
International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 11, January 2013

Data Structures in Robot Navigation Optimized by
Adaptive Straightness

Leoncio Claro Barros Neto
Escola Politécnica

Universidade de São Paulo (USP)
São Paulo, Brasil

André Riyuiti Hirakawa
Escola Politécnica

Universidade de São Paulo (USP)
São Paulo, Brasil

ABSTRACT
Utilizing adaptive finite automaton (AFA) such as motion au-
tomaton, we propose an alternative for the available researches
on data structures in robotics navigation, in which trajectories
are made up of straight line segments. Software is modeled by
a set of rules as systems of state machines to cover the com-
plete space environment of the robot. The formalism of adap-
tive digitized straight line segments (ADSLS) is applied for data
representation, aiming to exploit its ability to express tolerances,
scalability, errors and deviations in angle or in length of seg-
ments. Consequently, ADSLS is shown by simulations to be ef-
fective to represent the complexities of real world scenarios of
a robot; furthermore, it is able to adapt, reacting to circum-
stance stimuli in a single pass, also presenting learning capability.

General Terms:
Applications of Computer Science in Modeling, Reconfigurable Computing

Keywords:
Digital Geometry, Robotics, Pattern Recognition, Automata, Er-
ror Recovery

1. INTRODUCTION
Classically, robotic agents are usually equipped with sensor sys-
tems and actuators for perception and action, respectively, in the
physical space to which they are integrated. In mobile robotics,
which yielded notable researches since the 1970s, besides sen-
sors and actuators, robots also are equipped with systems that
allow them to move through the environment in order to perform
activities of greater complexity than traditional robotics.
Navigation is understood as a process or activity to plan and di-
rect a trajectory, a route or a path for a mobile robot. It is an ac-
tivity that an autonomous robot performs with relative precision
according to the task in order to move safely from one location
to another location without getting lost or colliding with other
objects [23].
Regarding the precision requirement in trajectory planning, [5]
says that Cartesian space trajectory planning is commonly used
because it is a straightforward and relatively simple concept. The
cost of this simplification is the transformation from Cartesian
to joint coordinates in real-time, causing the highly computa-
tional complexities involved in trajectory planning and coordi-
nate transformation.
[5] also points out that Cartesian paths have been approximated,
as an alternative, by joint trajectories; for example, intermedi-

ate knot points are selected on a Cartesian line segment in Eu-
clidean space which are further interpolated by joint trajectories,
commonly cubic and quartic spline functions. Accordingly, the
translation and rotation deviation errors between a Cartesian path
and the corresponding interpolated approximate joint trajectories
can be adjusted to satisfy specified tolerances so that approxima-
tion errors are reduced by using some criterion. Hence the ac-
tual implementation of on-line Cartesian-based path planning al-
gorithms have been hindered by the computational complexities
involved [5], also taking into account that modern mobile robots
are now applied in various domains with spurious interferences
and uncertainty [23].
Since data structures play an important role and greatly influence
the computational complexity and efficient implementations of
algorithm in mobile robots, [23] indicates that these structures
are related to robot representation of the world in the config-
uration space (C-space) such as the Voronoi diagram, regular
grids/occupancy grid, generalized cones , quad-tree and vertex
graph. Furthermore, the C-space is usually represented by data
structures that show the position and orientations of objects and
robots in the workspace area including the free space regions and
forbidden regions with obstacles or mazes.
In practice, a route is a finite sequence of straight line courses
involving the problem of finding a path with minimal length ac-
cording to the Euclidean metric [25].Thus, even in autonomous
underwater vehicles, the straight line path between the starting
position and the goal destination is a good approximation to the
optimum path, independently of the eddy structure existing in
the area [10].
In search of a data structure that would reduce the number of
primitives to be matched, [2] worked with an approach in image
segmentation that produced a set of continuous digital lines rep-
resented as chain codes which was the common data structure for
representing complex segmentation results. Further work would
concentrate on path planning to approximate the chains as se-
quences of digitized straight line segments (DSLS 1), with an
algorithm in which the path is made up of straight line segments.
Chain code was introduced by Freeman in 1970 [9] as a one-
pixel-thick boundary descriptor in a grid, and digital straightness
was conjectured as well. In this model, given a pixel, the main
and immediate neighborhoods of this pixel are shown by sym-
bols, as in Fig. 1.
Fig. 2 shows an example of the string of DSLS in the first quad-
rant, composed of symbols a and b.

1We use DSLS and other abbreviations, to stand as both the singular and
the plural, each one to be grasped from the context.

1

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 11, January 2013

Fig. 1. On the left is a
graphical representation
of the chain code symbols
0-3 of neighborhood-4. On
the right, the chain code

symbols 0-7 of
neighborhood-8

Fig. 2. A generic DSLS in the first quadrant, composed of runs of
P and Q symbols b, as spaced as possible between codes of a, with P

and Q constant integers.

Fig. 3. A generic AFA
transition (x, i) : R→ y : S,

where R and S are
optional.

