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ABSTRACT 
The increasing prominence of computers has led to a new way 

of viewing nature as a form of computation. The Modern 

generation is more enthusiastic to know about the dynamical 

behavior of non-linear system. It is an in-depth study which is 

speculative and thought provoking. This paper highlights the 

importance of cellular Automata in short application of         

non-linear dynamics. Cellular Automata has been used in a 

variety of applications viz. modeling traffic, modeling 

chemical reactions, cryptography etc. This paper has been 

designed to be a descriptive version of non-linear dynamics 

system to get brief view of the cellular Automata and its 

application to shell coat pattern within the mathematical work 

by means of a computer programming. 
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1. CELLULAR AUTOMATA  

INTRODUCTION 
It is a branch of Automata which is a branch of computer 

Science. It is a dynamical system in which cells are generated 

according to some law[10]. It is an array of identically 

programmed automata or cells which interact with one 

another[5]. Dynamics of Cellular Automata is entirely 

discrete. It is ROBOT, which gives specific responses to 

specific inputs. The space of the system, which consists of 

cells of one, two or more dimensions, may be finite or infinite. 

In each cell, the system can assume a discrete number of state 

values, say ‘k’ values. The configuration of the entire system 

at any time is defined by the set of state values {si} in all cells 

{i}. 

For example, si may have the possible values,                            

Si = 0, 1, 2, 3, …… , k – 1.(State space, s)    and   i = 0, 1, 2, 

……(Over the entire space finite or infinite). 

We can say Cellular Automata, a perfect feedback machines. 

More precisely, they are mathematical finite state machines, 

which change the state of their cells step by step. Each cell 

has one of ‘k’ possible states. Sometimes of a k-state Cellular 

Automaton[10]. 

 It is a dynamical system (Az, F) such that Fo= o F, (i.e) 

the transition rule of a CA commutes with the shift map                

: Az  Az ,where Az is a phase space. Cellular automata 

evolve after a finite number of time steps from almost all 

initial states to a unique homogenous state, in which all sites 

have the same value. Such Cellular Automata may be 

considered to evolve to simple ‘limit points’ in phase space. 

These limit points to which all sites are attracted towards are 

called attracting fixed points. If the sites repel away from a 

fixed point, then those points are known as repelling fixed 

points.                                

Eg.  f (a b c) = (b + c) (mod 2), A = {0, 1} 

 

Local rule table: 

 

a b c f (a, b, c) 

0 0 0 

0 0 1 

0  1 0 

0 1          1 

0 

1 

1 

0 

 

The automaton can be dimensional where its cells are simply 

linked up like a chain or dimensional where cells are arranged 

in an array covering the plane[5]. Sometimes we like to draw 

the succeeding steps of dimensional CA one below the other 

and call the steps ‘layers’. When running the machine it grows 

layer by layer. 

To run a Cellular Automaton we need two entities of 

information: (i) An initial state of its cells (i.e. an initial layer) 

and  (ii) A set of rules or laws.  These rules describe how the 

state of a cell in a new layer (in the next step) is determined 

from the states of a group of cells from the preceding layer[9]. 

The rules should not depend on the position of the group 

within the layer. 

 

2. AUTOMATA RULES 

There are several ways a rule may determine the state of a cell 

in the succeeding layers. 

In fig (a), the state of a new cell is determined by the states of 

2 cells. In fig (b), by the state of 3 cells. In fig (c) and (d) the 

states of 5 cells determine the states of a new cell, But note 

that the position of the new cell with respect to the group is 

different in (c) and (d)[5]. 
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 Old Layer   Group 

 

 

 

a)Cell of resulting layer)  b) Cell of resulting layer 

 

 

               

 

c) Cell of resulting layer          d) Cell of resulting layer 
 
Eg. Consider the infinite one-dimensional CA, 

Si = 0, 1 (i = 0, +1, +2, …………) Here  k = 2. 

We define the dynamics by 

si(t + 1) = [si-1(t) + si+1(t)] (mod 2) 

with these consideration we generate CA as 

00000001011000000 (t = 0)          (initial value) 

00000010011100000 (t = 1) 

00000101110110000 (t = 2) 

00001001010111000 (t = 3) 

00010110000101100 (t = 4) 

00100111001001110 (t = 5) 

 

These results can be represented in a more compact form by 

replacing the state s = 1 with the black mark and making to 

mark when s = 0. We get a figure through which one can get 

the behavior of any dynamical system. For different initial 

configuration CA can be generated. We get different figures. 

