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ABSTRACT 

This paper discusses how Software design patterns are 

applicable to Flight Software (FSW) domain. The application 

of design patterns is particularly important in this domain to 

improve the quality of software and reduce the flight software 

anomalies which lead to major losses. Generic architectural 

design patterns for real-time software components are 

customized to suit the flight software domain. This is 

illustrated using the Student Nitric Oxide Explorer (SNOE), 

which is a real world case study from National Aeronautics 

and Space Administration (NASA). The customized design 

patterns are validated and made executable templates which 

help an engineer when building software architectures.  
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1. INTRODUCTION 
Software design patterns are “descriptions of communicating 

objects and classes that are customized to solve a general 

design problem in a particular context” [1].  

This paper provides a set of design patterns that are applicable 

to a small satellite Student Nitric Oxide Explorer (SNOE). 

The design patterns are customized to suit the working of the 

satellite and are also validated using IBM Rational Rhapsody. 

The Design patterns are developed to leverage the benefits of 

Software Product Line (SPL) approach. The SPL concepts 

used in this approach are based on Product Line UML-Based 

Software Engineering (PLUS) methodology by Gomma [2]. 

The case study discussed in this paper is related to Flight 

Software domain [3].  This domain is chosen for this study, to 

improve the quality of software architectures in FSW domain 

and to reduce the number of flight software related anomalies. 

The industry trend indicates that the number of software 

related anomalies is growing. It is reported that “in the period 

from 1998 to 2000, nearly half of all observed spacecraft 

anomalies were related to software” [4]. These software 

anomalies can cause mission disruption or even mission loss. 

In the aerospace industry these losses cannot be tolerated 

because of the high cost and length of time that is required to 

build a spacecraft.  

2. TOOL SUPPORT: IBM RATIONAL 

RHAPSODY DEVELOPER FOR JAVA 
This paper uses a tool called IBM Rational Rhapsody 7.6.1 

Developer for Java to build and execute the state machines 

[5]. The generic design patterns are customized and validated 

using the tool. IBM Rational Rhapsody is used to depict the 

functionality of the components in the design patterns using 

Rhapsody’s action language and Event handling 

infrastructure.  

IBM Rational Rhapsody uses custom action language, to 

capture actions and to execute the model. Thus, this action 

language is used to implement the objects actions. The objects 

actions and the functionality of the components are depicted 

in state chart diagrams. The action language is similar to Java, 

except there are a few additional reserved words and 

functions. For example, GEN is a reserved word used to 

generate asynchronous messages as events. The messages 

must be specified on the consumer’s provided interface in 

order to be invoked. 

Ex: PClass.gen(new evnt()); 

Where PClass is the port that allows communication with the 

outside environment. The port can be represented with the 

provided interface and the required interface. GEN is the 

reserved word that is used to specify the event that is 

generated. Here evnt() is the event that is generated. When an 

event is generated, IBM Rational Rhapsody event handling 

infrastructure handles the routing of events from the producer 

to the consumer. When the consumer component receives the 

event, the appropriate state transition is taken and actions 

within that state are performed. Thus, executable state charts 

represent the functional behavior of the components of the 

system. 

IBM Rational Rhapsody is an excellent tool to create dynamic 

UML diagrams using Real-time UML that is UML 2.0. These 

executable state charts and Object Model Diagrams can be 

validated using Rational Rhapsody. Rhapsody is also used to 

generate code for the diagrams. 

3. UML 2.0 AS ARCHITECTURAL 

DESCRIPTION LANGUAGE (ADL) 
“The software architecture of a program or computing system 

is the structure or structures of the system, which comprise 

software elements, the externally visible properties of those 

elements, and the relationships among them” [6]. 

Architecture Description Language (ADL) is defined as “a 

language (graphical, textual, or both) for describing a software 



International Journal of Computer Applications (0975 – 8887)  

Volume 62– No.10, January 2013 

39 

system in terms of its architectural elements and the 

relationship among them” [7]. UML is widely accepted 

language by practitioners. 

UML can be used to describe and model even software 

architectures. The most promising way of mapping software 

architectures to UML is using UML profiles such that those 

profiles are derived as mappings of ADLs. The architectures 

can be well expressed in UML than any ADL. The UML 

profile for scheduling, performance, and time specification 

described in [8] has been adopted as an official OMG standard 

in March 2002. The UML profile defines a domain specific 

interpretation of UML; it might be viewed as a package of 

specializations of general UML concepts that capture domain-

specific variations and usage patterns. The UML extensibility 

mechanisms (i.e., stereotypes, tagged values, constraints) are 

used to interpret the functionality of the system in the 

diagrams. 

