
International Journal of Computer Applications (0975 – 8887)

Volume 62– No.10, January 2013

38

Modeling Flight Software from Architectural

Design Patterns

Pavani Neelakantam

CVR College of Engineering
Department of CSE

Ibrahimpatam (M), R.R. District
A.P., India

ABSTRACT

This paper discusses how Software design patterns are

applicable to Flight Software (FSW) domain. The application

of design patterns is particularly important in this domain to

improve the quality of software and reduce the flight software

anomalies which lead to major losses. Generic architectural

design patterns for real-time software components are

customized to suit the flight software domain. This is

illustrated using the Student Nitric Oxide Explorer (SNOE),

which is a real world case study from National Aeronautics

and Space Administration (NASA). The customized design

patterns are validated and made executable templates which

help an engineer when building software architectures.

General Terms

Design Patterns, Software Architecture, Unified Modeling

Language.

Keywords

Software Architectural Design Patterns, UML 2.0, Student

Nitric Oxide Explorer (SNOE), IBM Rational Rhapsody.

1. INTRODUCTION
Software design patterns are “descriptions of communicating

objects and classes that are customized to solve a general

design problem in a particular context” [1].

This paper provides a set of design patterns that are applicable

to a small satellite Student Nitric Oxide Explorer (SNOE).

The design patterns are customized to suit the working of the

satellite and are also validated using IBM Rational Rhapsody.

The Design patterns are developed to leverage the benefits of

Software Product Line (SPL) approach. The SPL concepts

used in this approach are based on Product Line UML-Based

Software Engineering (PLUS) methodology by Gomma [2].

The case study discussed in this paper is related to Flight

Software domain [3]. This domain is chosen for this study, to

improve the quality of software architectures in FSW domain

and to reduce the number of flight software related anomalies.

The industry trend indicates that the number of software

related anomalies is growing. It is reported that “in the period

from 1998 to 2000, nearly half of all observed spacecraft

anomalies were related to software” [4]. These software

anomalies can cause mission disruption or even mission loss.

In the aerospace industry these losses cannot be tolerated

because of the high cost and length of time that is required to

build a spacecraft.

2. TOOL SUPPORT: IBM RATIONAL

RHAPSODY DEVELOPER FOR JAVA
This paper uses a tool called IBM Rational Rhapsody 7.6.1

Developer for Java to build and execute the state machines

[5]. The generic design patterns are customized and validated

using the tool. IBM Rational Rhapsody is used to depict the

functionality of the components in the design patterns using

Rhapsody’s action language and Event handling

infrastructure.

IBM Rational Rhapsody uses custom action language, to

capture actions and to execute the model. Thus, this action

language is used to implement the objects actions. The objects

actions and the functionality of the components are depicted

in state chart diagrams. The action language is similar to Java,

except there are a few additional reserved words and

functions. For example, GEN is a reserved word used to

generate asynchronous messages as events. The messages

must be specified on the consumer’s provided interface in

order to be invoked.

Ex: PClass.gen(new evnt());

Where PClass is the port that allows communication with the

outside environment. The port can be represented with the

provided interface and the required interface. GEN is the

reserved word that is used to specify the event that is

generated. Here evnt() is the event that is generated. When an

event is generated, IBM Rational Rhapsody event handling

infrastructure handles the routing of events from the producer

to the consumer. When the consumer component receives the

event, the appropriate state transition is taken and actions

within that state are performed. Thus, executable state charts

represent the functional behavior of the components of the

system.

IBM Rational Rhapsody is an excellent tool to create dynamic

UML diagrams using Real-time UML that is UML 2.0. These

executable state charts and Object Model Diagrams can be

validated using Rational Rhapsody. Rhapsody is also used to

generate code for the diagrams.

3. UML 2.0 AS ARCHITECTURAL

DESCRIPTION LANGUAGE (ADL)
“The software architecture of a program or computing system

is the structure or structures of the system, which comprise

software elements, the externally visible properties of those

elements, and the relationships among them” [6].

Architecture Description Language (ADL) is defined as “a

language (graphical, textual, or both) for describing a software

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.10, January 2013

39

system in terms of its architectural elements and the

relationship among them” [7]. UML is widely accepted

language by practitioners.

UML can be used to describe and model even software

architectures. The most promising way of mapping software

architectures to UML is using UML profiles such that those

profiles are derived as mappings of ADLs. The architectures

can be well expressed in UML than any ADL. The UML

profile for scheduling, performance, and time specification

described in [8] has been adopted as an official OMG standard

in March 2002. The UML profile defines a domain specific

interpretation of UML; it might be viewed as a package of

specializations of general UML concepts that capture domain-

specific variations and usage patterns. The UML extensibility

mechanisms (i.e., stereotypes, tagged values, constraints) are

used to interpret the functionality of the system in the

diagrams.

