the corresponding agent becomes the global 

solution of the problem. 

 

The main steps of the proposed algorithm are 

1. Search space identification and randomized 

initialization. 

2. Fitness evaluation of agents. 

3. Update gravitational constant, inertial and total masses, 

best and worst fitness values etc. 

4. Calculation of total force in different directions. 

5. Calculation of the acceleration of agents. 

6. Updating agent’s position and velocity. 

7. Repeat steps 3 - 6 until the stop criterion is met. 

 

6. Design example 

6.1 Design of a continuous coefficient FRM 

filter 
Consider a typical example for designing a sharp, arbitrary 

bandwidth FIR filter. The design specifications of the low 

pass FRM filter are shown below. 

Pass Band Edge frequency: 0.1π 

Stop band Edge frequency: 0.109π 

Maximum Pass band ripple: 0.1 dB 

Minimum stop band attenuation: 40 dB 

 The band-edges of the various sub-filters Ha(z), 

Hma(z) and Hmc(z) are obtained and the optimal interpolation 

factor is found in such a way that the total complexity is 

minimum [16]. The total complexity is quantified in terms of 

the total number of multipliers needed for the realization of 

the overall FRM FIR filter. The orders of the sub filters 

meeting the required specifications are 33, 33 and 33 

respectively for the model, masking and complementary 

masking filters. The total number of multipliers required for 

the implementation is only 51, which is around 60% less, 

compared to minimax approach for designing a FIR filter for 

the same specifications. 
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6.2 CSD Rounded FRM FIR filter 
To represent the continuous coefficient FRM filter in CSD 

space, each filter coefficient should be rounded to the nearest  

CSD number. In this paper, the word length of the CSD is 

taken as 14 bits. A typical example of the CSD representation 

of a decimal value is shown in Table1. 

After the quantization of the maximum precision multiplier 

coefficient values, the resulting FRM based FIR filter in the 

CSD space with restricted number of SPT terms can result in 

the deterioration of the frequency response. Table 2 gives the 

performance comparison of continuous coefficient filter and 

CSD rounded filter with maximum of 7, 4, 3, 2, and one SPT  

 

terms in each filter coefficient. From the table it can be seen 

that, the frequency response parameters deteriorate while 

decreasing the total number of SPT terms. Figure 5 shows the 

magnitude response of the CSD represented filter with a 

maximum of 2 SPT terms. 

7. Statement of the Problem  
The requirement is to design an FRM filter in the CSD space 

with reduced complexity for hardware implementation by 

replacing the multipliers with shifters and adders. The direct 

rounding of the continuous FRM filter coefficients into 

restricted number of SPT terms, leads to the degradation of 

performance specifications. An optimization technique has to 

be used for reducing the difference between two. In this 

context, our aim is to model this as an approximation problem 

by formulating a new objective function suitable for the 

various meta-heuristic algorithms. 

7.1 Formulation of the Objective Function 
The objective function is defined as an approximation error 

after the filter is converted to the CSD space. The new 

objective function F1(x) is formulated as the L2 norm of the 

 error of approximation, which is given in Equation (6). 

 

                                                                 (6) 

 

where         is the zero phase frequency response of the 

maximum precision/ continuous coefficient FRM filter and 

         is the zero phase frequency response of the 

optimized filter, where, x is the design vector constituted by 

concatenating the filter coefficients of the sub filters of the 

FRM filter in the CSD space. To reduce the number of SPT 

terms in the optimized CSD equivalents, a constraint is also 

added to the optimization problem as n(x) ≤ nb.  n(x) 

denotes the average number of non zero SPT coefficients 

after optimization and nb is the upper bound of n(x). The 

penalty method [19] can be used for keeping the 

optimization problem as an unconstrained one by including 

the penalty function given by Equation (7) and the final 

objective function for the coefficient synthesis of FRM filter 

can be formulated as Equation (8). 

       g(x) = max(0, n(x) – nb)                                              (7) 

 

    Minimize F(x) = λ1 F1(x) + λ2 g(x)                                  (8) 