Understanding the problem from the syntactic point of view in-
volves the concepts of language, grammar and types of gram-
mars ([15]). According to Noam Chomsky, hierarchy dating back
to 1956, languages are classified into four different classes: Re-
cursive Languages (or type 0), Context Sensitive Languages (or
Type 1), Context-Free Languages (or type 2) and Regular Lan-
guages (or Type 3). There are degrees of complexity related to
the classes mentioned since class 3 type is a subset of class Type
2, Type 2 class is a subset of a class type 1, class and type 1 is a
subset of Class 0. Syntactic pattern recognition is one field that
uses chain codes together with the rich theoretical background
of languages, grammars and automata [30].
However, there are obstacles to employ the theory of languages,
grammars and automata in robot navigation because DSLS are
actually a very challenging subject incorporating all the dissim-
ilarities and disparities between the discrete and the continuous
representations [13].
For instance, DSLS of variable lengths require powerful recur-
sive languages , making it impossible to apply simple formalism
for syntactic analysis, such as FSA (finite state automaton) [6] -
remarks that a regular language is specified by a regular gram-
mar. The concepts of regular language and FSA are equivalent
in the sense that for every regular language there is at least one
FSA that recognizes it and vice versa [30].
Restricted to trajectories in only four directions (north, south,
east or west), [26] investigated state machine applications in
robotics introducing a syntactic method that used adaptability to
dynamically increase the memory requirements. This work re-
sulted in an architecture based on robot agents implemented by
adaptive finite automata (AFA) as motion automata.
Overall, the scrutiny in studies and researches about robot nav-
igation showed that the low representation fidelity using tradi-
tional methods based on Cartesian environment maps results in
little knowledge stored in the surroundings of the robot [18],
commonly achieved by image processing sensors associated
with detection of straight lines and arcs.
Yet, among the existing research approaches, syntactic meth-
ods are usually considered unsuitable for tasks involving DSLS
in robotic navigation. Since [8] and [7] presented capabilities
of adaptive techniques related to the formalism of ADSLS in
computational geometry, we advance further proposing this for-
malism applied to robotic navigation utilizing the same AFA, a
Turing-powerful device [19], such as motion automaton to direct
robots.
This paper is organized as follows. In Section 2, the underlying
principles necessary for understanding this study are presented,
such as the state-of-the-art of DSLS and codification details. The
method involved in this study is described in Sections 3 and 4,
regarding automaton implementation and adaptive grids, respec-
tively. Simulations are performed in Section 5 corresponding to
proofs of concept aiming at the analysis of this proposal. In Sec-

tion 6, the position of this research within the state of the art is
indicated. In Section 7, final considerations are drawn with in-
tended future studies.

2. FUNDAMENTS
An adaptive device changes its behavior dynamically in response
to input stimuli without interferences from other external agents,
including users [19]. Normally, they are made of two layers com-
prising a non-adaptive underlying mechanism ND0, associated to
an adaptive layer AM, using the same formalism of the first. This
growth in complexity profits not only from the notable increment
in expressive power of the combination, but also in versatility, as
one can choose any consolidated mechanism as the non-adaptive
device. An adaptive finite automaton (AFA) is represented by
Expression 1 with FSA as ND0.

AFA=(ND0,AM). (1)

The next topic presents a brief review of AFA.

2.1 Adaptive finite automaton (AFA)
From Equation 1, AFA is a rule-driven device described by a
non-adaptive device, a FSA; associated to an adaptive layer AM
comprising adaptive actions that works on the original set of
rules (ND0,AM). ND0 characterizes AFA initial configuration.
Adaptive actions are calls to parametric adaptive functions
(ADF) responsible for self modification procedures. Depending
on the stimulus i from input string, linked to an operational step
i, AFA configuration NDi−1 is modified by adaptive actions, re-
sulting that the FSA NDi−1 is changed to another FSA NDi be-
longing to the set {ND0,ND1,ND2,ND3...NDi.... : i≥ 0}.
Furthermore, the AFA formalism regards elementary adaptive
actions to be applied to the transition set of the automaton, so
that sets of elementary adaptive actions are abstracted in ADF
which interconnects the adaptive layer to NDi, as presented in
Fig. 3 through generic ADF R and S.
Fig. 3 shows the static graphic representation of a generic AFA
transition where x is the current state before the transition; y is
the state after the transition; i is the input stimulus before the
transition; R is an ADF executed before applying the transition;
and, finally, S is an ADF executed after applying the transition.
Graphically, any ADF R is portrayed by R• in case it is of the
before type; likewise, any ADF S is an after type if it happens to
be denoted by •S.
When it comes to formats, there are three modalities of elemen-
tary adaptive actions, specified by a prefix symbol ?, + or -: i) In-
spection, ?[(x, i) : R→ y : S]; ii) Deletion,−[(x, i) : R→ y : S]; iii)
Insertion, +[(x, i) : R→ y : S]. Given a certain pattern transition
enclosed in brackets, where [(x, i) : R→ y : S] is the pattern to be
specified and R and S are optional, the inspection kind searches
the current state set for this pattern. The deletion one erases the

2

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 11, January 2013

pattern from the current state set; and the insertion kind adds the
pattern to the current set of transitions. A provision is made so
that the inspection type is executed first, next the deletion, and
finally the insertion kind; adding that null transitions have the
lowest priority.
About ADF format, in the general case, it has a heading com-
posed of parameters, generators and variables and a body con-
stituted of elementary adaptive actions. All of them are optional;
however, if parameters are specified, they have to be supplied to
activate the corresponding ADF.
Variables are used in place of any of the components of the ele-
mentary adaptive action, further assigned the actual correspond-
ing values in the matching process with the pattern given. Then,
after the matching process, variables may be undefined (in case
no match is found) or defined (otherwise). Generators are used
to assign names to newly created states. Roughly speaking, they
are also like special variables, which are automatically assigned
unique values as soon as an ADF is activated. In the activation
of an ADF, the assignment of argument values to the parame-
ters occurs, too. Neither generators nor parameters are allowed
to change any longer, once assigned.
To differ from variables, generators receive the symbol ∗ as ex-
ponent.