 The UML 2.0 diagrams are represented using the Component

and connector views (C&C views, for short) [9]. They present

architecture in terms of elements that have a runtime presence

(e.g., processes, clients, and data stores) and pathways of

interaction (e.g., communication links and protocols,

information flows, and access to shared resources).

Components are the principal units of run-time interaction or

data storage. Connectors are the interaction mechanisms

among components.

Components are created as Composite classes in UML 2.0 and

each of the components should have ports to interact with the

external environment. Each port again requires an interface

for it to interact. The interfaces are of two types Provided

Interface and Required Interface. Two components with ports

and their interfaces can be linked for communication. The

ports and their interfaces should be compatible, that is one

component having a required interface (depicted as semi

circle) can interact with only a component that provides the

interface (depicted as full circle). It is through these port

names that the message passing is done.

This paper presents the customized design patterns of SNOE

using UML 2.0. The UML diagrams used are produced using

IBM Rational Rhapsody. The diagrams that are used to

represent the design patterns are the Object Model diagrams

and the State Charts in Rhapsody.

4. STUDENT NITRIC OXIDE

EXPLORER (SNOE)
SNOE, a real-world, small satellite program funded by the

National Aeronautics and Space Administration (NASA) and

managed by the Universities Space Research Association

(USRA) [10]. This project describes the construction of

architecture for SNOE by customizing and validating the

selected design patterns.

SNOE’s job is to measure thermospheric Nitric Oxide (NO)

and its variability in the low earth orbit. The SNOE spacecraft

is spin stabilized, meaning it maintains its orientation similar

to that of a top. SNOE is required to maintain a spin rate of 5

Rotations Per Minute (RPM). The spin rate can be adjusted

having the Flight Software (FSW) send a command to

commutate the electromagnet transverse torque rod.

SNOE’s FSW does not perform the attitude determination and

control calculations. Rather, the FSW collects the attitude

measurements and downlinks them to the ground for

processing. Then the ground uplinks attitude control

commands back to the spacecraft for the SNOE FSW to

execute. The attitude measurements are taken from two

Horizon Crossing Indicators (HCI) and three Magnetometers.

SNOE’s spacecraft body is surrounded on all sides by

stationary solar panels which are used to generate power.

The spacecraft contains four payload instruments to

accomplish its scientific mission. These four instruments are

an Ultra Violet Spectrometer (UVS) that measures Nitric

Oxide density, an Auroral Photometer (AP) that measures the

flux of energetic electrons entering the Earth's upper

atmosphere, Solar soft X-ray Photometer (SXP) that measures

the solar irradiance and a microGPS Bit-Grabber Space

Receiver (microGPS BGSR) which gathers position

information based on the Global Positioning System (GPS)

constellation for experimental orbital determination.

In addition to collecting science data and attitude control data,

the SNOE FSW must also periodically collect health status

and housekeeping data from the hardware. The FSW stores

this data and sends it to the ground for processing and

analysis.

4.1 SNOE Design Pattern Selection
The design pattern selection process is done using the

command execution functionality of SNOE. This involves

determining the order in which spacecraft commands are

executed. The design patterns that support this feature are then

selected. For example, on small spacecraft the Centralized

Control Design Pattern is better suitable than the Distributed

Control Design Pattern. The Centralized Control design

pattern involves a single controller that provides overall

control of all the components of SNOE. This can be illustrated

by conceptually executing a state machine. This design

pattern is useful on small spacecraft because it encapsulates

all the state-dependent control in a single component thus

making the control logic easier to understand and maintain.

Thus, the design patterns that support SNOE specific features

are determined by selecting the Design Patterns that are

suitable for the working of SNOE. Seven different Design

Patterns have been identified and customized to reflect the

functionality of SNOE.

The Design Patterns identified are listed in table 1.

Table 1. SNOE Design Pattern Selection

Feature Design Pattern

Command Execution Centralized Control Design
Pattern

Telemetry Storage and

Retrieval

Telemetry Client Server

Design Pattern

 Telemetry Formation Pipes and Filters Design
Pattern

 Ground Driven Payload Data

 Collection

Payload Multiple Client

Multiple Server Design
Pattern

 Ground Driven Housekeeping

 Data Collection

Housekeeping Multiple

Client Multiple Server
Design Pattern

 Spacecraft Clock Spacecraft Clock Multicast
Design Pattern

 Memory Storage Device

 Fault Detection

Memory Storage Device

Watchdog Design Pattern

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.10, January 2013

40

Figure 1. Component diagram for SNOE Centralized Control executable design pattern

5. IMPLEMENTATION

5.1 SNOE Centralized Control Design

Pattern
The SNOE utilizes the Centralized Control design pattern to

execute commands and control the overall operation of the

spacecraft. The component diagram for SNOE’s Centralized

Control design pattern is shown in figure 1.