Table 1. Typical example of a CSD represented number 

 

Table 2.  Comparison of FRM parameters for different SPT terms 

Parameters of 

FRM filter 
Continuous 

CSD rounded 

for 7 SPT 

terms 

CSD rounded 

for 4 SPT 

terms 

CSD rounded 

for 3 SPT 

terms 

CSD rounded 

for 2 SPT 

terms 

CSD rounded 

for 1 SPT 

term 

Max. Pass band 

ripple (dB) 
0.1163 0.1191 0.1247 0.1263 0.2435 0.8927 

Min. Stop band 

attenuation (dB) 
38.9967 38.2376 37.9796 36.3035 30.4862 19.5544 

SPT terms in Fa  97 95 81 60 31 

SPT terms in Fma  101 96 83 60 31 

SPT terms in Fmc  96 92 79 54 29 

Total SPT terms  294 283 243 174 91 

 

 

Fig. 5  Magnitude responses of  continuous coefficient and CSD 

rounded FRM filter 
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where λ1 and λ2 are positive weighting coefficients and can be 

used for fixing the relative importance of the terms in the 

objective function of the optimization problem. 

 

7.2 Encoding of the optimization variables 
For the conversion of the maximum precision FRM filter 

coefficients into the CSD space, the look up table method is 

used [20]. The advantages of using look up table method 

instead of ternary coding are the non usage of restoration 

algorithm and the reduction in the computational complexity. 

A CSD look up table with four fields: index, CSD number, 

decimal equivalent and the number of nonzero SPT terms is 

created as shown in Table 1for the entire 14 bit representation, 

out of which, 12 bits are used for representing the fractional 

part and 2 bits for the integer part. The decimal value larger 

than this is limited to the maximum value of representation. 

For the joint optimization of the various sub filters, the 

coefficients of the sub filters Ha(z), Hma(z) and Hmc(z), 

concatenated together, is used to form the design vector for 

the optimization problem. Since the sub filters are assumed to 

have linear phase, the number of optimization variables can be 

further reduced by extracting only half of the symmetrical 

filter coefficients of each sub filter. This reduces the 

dimensionality and the computation time compared to the 

optimization by Mercier et. al. [12]. 

In order to represent the filter coefficients in the CSD space, 

they are encoded as the signed indices of the look up table 

locations of the nearest CSD equivalent. If the decimal filter 

coefficient is negative, then it is encoded as the negative of 

the index of the location of its positive counterpart. Thus the 

initial solution for the joint optimization problem is 

constituted by concatenating half of the integer coded CSD 

coefficients of the model filter, masking filter and the 

complementary masking filter. Since the search space consists 

of integers, the classical gradient based optimization 

techniques cannot be used. Therefore the optimization based 

on meta-heuristic approaches with proper modifications to 

suit the problem is adopted here. 

8. Design of the Optimal Multiplier-less 

FRM Filter for Variable Bandwidth using 

Modified Meta-heuristic Algorithms 
Modern meta-heuristic algorithms such as ABC and GSA are 

suitable for solving multimodal, multivariable, discrete 

optimization problems [21]. But ternary coding is not suitable 

for these algorithms. So in this paper, modified integer coded 

ABC and GSA are used for the design of multiplier-less FRM 

prototype fixed bandwidth filter for the variable bandwidth 

application. An FRM filter with continuous coefficients is 

designed and the coefficients of the sub filters are encoded in 

CSD format. A typical vector in this format is shown in Table 

3, where xa, xma and xmc represent the CSD synthesized 

coefficients of the model, masking and complementary 

masking filters respectively.  The filter coefficients are then 

encoded as signed integers using look-up table as explained in 

Section 7.2. This is used as the initial starting solution vector 

to the optimization. The maximum number of nonzero bits or 

SPT terms in a filter coefficient for optimization is taken as 2. 

The following algorithms are used for the optimized CSD 

coefficient synthesis. 