2.2 DSLS background
A digital arc S is understood as a set of interconnected pixels
belonging to a digital image, positioned on a grid such that each
point of the set has exactly two neighbors, except two of these
points, known as extremes, which have only one neighbor in S
[13].
Hence, in neighborhood-4 or neighborhood-8, the chain is a se-
quence of elements in which each element is a symbol from Fig.
1 that represents the vector joining two neighboring pixels of a
digital arch, aiming to represent the digital arch in question.
In his model, Freeman stated that strings representing straight
lines must obey three properties in neighborhood-8: (Prop1) At
most two types of symbols, representing directions in the chain
code, can be present, and these can differ by unity module eight.
(Prop2) For one of these directions, the run length must be 1.
One of the two symbols always occurs singly. (Prop3) Succes-
sive occurrences of the single symbol are as uniformly spaced as
possible among codes of the other value, which occurs in groups.
The meaning of Prop1 to Prop3 is to represent the straight line by
a sequence of vectors with multiple slope of 450 and the lengths
of which are either 1 (when horizontal or vertical), or

√
2 (when

diagonal).
As the third property Prop3 was considered somewhat unclear,
researches proved that the straightness of a digital arc can be
determined by the absence of unevenness in its chain code, nec-
essary and sufficient for meeting the chord property 2 [12].
The chord property implied establishing a hierarchical structure
composed of consecutive numbers corresponding to the runs and
runs of runs of the symbols specified by Prop1 and Prop2. This
structure of consecutive numbers is expressed by an additional
property Prop4. [22] demonstrated that there can be only two
possible lengths of these different runs, which are two consecu-
tive integers (for example, P and P+1).
On the other hand, [13] showed examples of DSLS that violate
the regularity implicit in the chord property, commenting that,
in practice, Prop3 and Prop4 are inviable in digital arcs. How-
ever, it is more reasonable to expect a slight variation in the runs,
within a tolerance level, but always keeping the overall slope,
thus defining an approximate DSLS. Therefore, a criterion used

2A digital arc A is said to have the chord property if for every two digital
points c and d in A, and for each point p = (x,y) on cd, there is a point
e = (h,k) of A such that max{|x−h| , |y− k|} < 1 where cd is the line
segment between c and d [22].

concentrated on strings that satisfied the first two properties of
the conjecture, called monotonic codes, as they represent digital
arcs that are either ascending or descending, with reference to
coordinate axis x and y.
In order to keep the slope of a digital line, the smallest segment of
a DSLS is called the Unit of the Straight Line Segment (USLS),
resulting in mathematical models [16].
[7] and [6] stated an enhanced method taking into account that
the adaptive representation can express changes in the scales of
segments. Therefore, an irregular trajectory may be detected as
DSLS after it is reviewed in a compatible scale, using metrics.
In summary, adaptivity can be an alternative to incorporating
the fundamentals of arithmetic discrete geometry to Freeman’s
model in robot navigation.

2.3 Codification
If nothing else is specified, without loss of generality, in this pa-
per neighborhood-4 (seeFig. 1) is the default, so that the symbols
of property Prop1 must be consecutive, module four. More pre-
cisely, the symbols that make up strings belong to ∑={a,b,c,d}.
To satisfy Prop1, just consider module 4 along with a=1, b=0,
c=3, d=2, for neighborhood-4 of Fig. 1 and Fig. 2.
Any string S=s1....sn, si ∈ ∑ may be represented by its symbol,
followed by the indication of its i-th element si giving Expression
2:

S : si; i=1,2, ...,n. (2)

In Expression 2, n denotes the length of string S, which means
|S|=n. Symbols si ∈ ∑ may be called tokens, chain code ele-
ments or stimuli, too. The null string n = 0 is represented by ε .
If all symbols of S are identical, s=s1=s2= . . .=si= . . .=sn−1=sn, a
compact representation is S=sn. Note that null transitions cause
automaton non determinism, then symbols such as ∆ (∆ /∈Σ) may
be used in place of ε .

2.4 Adaptive DSLS (ADSLS)
AFA implements ADSLS related to digital paths of trajectories
to represent the complexities of real world robot scenarios.
ADSLS uses a modified chord property for models of higher
orders (order n) , thus incorporating tolerances in angle and in
length of DSLS. The modified chord property changes neighbor-
hood of chord property into a variable neighborhood function
such as max{|x−h| , |y− k|} < n, where n is the order of the
model that depends on the momentary situation and the length of
the segment, to sum up, of the stimuli. That is to say, the neigh-
borhood function of DSLS must have a relatively large width ,
proportional to the measured length towards the overall linear
structure [17].
Regarding techniques for error recovery in this study, it is of-
ten convenient to represent the real numbers in a given circum-
ference and not in a straight line, as usual. Especially, from the
circumference of unit length, when defining an arbitrary origin
point, we represent any point T by its measured distance around
the circle in a counterclockwise direction (this by definition).
The division of the circle can be from the Farey series in the
form of spyrographs described on page 326 of [13].
The techniques of error recovery of syntactic analysis of DSLS
employ an approach similar to spyrographs in the form of adap-
tive loops, such that, by these loops, the circumference is built
by states of the AFA, which moves cyclically and continuously
through the closed loop. In effect, adaptive loops have their total
number of states according to tolerance levels.
In order to simplify the description of automata, take in to ac-
count that the abbreviation HTST means a sequence head-to-toe
of transitions that consume the same symbol; besides, each state
belonging to the sequence may be specified by the first state fol-
lowed by its respective sequential index. The extremes of a hy-
pothetic DSLS may be truncated or completely out of the global

3

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 11, January 2013

structural model. In the former case, the sequence should be ac-
cepted; in the latter rejected. Fig. 4 exposes an AFA which tests
the first USLS of a DSLS (a4b)n. Parameter r4 is the last state of
the HTST starting in r. From this arrangement, the AFA removes
up to four ∆ transition by ADF RA. Elucidating, each time RA
is activated by token a, it removes from the automaton one of the
∆ transitions that constitutes the HTST. Furthermore, any token
b received conducts the AFA to the final state; conditioned to if
more than four tokens a are received, the sequence is rejected.
The analysis of the other extreme is quite similar.