 The UML 2.0 diagrams are represented using the Component 

and connector views (C&C views, for short) [9]. They present 

architecture in terms of elements that have a runtime presence 

(e.g., processes, clients, and data stores) and pathways of 

interaction (e.g., communication links and protocols, 

information flows, and access to shared resources). 

Components are the principal units of run-time interaction or 

data storage.  Connectors are the interaction mechanisms 

among components.  

Components are created as Composite classes in UML 2.0 and 

each of the components should have ports to interact with the 

external environment. Each port again requires an interface 

for it to interact. The interfaces are of two types Provided 

Interface and Required Interface. Two components with ports 

and their interfaces can be linked for communication. The 

ports and their interfaces should be compatible, that is one 

component having a required interface (depicted as semi 

circle) can interact with only a component that provides the 

interface (depicted as full circle). It is through these port 

names that the message passing is done.  

This paper presents the customized design patterns of SNOE 

using UML 2.0.  The UML diagrams used are produced using 

IBM Rational Rhapsody. The diagrams that are used to 

represent the design patterns are the Object Model diagrams 

and the State Charts in Rhapsody. 

4. STUDENT NITRIC OXIDE 

EXPLORER (SNOE) 
SNOE, a real-world, small satellite program funded by the 

National Aeronautics and Space Administration (NASA)  and 

managed by the Universities Space Research Association 

(USRA) [10]. This project describes the construction of 

architecture for SNOE by customizing and validating the 

selected design patterns.  

SNOE’s job is to measure thermospheric Nitric Oxide (NO) 

and its variability in the low earth orbit. The SNOE spacecraft 

is spin stabilized, meaning it maintains its orientation similar 

to that of a top. SNOE is required to maintain a spin rate of 5 

Rotations Per Minute (RPM). The spin rate can be adjusted 

having the Flight Software (FSW) send a command to 

commutate the electromagnet transverse torque rod.  

SNOE’s FSW does not perform the attitude determination and 

control calculations. Rather, the FSW collects the attitude 

measurements and downlinks them to the ground for 

processing. Then the ground uplinks attitude control 

commands back to the spacecraft for the SNOE FSW to 

execute. The attitude measurements are taken from two 

Horizon Crossing Indicators (HCI) and three Magnetometers. 

SNOE’s spacecraft body is surrounded on all sides by 

stationary solar panels which are used to generate power. 

The spacecraft contains four payload instruments to 

accomplish its scientific mission. These four instruments are 

an Ultra Violet Spectrometer (UVS) that measures Nitric 

Oxide density, an Auroral Photometer (AP) that measures the 

flux of energetic electrons entering the Earth's upper 

atmosphere, Solar soft X-ray Photometer (SXP) that measures 

the solar irradiance and a microGPS Bit-Grabber Space 

Receiver (microGPS BGSR) which gathers position 

information based on the Global Positioning System (GPS) 

constellation for experimental orbital determination. 

In addition to collecting science data and attitude control data, 

the SNOE FSW must also periodically collect health status 

and housekeeping data from the hardware. The FSW stores 

this data and sends it to the ground for processing and 

analysis. 

4.1 SNOE Design Pattern Selection 
The design pattern selection process is done using the 

command execution functionality of SNOE. This involves 

determining the order in which spacecraft commands are 

executed. The design patterns that support this feature are then 

selected. For example, on small spacecraft the Centralized 

Control Design Pattern is better suitable than the Distributed 

Control Design Pattern. The Centralized Control design 

pattern involves a single controller that provides overall 

control of all the components of SNOE. This can be illustrated 

by conceptually executing a state machine. This design 

pattern is useful on small spacecraft because it encapsulates 

all the state-dependent control in a single component thus 

making the control logic easier to understand and maintain. 

Thus, the design patterns that support SNOE specific features 

are determined by selecting the Design Patterns that are 

suitable for the working of SNOE. Seven different Design 

Patterns have been identified and customized to reflect the 

functionality of SNOE.  

The Design Patterns identified are listed in table 1. 