Table 3. A typical solution vector 

xan1,-  -  -  - xaN1-1, xman2,-  -  -  - xmaN2-1, xmcn3,-  -  -  - xmcN3-1 

8.1 Design of optimal CSD coefficient filter 

using integer coded ABC Algorithm 
 

The various phases of the proposed ABC algorithm for the 

CSD coefficient synthesis of FRM filter are explained below 

[13]. 

8.1.1  Initialization  
Population size N, maximum number of iteration MNI and the 

control parameter “limit” are set with typical values given in 

the Table 4. 

Table 4. Typical initialization parameters of integer coded 

ABC Algorithm 

Population size N limit MNI 

50 200 500 

 

 

For ensuring wider search space and elite solutions, at the 

beginning, the total number of food sources are taken as the 

integer multiple of the employed bees. The prioritized food 

sources, which are the same, as the number of employed bees, 

are selected from the randomly perturbed initial solution 

based on the nectar quality and passed on to the next stage of 

the optimization. 

8.1.2  Employed bee phase  
Each employed bee is associated with a food source. For each 

employed bee determine a new food source within the 

neighbourhood of the food source in their memory. The new 

food source is produced by (9). 

 

        vij = round (xij + Φij (xij – xkj))                                      (9) 

 

where Φij is a uniformly distributed real random number in 

the range [-1, 1],  j is the random value in the range (1, 2, 

3,...D), k is the index of the solution chosen randomly in the 

range (1, 2, 3,.......N), D is the dimension of the solution and N 

is the number of employed bees. 

The new food source is verified for the boundary conditions 

of the CSD lookup table by Equation (10), where vlb and vub 

are the lower bound and upper bound of lookup and  j   1, 2, 

3.....D and i  is the index of the current solution. The new 

solution is compared with the existing solution and the 

employed bee exploits the better source. If the nectar amount 

or the fitness value is better than the existing one, it is 

                           vlb   if   vji,G+1  <  vlb        

   vji,G+1 =                                                                           (10) 

                           vub   if   vji,G+1  >  vub    
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replaced with the new food source, otherwise it is retained. 

8.1.3  Onlooker bee phase 
 An onlooker bee chooses a food source with a 

probability Pi using (11), which is based on the nectar 

information collected from all the employed bees  and 

produces a new food source based on (9) as same as in the 

employed bee phase. Similar to the employed bee phase, the 

greedy selection mechanism is employed for the selection 

operation between the old and new food source. 

            
    

     
 

   

                                                                                        

where,      is the fitness of the ith food source and N is the  

total number of food sources. 

8.1.4  Scout bee phase 
 After all the onlookers are distributed to the food 

sources, the fitness values of the sources are checked whether 

they are to be abandoned. If the number of cycles that a 

source cannot be improved is greater than a predetermined 

“limit”, the source is considered to be exhausted. The 

employed bee associated with the exhausted source become a 

scout and makes a random search by (12) for finding a new 

food source. The best food source found so far is memorized.  

           xt+1 = randi ([lb, ub], ‘dim’)                                  (12) 

where randi denotes the random integer values from the 

uniform discrete distribution within the interval [lb, ub] with 

dimension of the food source specified by ‘dim’. 

8.1.5  Termination 
 Steps 8.1.2 to 8.1.4 are repeated until the number of 

predetermined MNI is reached. When the termination 

condition is met, the solution vector with the best fitness is 

taken and decoded using lookup table to get the optimal filter 

coefficients. The magnitude responses of the filters are given 

in Figure 6. 

 

Fig. 6  Magnitude responses of  the FRM filter  

designed using integer coded ABC 

8.2 Design of optimal CSD coefficient 

filter using integer coded GS Algorithm 
 

The main steps of the modified GS algorithm for the CSD 

coefficient synthesis of FRM filter are explained below [14]. 

8.2.1 Initialization 
Number of masses (agents) N, gravitational constant G0, user 

specified constant   and maximum number of iterations MNI 

is set with the typical values shown in Table 5. 

 Let N number of agents constituted the GSA 

system. Initialize the position of agents by randomly 

perturbing the CSD encoded filter coefficient. The position 

of the ith agent can be defined by Equation (13).  