2.4.1 Slope errors and length similarity of DSLS. Recognition
of DSLS subjected to slope errors is exemplified by USLSi =
{anb : 3≤ n≤ 5}.
Fig. 4 shows the initial configuration of the automaton prepared
to accept truncated USLS1 similar to the last item. With the first
token b consumed, ADF B is activated, which removes transi-
tions of the initial configuration, changing the automaton topol-
ogy to that of Fig. 5.
Afterwards, the AFA starts to consume the succeeding USLSi :
i > 1 until the input stream is exhausted. A token c is included
just to signalize the end of the DSLS, when the automaton
reaches the final state if the process is successful. On the other
hand, if more than 5 tokens a are received, −[(xi,vr1) : vr2− >
vr3 : vr4] of RA removes transition of c to the final state, reject-
ing the sequence.
Strings of Fig. 6 show the performance of the AFA. These strings
follow the model USLSi = {anb : 3≤ n≤ 5}, truncating USLS1
in some strings, too. Strings out of this model are rejected. Note
that the AFA performance does not depend on the length of the
input DSLS.
The method to represent and to apply tolerances is by a graph,
or a loop such that the number of states of the loop (that is, its
size) is changed adaptively in function, for example, of angle θS
related to axis x; besides, θS gives the main direction of DSLS S,
obtaining a syntactic measurement parameter (1−ψ) relative to
S [6].

3. THE METHOD: APPLICATION TO THE
AUTOMATA

Software is modeled in this research as systems of state machines
to cover the complete space environment of the robot, scheme
adapted from [29]. The group of automata is necessary because
there will be several alternative route options varying in angles.
Independently of grid resolution changes the group of automata
remains fixed either for routes in a relatively limited area or for
routes over the complete area as well. Starting from an initial
configuration, longer routes will dynamically increase the num-
ber of automaton configurations, also increasing the number of
automaton states as shown in Fig. 6.
The validation of this study is made by simulations of robot
movements associating robotic agents to motion automata, such
as AFA, on account of a management system which supplies
these agents with data. The technical details by which the man-
agement system interconnects itself with AFA and the partition-
ing criteria to implement AFA are described in the following
items.

3.1 Architecture
In Expression 1, AFA is represented by two layers:
AFA=(ND0,AM), where AM is an adaptive layer; an adaptive
structure was implemented to simulate navigation scenarios
composed of the following layers:

—The System Manager is a hierarchically superior adaptive
layer to monitor and to coordinate ADSLS, such as the amount
of ADSLS changes according to the stimuli under manage-
ment of this layer. The System Manager searches information

from ADSLS in their respective final states, which indicate if
the input string was accepted or rejected;

—The Slave Layer comprises one or more ADSLS and it is com-
manded by the System Manager or adaptive upper layer.

In the more general case, the upper layer controls the ADSLS of
the slave layer by strings of type W = ΨC.
Ψ is a chain code received by the AFA in order that this one
adjusts a tolerance band related to the chain C. Ψ corresponds
to a factor to compensate for inaccuracies in the digitalization
process. The subject of inaccuracies and errors in digitalization
is detailed in [8], which lists several papers on this issue.

3.2 Design patterns
Topic 2.4.1 illustrated the recognition of DSLS subjected to slope
errors, exemplifying by ADSLS of USLSi = {anb : 3≤ n≤ 5} with
3 a transitions and (5−3)∆ transitions. That adaptive structure
(automaton of Fig. 5) is one of the design patterns of this method
because to implement other structures from other quadrants, it is
just necessary to change the symbols of the pattern conveniently,
obtaining an ADSLS with the same topology. Table 1 shows angle
ranges of ADSLS and respective expressions of USLS that helps
in this procedure.

Table 1. Angle ranges θu, related to axis x.
Sector of ADSLS Angle Range (rad) Expression

1 0 < θu < π/4 abn

2 π/4 < θu < π/2 ban

3 π/2 < θu < 3π/4 dan

4 3π/4 < θu < π adn

5 π < θu < 5π/4 cdn

6 5π/4 < θu < 3π/2 dcn

7 3π/2 < θu < 7π/4 bcn

8 7π/4 < θu < 2π cbn

Simply, for example, to implement an ADSLS for angle range
between 5π/4 and 3π/2 radians, just change the symbols of the
pattern of Fig. 5 in the following way: a to c and b to d getting the
ADSLS with the same topology (belonging to the third quadrant).
In a quadrant, for instance for angles between 0 and π/2 radi-
ans, grant the validity of properties Prop1 and Prop2, conceiving
that symbols change at π/4 radians by inspection in Table 1.

3.3 Partitioning criteria to implement ADSLS
The partitioning criteria to implement AFA is in compliance with
the angle ranges of each ADSLS to cover 2π radians, ponder-
ing about angle errors of DSLS and requiring precision, as well.
Topic 2.4.1 exemplified the ADSLS with USLSi = {anb : 3≤ n≤
5}.
If angles of DSLS are between 0 and π/2 radians in this topic,
inasmuch as a similar behavior occurs in other quadrants: i) For
0 < θu < π/4, USLSi = abn, implying θu = arctan(1/n); ii) For
π/4 < θu < π/2, USLSi = ban, implying θu = arctan(n). Then
approximations are by virtue of non-linearity and discontinuity
of the function arctangent.
Accordingly, with nmin ≤ n ≤ nmax for sectors S1, S4, S5, S8,
Expression of angle range θu of USLS is: arctan(1/nmax)≤ θu ≤
arctan(1/nmin). With nmin ≤ n≤ nmax for sectors S2, S3, S6, S7,
Expression of angle range θu of USLS is: arctan(nmin) ≤ θu ≤
arctan(nmax).