SNOE contains thirteen components; therefore thirteen device

components are created. For each component, the port name is

updated to reflect the specific component, such as the

RmGPS. The port’s interface is updated to reflect the specific

functionalities that can be invoked on that instrument. The

ports, interfaces, and connecters for the components are

captured in the diagram.

Next, the executable version of the design pattern involves

potentially adding states, actions, and activities to the state

machines based on the functionality of the components.

Once the state machine for a component is built, a small icon

 for opening the statechart appears on the top right corner

of the component. This icon acts like a link to open the

respective statechart for the component from the Object

Model Diagram.

The state machine for the EEPROM_IOC component is

depicted in the fig. 2. This is an Input-Output component. The

component begins in the Idle state within the Working state.

In the Idle state the Component waits for commands from the

Centralized_Controller. When an action message is received,

it transitions to the Executing_Command state where it

performs the appropriate actions on the external hardware.

After it performs the necessary actions, it generates the

processingComplete event and transitions back to the Idle

state to wait for the next command. When a read message is

received, a similar set of states and transitions occurs,

however, it occurs in the Gathering_Data state. The

IO_Component is also responsible for listening to external

events from the hardware. Therefore if an externalEvent event

is received, the IO_Component stops its current action in the

Working state and transitions into the Preparing_Notification

state. In the Preparing_Notification state it prepares a

message to send to the Centralized_Controller.

Once the message is ready, the IO_Component then sends the

inputEventNotification message to the Centralized_Controller

through the PEEPROM port and transitions back to its

previously interrupted location within the Working state. This

is depicted using a history connector in Rhapsody.

Figure 2. State Machine for

Solar_XRay_Photometer_IOC

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.10, January 2013

41

Next the state machine for the SNOE’s Reciever_IC

component is depicted in fig. 3. Receiver is an input

component. It is initialized by the Centralized Controller. It is

first in the idle state and moves to the Preparing_Notification

state when an external event occurs. Here it prepares the

input_event_notification and sends it to the

Centralized_Controller. A similar set of actions is performed

in response to a read event message; however the requested

data is collected and sent back the Centralized_Controller.

Figure 3. State Machine for Magnetometer_IC

The Output Component begins in the Idle state where is waits

for commands from the Centralized_Controller(fig. 4). Once

a command message is received, the Output_Component

transitions into the Execute_Command state where it performs

the appropriate actions on the external hardware. Once

complete, it generates the transmitData event and transitions

back to the Idle state to wait for the next command.

Figure 4. State Machine for Low_Gain_Antenna_OC

Finally, the state machines for the other input, output, and IO

components are also added.

5.2 SNOE HouseKeeping Multiple Client

Multiple Server Design Pattern
The next executable design pattern realized in SNOE is the

FSW HouseKeeping Multiple Client Multiple Server design

pattern. This design pattern is used to selectively collect data

regarding the health and working of each of the components

of SNOE. Since SNOE is required to collect the information

to keep track of the health of the components, separate clients

are created for each instrument. Additionally, since each

instrument has its own data buffer, separate server

components are created to store the information collected.

This information collected is taken care by Telemetry Client

Server Design pattern. It collects such information from all

the components and sends it to the ground station for

processing. The ground station sends commands back to the

controller of the satellite if needed.

The SNOE HouseKeeping Multiple Client Multiple Server

design pattern involves selectively collecting information

about the components. The interaction diagram for collecting

housekeeping data is depicted in fig. 5. The controller sends a

message to the client to collect the housekeeping data. The

client sends a requestNeeded() message to the server and

server then sends a response() to the client. This scenario

applies to all the client and server components in the

HouseKeepingClientServer Design pattern.

Figure 5. House Keeping Client-Server data scenario for

SNOE

The component diagram in fig. 6 depicts the set of

components in the system. The ports and connectors added

between the appropriate clients and servers are also depicted

in the diagram. Additionally, the interfaces are also updated to

reflect the SNOE’s components. The interfaces should define

all the methods that the respective components pass among

each other for message communication. The diagram shows

that the connected components have compatible interfaces.

The message passing between each of the components

happens when the message being called is defined in the

provided interface of the consumer. For message passing, the

components port name should be specified and the message to

be passed should be specified with the GEN keyword of

Rhapsody. This is depicted in the state chart diagrams which

depict the behavior of the component.

There are thirteen components in SNOE. A client and server

component for each of the components is depicted in the

design pattern.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.10, January 2013

42

Figure 6. Object Model Diagram for HouseKeeping Multiple Client Multiple Server

In addition to updating the architectural views, the executable

version of the design pattern also needs to be customized for

SNOE. This is performed for each client and server in this

design pattern. The specific steps involved in updating the

state machine are follows.