 

Xi = (xi
1, . . . . xi

d, . . . . xi
n)    for  i = 1, 2, 3,. . . . .N          (13) 

where xi
d is the position of the ith mass in the dth dimension 

and n is the dimension of the search space. 

 

Table 5. Typical initialization parameters of integer 

coded GS Algorithm 

Number of 

agents N 

Gravitational 

constant G0 

Constant 

  

MNI 

50 100 20 500 
 

8.2.2 Fitness evaluation and updating of 

parameters 
In each iteration the fitness function of the objects are 

evaluated. After identifying the best and worst values for the 

current iteration, the masses of the particles are updated 

according to the following equations. The heavier mass 

means a more efficient agent which is having more 

attractions and moves more slowly. 

 

Gravitational and inertial mass of an agent can be calculated 

using map of fitness. 

 

  Mai = Mpi = Mii = Mi,      where  i = 1, 2, 3,........N         (14) 

 

       
        –         

        –         
                                            

   

          
      

      
 

   

                                                       

where, Mai , Mpi and Mii  are the active gravitational mass, 

passive gravitational mass and inertia mass respectively of 

the ith agent are accepted as they are equal to each other, the 

fiti(t) represents the fitness value of the agent i at time t and 

the best(t) and worst(t) are the strongest and weakest agent 

according to their fitness function. Since the optimization 

problem is a minimization type, the best(t) and worst(t) can 

be defined as  

 

best(t) = minjЄ 1,2,...N fitj(t)        worst(t) = maxjЄ 1,2,...N fitj(t)      (17) 

 

The gravitational constant G(t) is important in determining 

the performance of GSA. The true value of the gravitational 

constant is depends on the age of universe and there is a 

decrease in the gravitational constant with time.  
Gravitational constant at each iteration can be computed by 

the Equation (18), the G0 and    were initialized at the 

beginning,  t  is the current iteration and T is the maximum 

number of iteration.  

           

                             
                                                           

   

8.2.3 Calculation of the total forces 
The gravitational force and the total force are updated as 

follows.    
     is the gravitational force acting on mass i 

from mass j in the dth dimension at time t is defined as  
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where,        is the Euclidian distance between two objects i 

and j and   is a small constant. The total force that act on 

agent i in the dimension d can be considered as a randomly 

sum of dth components of the forces exerted from other 

agents and is calculated as 

         
            

 

           

   
                                            

  

where, randj  is a random number in the interval [0, 1] and 

      is the set of first K agents with the best fitness value 

and biggest mass, which is a function of time, initialized to 

K0 at the beginning and decreased with time. Here K0 is set 

to N (total number of agents) and is decreased linearly to 1. 

8.2.4  Calculation of the acceleration of agents 
According to the law of motion, the acceleration of an agent 

i at time t in the dth dimension is given by 

           
      

  
    

      
                                                                    

 

where,        is the inertial mass of the agent i at time t. 

8.2.5 Updating of the position and velocity of the 

agents 
The next velocity of an agent is a function of its current 

velocity added to its current acceleration. Therefore the next 

velocity and the next position of an agent can be calculated 

by 

               
                

        
                                

           
                

        
                           

 

where,    
 ,   

  and   
  represents the position, velocity and 

acceleration of the ith agent in the dth dimension 

respectively.       is a uniform random variable in the 

interval [0, 1], which gives a randomized characteristics to 

the search. The       operation ensures that the candidate 

solution is an integer. 

The new position is verified for the boundary conditions of 

the CSD lookup table by using Equation (10) in Section 

8.1.2 so as to be inside the problem space. 

8.2.6  Termination 
Steps 8.2.2 to 8.2.5 are repeated until the predetermined 

maximum number of iterations is reached. When the 

termination condition is met, the solution vector with the 

best fitness is taken and decoded using lookup table to get 

the optimal filter coefficients. The magnitude responses of 

the filters are given in Figure 7. 