3.4 Implementation of Automata
In order to maintain a certain angle range, non linearity of arc-
tangent forces the increase of number of states of ADSLS near
(0+ kπ/2) radians , with k integer: k = 0,1,2,3, For angles
of sectors 2, 3, 6 and 7, because of discontinuity of arctangent in

4

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 11, January 2013

Fig. 4. Initial
Configuration for

automaton to detect a
DSLS considering slope
errors, including testing
the first USLS of a DSLS

from (a4b)n model

Fig. 5. Configuration of AFA of
Fig. 4 after the activation of ADF

B

Fig. 6. Examples of DSLS
produced by

USLS = {anb : 3≤ n≤ 5},
accepted by AFA of Fig. 5

±π/2 radians, angles θu of DSLS greater than θ̃1 = arctan(20)
are approximated to +π/2 or −π/2 radians, each one to be an-
alyzed depending on the sector. For angles of sector 1, 4, 5 and 8,
angles θu of DSLS smaller than θ̃2 = arctan(1/20) are approxi-
mated to 0 or π radians, to be analyzed depending on the sector.
Implemented automata are described below.

3.4.1 ADSLS. For the first quadrant, refering to Table 1, the
following ADSLS were selected.
Sector 1 (abn): 2≤ n≤ 4 (Automaton A); 5≤ n≤ 7 (Automaton
B); 8≤ n≤ 12 (Automaton C); 13≤ n≤ 20 (Automaton D).

Sector 2 (ban): 2≤ n≤ 4 (Automaton A); 5≤ n≤ 7 (Automaton
B); 8≤ n≤ 12 (Automaton C); 13≤ n≤ 20 (Automaton D).

For the other quadrants, the same topology as that of the ADSLS
of the first quadrant was chosen implying each sector has 4 au-
tomata: Automaton A, Automaton B, Automaton C, Automaton
D.

3.4.2 For angles (0 + kπ/2) radians , with k = 0,1,2,3,
For 0 radians, straight line is of the kind: aaaaaaa....; for π/2:
bbbbbbb...; for π: ddddddd...; for 3π/2: ccccccccc..., requir-
ing 4 automata for the syntactic analysis of these languages. For
0 radians, language of straight line strings is L = {an : n > 0}.
Fig. 7 shows an automaton which accepts L:

Fig. 7. Finite accepter that recognizes the set of strings belonging
to L = {an : n > 0}, for 0 radians.

In Fig. 7, with the first symbol a, the automaton goes into state
2, staying in this state for symbols a, accepting the input string.
Any symbol b,c,d which received the automaton enters state 3,
a non-final trap state, signifying the input string is rejected.
The other automata have the same topology, changing the sym-
bols conveniently.

3.4.3 For angles (π/4+ kπ/2) radians , with k = 0,1,2,3,
For π/4 radians, straight line is of the kind: abababababab....;
for 3π/4: bcbcbcbcbcbcb...; for 5π/4: dcdcdcdcdcdcd...; for
7π/4: cbcbcbcbcbcbcbcbc.... Fig. 8 is an automaton that accepts
strings for π/4 radians:
In Fig. 8, with symbols ab or ba, the automaton enters final state
4 or 5, respectively. In state 4, the input string is accepted as long
as symbols ab are received in sequence. Final state 6 allows the
automaton to accept an a symbol ending the input string. In state

5, the input string is accepted as long as symbols ba are received
in sequence. Final state 7 allows the automaton to accept a b
symbol, the last one of the input string. Non-final trap states are
not included.
The other automata have the same topology, changing the sym-
bols conveniently.

4. THE METHOD: APPLICATION TO THE GRID
MAP

Observing that the chain code symbols 0-3 of neighborhood-4
or chain code symbols 0-7 of neighborhood-8 of Fig. 1 are the
primitives that define the grid resolution, [18] points out of those
grids are considered relatively simple data structures that pro-
vide a comprehensive picture of the surfaces in the continuous
terrain for robot navigation in a dynamic environment. How-
ever, paths formed by grid edges can be longer than true short-
est paths in the terrain since their headings are artificially con-
strained, restricted to multiples of 45 degrees [18].
The improvement in robot navigation is proposed here by the
following: i) Bringing ADSLS into play . ii) Concurrently, us-
ing adaptive grid resolution. iii) Linked together, applying adap-
tive changes of orientation angles related to the environment
of graphical representation of the chain code symbols 0-3 of
neighborhood-4 or chain code symbols 0-7 of neighborhood-8,
of Fig. 1.
Item i) above avoids the movement in constrained angles
(neighborhood-4: angles multiples of 90 degrees, neighborhood-
8: angles multiples of 45 degrees). Item ii) varies grid resolution
depending on the trajectory, adaptively changing the length of
the chain code symbols of Fig. 1. Item iii) is to escape the lim-
itation caused by the discontinuity of the arctangent function,
adaptively changing the angle of the chain code symbols of Fig.
1.
Strings resulting from the adaptive scale factor changing the
length of primitives are recognized by the same set of automata:
spatial variability of grid by adaptivity does not require chang-
ing the automata.
By being limited to regular languages, [30] had to introduce a
scale normalization factor, which could be the total length of a
trajectory pattern. A scale transformation in the work by [30]
aims to identify the similarity between contours (trajectories) by
their corresponding pattern attributes (descriptors) after under-
going the transformation.
The analysis of situations in robot trajectories depends on the
scale involved. If a path AB is relatively too short compared with
the overall trajectory, it is advantageous to use primitive dimen-
sions large enough to be relatively compatible with the size of
segment AB. If AB is relatively large, primitive dimensions have
to be short enough to detect shorter segments. Therefore, the
adaptive scale proposed by this research reuses, in a new con-

5

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 11, January 2013

text, a technique of [30] known since the 1970s granted by im-
provements in computational power obtained by adaptivity.

5. EXPERIMENTS
The minimum grid resolution planned for this work is of the robot
dimension order, which involves a question of compatible scale
between each step of the robot motion and their respective di-
mensions.