A simple underlying mechanism is sufficient to support a 

whole hierarchy of structures, phenomena and properties.  

3. COAT PATTERN  

The natural world abounds in eye-catching patterns. Other 

patterns in nature are just as dynamic, but develop so slowly 

that they appear as snapshots to the human eye[1]. The living 

world is filled with striped and mottled patterns of contrasting 

colour[6], with sculptural equivalents of those patterns 

realized as surface crests and troughs, with patterns of 

organization and behavior even among individual organisms. 

Although several models for animal pattern formation 

have been proposed, either in biology or in mathematics, the 

actual mechanism responsible for the patterns is still an open 

question in biology for most patterns. Moreover, the literature 

lacks a good taxonomy for existing models, in specific for 

animal coat patterns.  

The intricate patterns found on the animals, birds and 

other form of nature seem to me a phenomenal sight[2],[7]. 

One seldom ponders about these varied patterns that are in 

perpetual existence. One is amazed to see the distinct patterns 

formed by the movement of the wind on the sand dunes or 

admires a school of fish gliding through the water in an 

organized manner with such beauty and grace. Certainly there 

is neither an organizer nor a choreographer to guide them.  

3.1 Shell Coat Pattern 

A special case of biological pattern formation is the 

emergence of the pigment patterns on the shells of mollusks. 

These patterns are of great diversity and frequently of great 

beauty. The shells consist of calcified material[2]. The 

animals can increase the size of their shells only by accretion 

of new material along a marginal zone, the growing edge of 

the shell. In most species, pigment becomes incorporated 

during growth at the edge. In these case, the pattern formation 

proceeds in a strictly linear manner[8]. The second dimension 

is a protocol of what happens as function of time along the 

growing edge. The shell pattern is, so to say, a space-time 

plot. The shells provide a unique situation in that the complete 

history of a highly dynamic process is preserved. This 

provides the opportunity to decode this process. 

In normal development, a strong evolutionary pressure 

exists to reproduce faithfully a given structure[8]. In contrast, 

the functional significance of the pigment patterns on shells is 

not clear. There is presumably no strong selective pressure to 

preserve a given shell pattern. Thus, nature was able to 

play[2],[3],[4]. Although the patterns look overtly very 

different, it is to be expected that similar molecular 

mechanism are at work[8]. The challenge was to find 

corresponding models. With some additions to the standard 

patterning reactions, the models were able to describe many 

patterns in great detail. 

 

  

fig-01 

4. METHODOLOY  

In this section I am generating pattern through Cellular 

Automata by C++ program. C++ programs are used for many 

purposes. One of the applications is generating patterns in 

nature or animal designs. Animal designs such as Zebra coat 

design, fish skin design, Butterfly skin design, flower design 

etc. 

 4.1 Rules to generate figures and working 

I have used the following rules to generate shell skin designs 

such as rule no. 30, 86, 126, 110. By iterating the rules several 
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times we observe the following patterns which resemble shell 

skin designs. 

The state of each cell is either 0 or 1. Each cell “ i ”(current 

position) interacts with only its neighbors  “i-1” and “i+1 “.  

 

5. OUTPUTS 

              Rule 30 for Input 45610(1110010002) 

 

 

 

 

 

 

Output

 

 

                 Rule 86 for Input 45610(1110010002) 

 

 

 

 

 

 

Output 

 

 

                    Rule 126 for Input 45610(111001 

 

 

 

 

 

 

 

Output 

 

 

    
    

      
    

    

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 0 

    
    

      
    

    

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 0 

    
    

      
    

    

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 
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Rule 110 for Input 45610(1110010002) 

 

 

 

 

Output 

 

6. CONCLUSION 

In this paper I have displayed coat pattern of shell. Cellular 

Automata is used to generate such a pattern. Similarly so 

many patterns can be generated through Cellular Automata in 

various fields such as fungus growth, bacterial growth and 

cancerous growth. Research is going on to find the replica of 

cancer cell growth, plant growth and so many in medicines.  
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0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 0 