Table 1. SNOE Design Pattern Selection 

Feature Design Pattern 

Command Execution Centralized Control Design 
Pattern 

Telemetry Storage and 

Retrieval 

Telemetry Client Server 

Design Pattern 

 

 Telemetry Formation Pipes and Filters Design 
Pattern 

 Ground Driven Payload Data    

 Collection 

Payload Multiple Client 

Multiple Server Design 
Pattern 

 Ground Driven Housekeeping   

 Data Collection 

Housekeeping Multiple 

Client Multiple Server 
Design Pattern 

 Spacecraft Clock Spacecraft Clock Multicast 
Design Pattern 

 Memory Storage Device 

 Fault Detection 

Memory Storage Device  

Watchdog Design Pattern 
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Figure 1. Component diagram for SNOE Centralized Control executable design pattern 

 

5. IMPLEMENTATION 

5.1 SNOE Centralized Control Design 

Pattern 
The SNOE utilizes the Centralized Control design pattern to 

execute commands and control the overall operation of the 

spacecraft. The component diagram for SNOE’s Centralized 

Control design pattern is shown in figure 1. 

SNOE contains thirteen components; therefore thirteen device 

components are created. For each component, the port name is 

updated to reflect the specific component, such as the 

RmGPS. The port’s interface is updated to reflect the specific 

functionalities that can be invoked on that instrument. The 

ports, interfaces, and connecters for the components are 

captured in the diagram.  

Next, the executable version of the design pattern involves 

potentially adding states, actions, and activities to the state 

machines based on the functionality of the components.  

Once the state machine for a component is built, a small icon 

 for opening the statechart appears on the top right corner 

of the component. This icon acts like a link to open the 

respective statechart for the component from the Object 

Model Diagram. 

The state machine for the EEPROM_IOC component is 

depicted in the fig. 2. This is an Input-Output component. The 

component begins in the Idle state within the Working state. 

In the Idle state the Component waits for commands from the 

Centralized_Controller. When an action message is received, 

it transitions to the Executing_Command state where it 

performs the appropriate actions on the external hardware. 

After it performs the necessary actions, it generates the 

processingComplete event and transitions back to the Idle 

state to wait for the next command. When a read message is 

received, a similar set of states and transitions occurs, 

however, it occurs in the Gathering_Data state. The 

IO_Component is also responsible for listening to external 

events from the hardware. Therefore if an externalEvent event 

is received, the IO_Component stops its current action in the 

Working state and transitions into the Preparing_Notification 

state. In the Preparing_Notification state it prepares a 

message to send to the Centralized_Controller. 

Once the message is ready, the IO_Component then sends the 

inputEventNotification message to the Centralized_Controller 

through the PEEPROM port and transitions back to its 

previously interrupted location within the Working state. This 

is depicted using a history connector in Rhapsody. 

 

Figure 2. State Machine for 

Solar_XRay_Photometer_IOC 
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Next the state machine for the SNOE’s Reciever_IC 

component is depicted in fig. 3. Receiver is an input 

component. It is initialized by the Centralized Controller. It is 

first in the idle state and moves to the Preparing_Notification 

state when an external event occurs. Here it prepares the 

input_event_notification and sends it to the 

Centralized_Controller. A similar set of actions is performed 

in response to a read event message; however the requested 

data is collected and sent back the Centralized_Controller.  

 

 

Figure 3. State Machine for Magnetometer_IC 

 

The Output Component begins in the Idle state where is waits 

for commands from the Centralized_Controller(fig. 4). Once 

a command message is received, the Output_Component 

transitions into the Execute_Command state where it performs 

the appropriate actions on the external hardware. Once 

complete, it generates the transmitData event and transitions 

back to the Idle state to wait for the next command. 

 

 

Figure 4. State Machine for Low_Gain_Antenna_OC 

 

Finally, the state machines for the other input, output, and IO 

components are also added. 

5.2 SNOE HouseKeeping Multiple Client 

Multiple Server Design Pattern 
The next executable design pattern realized in SNOE is the 

FSW HouseKeeping Multiple Client Multiple Server design 

pattern. This design pattern is used to selectively collect data 

regarding the health and working of each of the components 

of SNOE. Since SNOE is required to collect the information 

to keep track of the health of the components, separate clients 

are created for each instrument. Additionally, since each 

instrument has its own data buffer, separate server 

components are created to store the information collected. 

This information collected is taken care by Telemetry Client 

Server Design pattern. It collects such information from all 

the components and sends it to the ground station for 

processing. The ground station sends commands back to the 

controller of the satellite if needed. 

The SNOE HouseKeeping Multiple Client Multiple Server 

design pattern involves selectively collecting information 

about the components. The interaction diagram for collecting 

housekeeping data is depicted in fig. 5.  The controller sends a 

message to the client to collect the housekeeping data. The 

client sends a requestNeeded() message to the server and 

server then sends a response() to the client. This scenario 

applies to all the client and server components in the 

HouseKeepingClientServer Design pattern. 