5.1 Method proposed by this research
In the classical method, for moving from a starting point to a des-
tination point, the robot has to find a path for which the computa-
tional cost is minimum because this is the path with the shortest
distance, too. To compute a minimum cost path, it is necessary to
compute robot moves from each cell grid to one of its neighbor
cells by changing directions, or transitions, from cell to cell. Af-
terwards, the algorithm computes the total cost in reaching the
destination in one of the shortest paths.
A didactic way to describe the method proposed in this pa-
per is to consider that the robot moves every USLS of the
trajectory chain input (segmented in DSLS), instead of mov-
ing by each symbol as in the classical method. It implies that
the robot travels a path consisting of points corresponding
to each USLS. It follows that, given an input with nUSLS:
{USLS1,USLS2,USLS3,USLS4,USLS5, ...,USLSn}, the robot
will have n short moves to reach the end point, which means
computational cost gains regarding traditional methods.
A better solution, computationally more effective than the earlier
one, is driving the robot directly to the final point; therefore, this
case involves exchanging information with the robot only about
coordinates indicative of the map location only of the end point.
In short, the method proposed here uses the ADSLS model since,
for moving from a starting point to a destination point, the path is
segmented in straight line segments, considerably reducing com-
putational costs. This can be seen in Fig. 9, which shows the
same robot in two different positions of the same trajectory, with
classical method moves indicated by dashed lines and, in red, the
single move by the method proposed by this study.
In all robot figures, the classic method trajectory is indicated in
dashed lines and in red is the resulting trajectory proposed by
this paper.

5.2 Adaptive grids
The effect of adaptive grids may be seen in Fig. 10 that shows the
same robot at the end points of their trajectories in two different
grids.
Fig. 13 shows a robot in a trajectory segmented into three
DSLS (chain 1, 2, 3) in the same scale. Chain 1 is
DSLS1 = a2ba4ba3ba4ba3ba3ba4ba3ba4ba4b recognized by Au-
tomaton B- sector2. Chain 2 is DSLS2 = (cb5)(cb6)(cb6)(cb7)
recognized by Automaton B-sector8. Chain 3 is DSLS3 =
(c8b)(c9b)(c12b)4 recognized by Automaton C-sector7, de-
scribed in topic 3.4.1 and Table 1
Figure 11 and Fig. 12 is the same robot of Fig. 13, although chain
3 is in scale 0.5 and 1.5, respectively.

6. COMPARISON WITH EXISTING
TECHNIQUES

This topic indicates the position of this research within the state
of the art, inferred by comparison with selected works as the
ones mentioned in item 1 taking in consideration that studies in
robot navigation generated two major paradigms for mapping
indoor environments: grid-based and topological. An overview
of the state of the art is provided by [1].
In the occupancy grid method, space may be referred to the vicin-
ity of the robot described by local parameters, or to the entire

space by global parameters normally by exploring the environ-
ment [24].
Based on the fact that occupancy grids tends to be both unreli-
able and computationally expensive, [24] reports experiments
with four techniques for position estimation using occupancy
grids. [18] highlighted that the trajectories of robots require
varying angles of trajectories (labeled as navigation at "any-
angle"). Thus, [18] states that the trajectories on the Cartesian
grid tend to be not the shortest path (ie, the shortest paths on the
terrain) because trajectories are restricted artificially to multi-
ple angles of 45 degrees (8-neighborhood) or multiples of 90 de-
grees (4-neighborhood). In another study with the same purpose
of angles in variable trajectories, [28] formalizes a search space
of alternative routes through a search algorithm on graphs.
Problems in world modeling techniques based in grid methods
resulted in combining global and local occupancy grids [24] and
in topological maps. [27] says that topological maps can be used
much more efficiently than grid methods. However, techniques
based on topological maps provide a limited accuracy because
of the low granularity of the discretization [4]. Since topologi-
cal maps are considerably difficult to learn in large-scale envi-
ronments, [27] describes an approach that integrates grid-based
and topological approaches.
Hence, an existing tendency is to join local metric maps, espe-
cially grid-based, through a global topological map. This ten-
dency is not new, as [14] describes an approach by which metri-
cal information is then incrementally assimilated into local ge-
ometric descriptions of places and edges, and finally merged
into a global geometric map. With this representation, [14] in-
forms that successful navigation does not depend critically on
the choice of sensors and movement actuators, their accuracy,
or even on the existence of the geometrical descriptions.
Regarding adaptive techniques using AFA in mapping trajecto-
ries, certainly the state of the art is represented by [26] which
is restricted to trajectories in only four directions (north, south,
east and west), sufficient for its purpose. The motivation of [26]
in using adaptivity was due to the high amount of memory for
recording information for mapping environments required by
path planning systems on grids.
The scheme proposed here also involves the formalization of a
search space of routes with certain analogy with [28], but this
space is represented in this study by an adaptive neighborhood
expressed by AFA states. This study proposes to apply the formal-
ism of ADSLS to enable navigation at any angle as in [18] and
[28] , however integrating in the framework the positive points
obtained by [26] in enabling the use of adaptivity to progres-
sively use system memory, consumed according to the area al-
ready mapped.
In addition, the formalism of ADSLS presents other advantages
in memory usage, considering that just registering coordinates
of only two points, the endpoints of the segments representing
digitized trajectories, is enough, and not the record of all the
points of the trajectories to map building. These advantages in
memory usage can contribute to solving the greatest drawback
of grid-based approaches, with their enormous space and time
complexity, mentioned by [27].
When it comes to syntactic devices, trajectories varying in angle
with relatively any length prevent the use of finite automaton for
the purpose of this study and inhibits automaton solutions in data
structures for robot navigation. In the opinion of [11], the capa-
bility of a more powerful class of formalisms should rejuvenate
syntactic research originally pursued in the 70s-80s.
[20] lists the following trends in devices or algorithms: guided
by rules (non-adaptive) whose rule sets are invariable; guided
by rules (with basic adaptivity) whose rule sets are variable, and
guided by rules (with multi-level hierarchical adaptivity) whose
rule sets is variable presenting modifiable adaptive functions. It
turns out that this proposal seeks devices and algorithms guided

6

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 11, January 2013

Fig. 8. Finite accepter that
recognizes strings for π/4

radians.