9. Results and analysis of the optimized 

FRM Filter 
The filter responses resulting from the ABC and GSA 

optimization are presented in Figure 8. along with the 

continuous coefficient and CSD coefficient rounded for two 

SPT terms. 

All the simulations are done using MATLAB 7.10.0 on a 

Toshiba satellite L750 laptop with Intel (R) core (TM) i5 

2410M processor operating at 2.3 GHz. 

 

Fig. 7  Magnitude responses of  the FRM filter designed 

using integer coded GSA 

 

The performances of the continuous coefficient, CSD rounded 

and the optimal FRM filter based on the average of 10 

simulations are compared in terms of the pass band ripple and 

stop band attenuation in Table 6. 

 

Fig. 8  Magnitude responses of the FRM filter 

designed using ABC and GSA optimization techniques. 

Out of the two different optimization techniques used, taking 

a total comparison, GSA can be chosen to give the better 

performance for the given specifications. The GSA gives 

better performance in terms of complexity and filter 

performance parameters, even though the run time for the 

optimization is long. If the run time of optimization is also a 

criterion for selecting the algorithm, then ABC algorithm is a 

better choice. 

10. Variable bandwidth filter using 

optimized multiplier-less FRM filter 
Variable bandwidth filter with continuous coefficient FRM 

based filter is presented in [7] which can be used for 

bandwidth reduction only. In [8], a VBF which is capable of 

bandwidth reduction as well as enhancement has been 

proposed by us. The FRM filter in the middle block of the 

Figure 1 is replaced with the proposed GSA optimized filter 

and the simulation result of the overall system for the 

bandwidth reduction and enhancement are given in Figure 9 

and Figure 10 respectively. In order to illustrate the working 

of the variable bandwidth filter using re-sampling, the input 

signal is formed as a sum of sinusoids spanning the input 

bandwidth for simulation. Figure 9(a) shows the input 

spectrum as well as the frequency response of the FRM filter, 

if the filter is operated at the same sampling rate as that of the 

input signal. Figure 9(b) is the spectrum of the first sample 
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rate converter which is operated as 1 to 0.8 (effective 

sampling ratio) down sampler. The down sampled but not 

bandwidth reduced input spectrum is seen expanded. More 

portions of the signal bandwidth is now seen to extend beyond 

the filter pass band. Figure 9(c) is the spectrum at the output 

of the fixed length low pass filter. Figure 9(d) is the spectrum 

obtained at the output of the second sampling rate converter, 

which is operated as a 0.8 to 1 up sampler. Hence the input 

signal is converted back to the original sampling rate. Then 

the bandwidth is effectively changed. Figure 9(d) also shows 

the effective bandwidth for visualization. 

In order to increase or enhance the bandwidth, the first 

sampling rate converter in Figure 2 will be operating as an up 

sampler and the second sampling rate converter will be 

operating as a down sampler. The corresponding outputs are 

displayed in Figure 10. The variation of the bandwidth either  

in the reduction or enhancement in fractional ratio can be 

achieved by just one parameter change (d_acc) in the arbitrary 

sample rate converter. Hence the fine tuning of the bandwidth 

is also possible. 

 

Fig. 9 Input and output of the three processing blocks of 

Figure 1 with optimized FRM filter for bandwidth reduction. 

(a) Spectrum of the input and response of low pass filter. (b) 

Spectrum of the output of 1 to 0.8 down-sampler. (c) Spectrum 

of the output of low pass filter. (d) Spectrum of the output of 

0.8 to 1 up-sampler and effective bandwidth. 

Table 6. Performance comparison of optimization techniques 

 Parameters 
Continuous 

Coefficients 

CSD  

rounded 
ABC 

GSA 

Optimization 

parameters 

Dimension   51 51 

Population size N   50 50 

Parameter (1)   Limit = 200 G0 = 100 

Parameter (2)         

Max. No. of Iterations MNI   500 500 

After 

optimization 

No. of  SPT terms 

Ha  60 49 47 

Hma  60 51 50 

Hmc  54 46 47 

Total  174 146 143 

% saving of SPT terms w.r.t. max. 