First, the HouseKeeping information from the Ultra Violet

Spectrometer component of SNOE is collected. The House

Keeping Ultra Violet Spectrometer Client (HUVS_DClient)

component is responsible for collecting the data from the

HUVS_DServer. The state machine for the SNOE specific

HUVS_DClient component is depicted in fig. 7.

When Controller requires data it sends requestNeeded

message to HUVS_DClient. HUVS_DClient requests the data

from the server; this information is added to the actions on the

state machine. This information is captured on the transition

from the Preparing_HouseKeeping_Data_Request state to the

Idle state. The event that occurs is the requestSent and the

action

RHUVS.gen(new request());

indicates that a request for house keeping data is being sent to

the HUVS_DServer component by specifying the required

port (RHUVS) of the client through which the components

communicate. Finally, the SNOE specific processing logic

within the Preparing_HouseKeeping_Data_Request state is

added as On Entry actions.

Figure 7. State Machine for House Keeping Client

The state machine for HUVS_DServer in fig. 8 depicts the

transitions that server takes. It is in Idle state first and moves

to Processing_HouseKeeping_Data_Client_Request state

when client sends a requestNeeded event to server. After

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.10, January 2013

43

processing is complete, the server prepares a response and

moves back to the Idle state.

Figure 8. State Machine for House Keeping Server

Similarly, the state machines for client and server for the all

the instruments of SNOE are also updated following a similar

process.

The Object Model Diagrams and state machines for all the

identified design patterns are developed and validated using

IBM Rational Rhapsody.

6. RESULTS
This paper validates the design patterns using the tool IBM

Rational Rhapsody. Rational Rhapsody generates the code for

the design patterns and validates the design patterns using

‘build’ option. Thus the functionality of design patterns can be

verified during the design phase and reduce the number of

anomalies in flight software. This validation of design

patterns for functional correctness was not possible in static

UML diagrams. Rational Rhapsody also enables the

animation of statecharts by generating events to check the

behavior of the component. The fig. 9 is an example of

animated statechart of client component where the bright

colored state indicates the present state of the component after

the requestNeeded event is generated.

Figure 9. Animated State Chart for Client

Thus the functionality of every component in the design

pattern can be validated to build an error free Architecture.

7. CONCLUSIONS
This paper illustrates an approach for building software

architecture from software architectural patterns. This

approach improves the quality of FSW architecture. The

executable design pattern templates help an engineer when

building software architectures and also provide the

foundation for performing design time validation on the

software architecture produced using this approach. The

engineers also can use these design patterns to form the core

base for building the software architecture of any other system

in this domain. Thus, enabling the Software Product Line

(SPL) based product development.

8. FUTURE ENHANCEMENTS
There are several avenues of future research that can be taken

to extend this paper. First, the SNOE case study can be

expanded to include performance validation using MARTE

(Modeling and Analysis of Real-Time Embedded systems)

stereotypes. Second, this work can be applied to other DRE

domains to illustrate the approach’s applicability across DRE

domains. Additionally, future research can include illustrating

the functionality of the design patterns by animating the

sequence diagrams using the “animation” feature of IBM

Rational Rhapsody.

9. REFERENCES
[1] Gamma, E. et al., 1995. Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley

Professional Computing Series

[2] H. Gomaa. 2005. Designing Software Product Lines with

UML: From Use Cases to Pattern-Based Software

Architectures. Addison-Wesley Object Technology

Series.

[3] H. Gomaa, G.A. Farrukh, 1998 Composition of Software

Architectures from Reusable Architecture Patterns,

ISAW '98 Proceedings of the third international

workshop on Software architecture, ACM New York .

[4] Julie Street Fant, Hassan Gomaa, Robert G. Pettit. 2011.

Architectural Design Patterns for Flight Software. 14th

IEEE International Symposium on

Object/Component/Service-Oriented Real-Time

Distributed Computing Workshops.

[5] D. Harel. 1997. Executable object modeling with

statecharts. 18th International Conference on Software

Engineering.

[6] Len Bass, Paul Clements, Rick Kazman, 2003. Software

Architecture in Practice. Addison-Wesley.

[7] B.Bharathi, Dr.D.Sridharan. 2009. UML as an

Architecture Description Language. International Journal

of Recent Trends in Engineering.

[8] Clements. P. et.al. 2002. Documenting Software

Architectures, Views and Beyond. Addison-Wesley.

Boston, MA, USA.

[9] Software Architecture Description & UML Workshop,

Hosted at the 7th International Conference on UML

Modeling Languages and Applications <<UML>>

2004, October 11-15, 2004, Lisbon, Portugal.

[10] Laboratory For Atmospheric and Space Physics at the

University of Colorado at Boulder. Student Nitric Oxide

Explorer Homepage. 2010.

http://lasp.colorado.edu/snoe/.