Fig. 9. The figure shows
one robot in two different

positions of the same
trajectory: the classical

method trajectory is
indicated in dashed lines
and in red is the resulting

trajectory proposed
herein. On the left is an

intermediary position, and
on the right the end

position for the input
string DSLS =

a3ba5ba3ba4ba3ba3ba4ba3ba5ba4b
recognized by the

automaton of Fig.5

Fig. 10. Figure shows the
same robot at the end

points of their trajectories
in two different grids for

input string DSLS =
a3ba5ba3ba4ba3ba3ba4ba3ba5ba4b

recognized by the
automaton of Fig.5

by rules (with multi-level hierarchical adaptivity) whose set of
rules is modifiable presenting variable adaptive functions.
Concluding, comparing with the traditional models, without
adaptivity, this work has the following objectives: i) Flexibility:
In general, traditional methods tend to be computationally com-
plex and too susceptible to errors, spurious interferences, ac-
curacy of sensors and models. Dynamic changes in the vicinity
of theoretical models, which alter the functionality of the algo-
rithms depending on the stimuli, allow better characterization of
global attributes; ii) Computational Complexity: The introduc-
tion of adaptive tolerances simplifies the algorithms compared to
methods with invariable behavior, reducing complexity of adap-
tive algorithms; iii) The advantage of adaptive scale: The adap-
tive scale allows access to local and global information.
Therefore, this comparison with selected or classical works, rep-
resententing tendencies of the state of the art, shows a whole evo-
lutionary potential of this proposal, just by integrating the for-
malism of adaptive straightness to the traditional models without
adaptivity.

7. FINAL CONSIDERATIONS
Despite the significance of computational representation, the
DSLS being an active area of research for almost half a cen-
tury as the surveys [13] and [3], this issue has not been ex-
plored in robotic navigation for scenarios subjected to spurious
influences, with adaptive resources listed in [19]. This research
fulfills this gap by incorporating the fundamentals of arithmetic
discrete geometry [21] in the syntactic method for robotic navi-
gation, through adaptive techniques.

Indeed, considering variable angles and minute errors of DSLS,
to our knowledge, this is the first attempt to introduce AFA
in robot navigation. By traditional techniques, automata would
have to be implemented a-priori, with high level of complexity
to treat errors that cause imprecise models or imprecise scale of
DSLS in different angles.
Compared with other methods of digital line representation in
navigation, this work showed that the formalism presented in [8]
opens new possibilities for robotics navigation, incorporating
the main advantages of the ADSLS formalism: i) Simplicity and
relative ease of modeling and implementation, associated with
high computational power; ii) Models are easy to understand,
relatively simple to program and flexible to accept changes in
their behavior; iii) Longer trajectories will dynamically increase
the storage mapping memory used; iv) Storage memory required
to map unknown environments may be reduced drastically by
adaptive straight line segmentation of trajectories because just
two grid coordinates are necessary to describe a specific digi-
tized straight line path.
Models of DSLS strings were also presented, associated to the
corresponding automaton with experiments that demonstrated
the simplicity and efficiency of the method, allowing the use of
traditional syntactic tooling. The expressive power of the AD-
SLS formalism incorporates parameters of DSLS such as angle,
length and tolerances necessary for navigation algorithms.
A future scope of the idea involves implementations of these data
structures in real robots, investigation of navigation algorithms
with this proposed schema, for instance by the introduction of

7

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 11, January 2013

Fig. 11. Figure shows the
same robot as in Fig. 13 in
a trajectory segmented in
three DSLS (chain 1, 2, 3)

with chain 3 in scale 0.5. In
all robot figures, classic

method trajectory is
indicated in dashed lines
and in red is the resulting

trajectory proposed
herein.

Fig. 12. Figure shows the
same robot as in Fig. 13 and

Fig. 11 in a trajectory
segmented in three DSLS

(chain 1, 2, 3) with chain 3 in
scale 1.5.

Fig. 13. Figure shows a
robot in a trajectory
segmented into three

DSLS (chain 1, 2, 3) in the
same scale, recognized by

three automata.

obstacles in trajectories, and experimentation of simulated algo-
rithms in real robots.

8. REFERENCES

[1] Alejandra Barrera. Advances in Robot Navigation. InTech,
2011.

[2] Rudiger Befit, Dietrich Paulus, and Michael Harbeck. Seg-
mentation of lines and arcs and its application for depth
recovery. In Anais..., volume 4, pages 3165 –3168 vol.4.
IEEE International Conference on Acoustics, Speech, and
Signal Processing, ICASSP-97, april 1997.

[3] Partha Bhowmick and Bhargab B. Bhattacharya. Fast
polygonal approximation of digital curves using re-
laxed straightness properties. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 29:1590–1602,
September 2007.

[4] Wolfram Burgard, Dieter Fox, Daniel Hennig, and Timo
Schmidt. Estimating the absolute position of a mobile robot
using position probability grids. In In Proceedings of the
Thirteenth National Conference on Artificial Intelligence,
Menlo Park, pages 896–901. AAAI Press/MIT Press, 1996.

[5] Yeong-Hwa Chang, Tsu-Tian Lee, and Chang-Huan Liu.
On-line approximate cartesian path trajectory planning
for robotic manipulators. IEEE Transactions on Systems,
Man, and Cybernetics, 22(3), may 1992.

[6] Leoncio C. de Barros Neto, André R. Hirakawa, and Anto-
nio M. A. Massola. Adaptive modeling of digital straight-
ness applied to geometric representation enhancement. In-
ternational Journal of Computer Applications, 10(2):31–
39, November 2010. Published by Foundation of Computer
Science.