SPT terms 

  50.34 51.3 

Pass band Ripple (dB) 0.1163 0.2435 0.1123 0.1076 

Stop band Attenuation (dB) 38.9967 30.4862 39.1721 38.9972 

Performance 

parameters 

No. of Multipliers 51    

Coefficient Adders 51  51 51 

No. of Adders due to SPT terms   99 95 

Total  number of Adders   150 146 

Run time (Sec.)   56.2810 136.0258 

Cost function   9.6019e-06 1.1609e-06 

Performance 

 grading  

(numeric) 

Run time (Sec.)   2 4 

No. of SPT terms   3 1 

Complexity in terms of Adders   3 1 

Pass band Ripple   2 1 

Stop band Attenuation   1 3 

Total   11 10 

Overall Performance   2 1 
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Fig. 10 Input and output of the three processing blocks of 

Figure 1 with optimized FRM filter for bandwidth 

enhancement.  (a) Spectrum of the input and response of 

low pass filter. (b) Spectrum of the output of 1 to 1.4 up-

sampler. (c) Spectrum of the output of low pass filter. (d) 

Spectrum of the output of 1.4 to 1 down-sampler and 

effective bandwidth. 

For visualizing the effectiveness of all the optimized filters 

together with the GSA optimized FRM filter, the variable 

bandwidth filter is tested with an impulse and the effective 

filter response in the case of bandwidth reduction and 

enhancement are shown in Figure 11 and Figure 12 

respectively. 

 

Fig.  11 Effective responses of the variable bandwidth 

filter using various optimization techniques for a 

reduction of 0.8 times. 

The resulting variable bandwidth filter is computationally 

efficient and less complex. The reasons for the advantages are 

  

- Bandwidth reduction and enhancement are made 

possible. 

- Reduction in complexity is achieved by the use of 

FRM technique for designing the prototype filter. 

- Multiplier-less realization further reduces the 

complexity and power requirement by replacing the 

multipliers with shifting and adding/subtraction 

circuits. 

- Easy re-configurability. 

- No need of changing the hardware for changing the 

bandwidth. 

- Online computation of filter coefficients is not 

required. 

- Signed integer encoding of the filter coefficient 

permits the reduction in the running time of the 

optimization algorithm. 

- Fine tuning of the bandwidth is possible with 

fractional change in the bandwidth ratio. 

 

 

Fig.  12 Effective responses of the variable bandwidth 

filter using various optimization techniques for an 

enhancement of 1.4 times. 

11. Conclusion 
In this paper, a technique to obtain a continuously variable 

bandwidth filter as a combination of two arbitrary sample rate 

converters and a fixed bandwidth, fixed length, sharp 

transition bandwidth, low complexity FRM based low pass 

filter. Further reduction in the complexity is achieved by 

representing the FRM filter in the CSD space. This reduces 

the quality of the performance of the system, which demands 

a proper optimization for optimizing the quality. The design 

of FRM filter in the CSD space is modelled as an optimization 

problem. Two  different  approaches  of  the modern meta-

heuristic algorithms ABC and GSA are used for finding the 

optimized filter representation in the CSD space. Comparison 

is made in terms of objective function, computation time, 

number of SPT terms and filter frequency response 

parameters like pass band ripple and stop band attenuation. 

The GSA optimization technique gives better performance in 

terms of complexity and filter performance for this particular 

design. The GSA optimized FRM filter in the CSD space is 

used in the variable bandwidth filter and the system 

performance in the bandwidth reduction and enhancement 

cases are evaluated. Hence the implementation of the fixed 

filter in the variable bandwidth application can be done by 

using only shifters and adder/subtractions. It will reduce the 

power consumption and silicon area because of the reduction 

in the total number of multipliers. Hence the continuous 

variation of bandwidth up to 40% reduction and 200% 

enhancement is achieved with minimum complexity and 

single parameter modification. Hence easy re-configurability 

and fine tuning can be achieved. 
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