 

 
Figure 5. House Keeping Client-Server data scenario for 

SNOE 

 

The component diagram in fig. 6 depicts the set of 

components in the system. The ports and connectors added 

between the appropriate clients and servers are also depicted 

in the diagram. Additionally, the interfaces are also updated to 

reflect the SNOE’s components. The interfaces should define 

all the methods that the respective components pass among 

each other for message communication. The diagram shows 

that the connected components have compatible interfaces. 

The message passing between each of the components 

happens when the message being called is defined in the 

provided interface of the consumer. For message passing, the 

components port name should be specified and the message to 

be passed should be specified with the GEN keyword of 

Rhapsody. This is depicted in the state chart diagrams which 

depict the behavior of the component. 

There are thirteen components in SNOE. A client and server 

component for each of the components is depicted in the 

design pattern.   
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Figure 6. Object Model Diagram for HouseKeeping Multiple Client Multiple Server 

 

In addition to updating the architectural views, the executable 

version of the design pattern also needs to be customized for 

SNOE. This is performed for each client and server in this 

design pattern. The specific steps involved in updating the 

state machine are follows. 

First, the HouseKeeping information from the Ultra Violet 

Spectrometer component of SNOE is collected. The House 

Keeping Ultra Violet Spectrometer Client (HUVS_DClient) 

component is responsible for collecting the data from the 

HUVS_DServer. The state machine for the SNOE specific 

HUVS_DClient component is depicted in fig. 7. 

When Controller requires data it sends requestNeeded 

message to HUVS_DClient. HUVS_DClient requests the data 

from the server; this information is added to the actions on the 

state machine. This information is captured on the transition 

from the Preparing_HouseKeeping_Data_Request state to the 

Idle state. The event that occurs is the requestSent and the 

action  

RHUVS.gen(new request()); 

indicates that a request for house keeping data is being sent to 

the HUVS_DServer component by specifying the required  

 

port (RHUVS) of the client through which the components 

communicate. Finally, the SNOE specific processing logic 

within the Preparing_HouseKeeping_Data_Request state is 

added as On Entry actions.  

 

Figure 7. State Machine for House Keeping Client 

The state machine for HUVS_DServer in fig. 8 depicts the 

transitions that server takes. It is in Idle state first and moves 

to Processing_HouseKeeping_Data_Client_Request state 

when client sends a requestNeeded event to server. After 
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processing is complete, the server prepares a response and 

moves back to the Idle state.  

 

Figure 8. State Machine for House Keeping Server 

 

Similarly, the state machines for client and server for the all 

the instruments of SNOE are also updated following a similar 

process. 

The Object Model Diagrams and state machines for all the 

identified design patterns are developed and validated using 

IBM Rational Rhapsody. 

6. RESULTS 
This paper validates the design patterns using the tool IBM 

Rational Rhapsody. Rational Rhapsody generates the code for 

the design patterns and validates the design patterns using 

‘build’ option. Thus the functionality of design patterns can be 

verified during the design phase and reduce the number of 

anomalies in flight software. This validation of design 

patterns for functional correctness was not possible in static 

UML diagrams. Rational Rhapsody also enables the 

animation of statecharts by generating events to check the 

behavior of the component. The fig. 9 is an example of 

animated statechart of client component where the bright 

colored state indicates the present state of the component after 

the requestNeeded event is generated. 

 

 

Figure 9. Animated State Chart for Client 

Thus the functionality of every component in the design 

pattern can be validated to build an error free Architecture. 

7. CONCLUSIONS 
This paper illustrates an approach for building software 

architecture from software architectural patterns. This 

approach improves the quality of FSW architecture. The 

executable design pattern templates help an engineer when 

building software architectures and also provide the 

foundation for performing design time validation on the 

software architecture produced using this approach. The 

engineers also can use these design patterns to form the core 

base for building the software architecture of any other system 

in this domain. Thus, enabling the Software Product Line 

(SPL) based product development. 

8.  FUTURE ENHANCEMENTS 
There are several avenues of future research that can be taken 

to extend this paper.  First, the SNOE case study can be 

expanded to include performance validation using MARTE 

(Modeling and Analysis of Real-Time Embedded systems) 

stereotypes. Second, this work can be applied to other DRE 

domains to illustrate the approach’s applicability across DRE 

domains. Additionally, future research can include illustrating 

the functionality of the design patterns by animating the 

sequence diagrams using the “animation” feature of IBM 

Rational Rhapsody.  
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