[7] Leoncio C. de Barros Neto, André R. Hirakawa, and An-
tonio M. A. Massola. An adaptive model applied to digi-
tal geometry to enhance segment straightness. IEEE Latin
America Transactions, 9:956 – 962, Oct. 2011.

[8] Leoncio Claro de Barros Neto. Modelagem em geometria
digital aprimorada por técnicas adaptativas de segmentos
de retas. PhD thesis, Escola Politécnica da Universidade
de São Paulo (USP), Junho 2011.

[9] H. Freeman. Boundary encoding and processing. Picture
Processing and Psychopictorics, pages 241–266, 1970.
B.S. Lipkin and A. Rosenfeld, editors, New York, Academic
Press, 1970.

[10] Bartolomé Garau, Alberto Alvarez, and Gabriel Oliver.
Path planning of autonomous underwater vehicles in cur-
rent fields with complex spatial variability: an A* ap-
proach. In ICRA, pages 194–198. IEEE, 2005.

[11] Feng Han and Song Chun Zhu. Bottom-up/top-down im-
age parsing with attribute grammar. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 31(1):59–73,
January 2009.

[12] S.H.Y. Hung. On the straightness of digital arcs. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-7(2):203–215, March 1985.

[13] Reinhard Klette and Azriel Rosenfeld. Digital geometry:
geometric methods for digital picture analysis. Morgan
Kaufmann, 2004.

[14] Benjamin Kuipers and Yung-Tai Byun. A robot explo-
ration and mapping strategy based on a semantic hierar-
chy of spatial representations. Journal of Robotics and Au-
tonomous Systems, 8:47–63, 1991.

[15] H.R. Lewis and C.H. Papadimitriou. Elements of the the-
ory of computation. Prentice-Hall, 1981.

8

International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 11, January 2013

[16] Shu Xiang Li and Murray H. Loew. Analysis and model-
ing of digitized straight-line segments. In Anais..., pages
294–296, Rome, Italy, 1988. Proceedings of International
Conference on Pattern Recognition, Publ by IEEE, Piscat-
away, NJ.

[17] Peter F.M. Nacken. Metric for line segments. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
15(12):1312–1318, December 1993.

[18] Alex Nash, Kenny Daniel, Sven Koenig, and Ariel Felner.
Theta*: Any-angle path planning on grids. In National
Conference on Artificial Intelligence, pages 1177–1183,
2007.

[19] J. J. Neto. Um levantamento da evolução da adaptativi-
dade e da tecnologia adaptativa. Revista IEEE América
Latina, 5(7):496–505, Novembro. 2007.

[20] J. J. Neto. Adaptatividade: generalização conceitual. In
Anais..., Escola Politécnica da Universidade de São Paulo,
2009. 3o Workshop de Tecnologia Adaptativa (WTA).

[21] J. P. Reveillès. Géométrie discrète, calcul en nombres en-
tiers et algorithmique. PhD thesis, Université Louis Pas-
teur, Strasbourg, 1991.

[22] Azriel Rosenfeld. Digital straight line segments. IEEE
Transactions on Computers, C-23(12):1264–1269, Decem-
ber 1974.

[23] N. Sariff and N. Buniyamin. An overview of autonomous
mobile robot path planning algorithms. In Anais... 4th
Student Conference on Research and Development, June
2006.

[24] Bernt Schiele and James L. Crowley. Comparison of po-
sition estimation techniques using occupancy grids. In In
Proceedings of the 1994 IEEE International Conference on
Robotics and Automation, pages 1628–1634, 1994.

[25] J. Sellen. Direction weighted shortest path planning. In
Anais..., volume 2, pages 1970 –1975 vol.2. IEEE Interna-
tional Conference on Robotics and Automation, may 1995.

[26] M. A. A Sousa, A. R. Hirakawa, and J. J. Neto. Adaptive
automata for mapping unknown environments by mobile
robots. In Anais... Ibero-American Conference on Artifi-
cial Intelligence, Lecture Notes in Artificial Intelligence:
Advances in Artificial Intelligence, p.562-571, 2004.

[27] Sebastian Thrun and Arno Bü. Integrating grid-based and
topological maps for mobile robot navigation. In Proceed-
ings of the Thirteenth National Conference on Aartificial
Intelligence - Volume 2, AAAI’96, pages 944–950. AAAI
Press, 1996.

[28] Kamil Tulum, Umut Durak, and Kemal Ider. Situation
aware uav mission route planning. In IEEE Aerospace con-
ference, editor, IEEE Aerospace Conference, March 2009.

[29] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, and
Peter Wolstenhoime. Modeling Software with Finite State
Machines: a Practical Approach. Auerbach Publications,
2006.

[30] Kai Ching You and King Sun Fu. A syntactic approach to
shape recognition using attributed grammars. IEEE trans-
actions os systems, man, and cybernetics, 9(6):334–345,
June 1979.

9

	INTRODUCTION
	FUNDAMENTS
	Adaptive finite automaton (AFA)
	DSLS background
	Codification
	Adaptive DSLS (ADSLS)
	Slope errors and length similarity of DSLS

	THE METHOD: APPLICATION TO THE AUTOMATA
	Architecture
	Design patterns
	Partitioning criteria to implement ADSLS
	Implementation of Automata
	ADSLS
	For angles (0+k /2) radians , with k=0, 1, 2, 3, ...
	For angles (/4+k /2) radians , with k=0, 1, 2, 3, ...

	THE METHOD: APPLICATION TO THE GRID MAP
	EXPERIMENTS
	Method proposed by this research
	Adaptive grids

	COMPARISON WITH EXISTING TECHNIQUES
	FINAL CONSIDERATIONS
	References

