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ABSTRACT 

This research presents a parallel and distributed data mining 

approach to code clone detection. It aims to prove the value 

and importance of deploying parallel and distributed 

computing for real-time large scale code clone detection. It is 

implemented this approach in a family of clone detectors, 

called PD EgyCD (Parallel and Distributed Egypt Clone 

Detector). In this approach, This research builds on an earlier 

work of the authors for code clone and plagiarism detection 

using sequential pattern mining by adding parallelism and 

distribution to our earlier tool EgyCD. Our approach uses data 

mining through a tailored Apriori-based algorithm for code 

clone detection. And it uses parallelization and distribution to 

achieve excellent performance to scale up to clone detection 

on very large systems. This approach has been implemented 

as a database application which leverages the capabilities of 

modern database tools. Two versions have been developed of 

this distributed technique. The first one uses client-server 

technique in which all clients and the server deal with only 

one database. The second one uses agents where each client 

acts as a separate agent and has its own database and after 

working on a sub-problem, it submits its partial solution to the 

server to finally get the complete solution (set of code clones). 

Experiments show that agents technique is faster than client-

server one. Distribution enhances performance very much. 

Speed improvement is a function of the number of 

clients/agents used. Our conclusion is that data mining, 

combined with parallel and distributed computing, can 

efficiently be deployed for code clone detection of very large 

systems. 
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1. INTRODUCTION 
It is very common in computer programming to copy a part of 

the program from one place and paste it in another place and 

then adapt it to fit in the new place. This happens for a variety 

of reasons [1]. Hence, software often includes multiple copies 

of the same piece of code, which are known as code clones. 

Research suggests that between 7% and 23% of the code-base 

of typical software system consists of code clones [2, 3]. 

Sometimes code clones are created for legitimate reasons, but 

other times they are not and they deteriorate the quality of the 

code. One of the main drawbacks of code clones is that the 

developer should modify multiple copies of the same piece of 

code if a change or a correction is needed in one copy. Often 

this deteriorates code quality if some clones were forgotten 

and left unchanged [1].  

A recent study on industrial systems shows that inconsistent 

changes/updates to cloned code are frequent and lead to 

severe unexpected behavior [4]. Other studies suggest that 

code clones can make maintainability difficult [5, 6] and 

introduce subtle errors in software systems [7, 8]. Thus code 

clones are considered one of the bad “smells” of code [9]. 

Hence, detection, monitoring, removal and management of 

code clones has become an important topic in software 

maintenance and evolution research that received significant 

attention in the last decade in particular [9].  

Several techniques have been proposed to find code clones 

and their locations in the code [1].  

In a previous research, we developed EgyCD [17], a 

sequential clone detection tool that employs a tailored Aprori-

based sequential pattern mining (SPM) algorithm for code 

clone detection. The tool was implemented as a database 

application that can detect 100% of Type 1, Type 2 and Type 

3 code clones in multiple languages provided that a language 

definition table is properly filled with language specific 

information. EgyCD demonstrated the applicability and 

benefits of using data mining techniques for code clone 

detection.  

However, due to the exhaustive nature of Apriori-based 

algorithms, speed and scalability were issues that needed 

improvement in EgyCD. The same problem faces many other 

code clone detection techniques. For such tools to operate on 

very large scale code bases and provide real-time response, 

employing parallel and distributed techniques is crucial. 

However, not all algorithms and source code representations 

can easily be distributed. We have the advantage that Apriori-

based algorithms, and the associated representation of source 

code as items and itemsets, can easily be parallelized and 

distributed.  

This research introduces two improvements that enhance code 

clone detection using data mining in EgyCD. The first 

enhancement is using parallel programming with multiple 

threads on a single machine. This version of PD EgyCD 

increased speed by almost 20% as experiments show. The 

second enhancement is using distribution across multiple 

machines. There are two versions of this enhancement. The 

first is a client-server version and the second uses agents. In 

the agents version, agents work autonomously independent of 

each other to develop separate parts of the solution. Finally, 

they send their partial solutions to a server to integrate them 

and produce a complete solution. Distributed versions scale 

up seamlessly with the growth of available hardware.  

An experiment has been performed to test and compare these 

versions using 2151 randomly selected files from Java JDK 

version 6, containing about 310861 lines of code. The size of 

these files is 21.8 MB. All EgyCD versions (stand alone, 

multi threaded and distributed) have been tested. Results are 

very promising. They suggest that despite the exhaustive 

nature and slow performance of Apriori-based algorithms in 

clone detection compared to other techniques, distribution can 
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scale up these techniques to detect clones in very large 

projects.  

The rest of this paper is organized as follows: Section 2 

presents code clones basic definitions and terminology. 

Section 3 briefly discusses related work. Section 4 is an 

overview for data mining techniques relevant to code clone 

detection. Section 5 introduces our approach for code clone 

detection using multi threading and distribution. Three case 

studies are reported in Section 7. Section 8 presents an 

analysis of the results and discusses advantages and 

limitations of our approach. Finally Section 9 is the 

conclusion and future work. 

2. BASIC DEFINITIONS  
To make this paper self-contained, we start by introducing the 

basic established terminology used in the field of code clone 

detection and management. We mainly followed the same 

basic definitions of Roy et. al. [1] and Roy and Cordy [3].  

Definition 1: Code Fragment. A code fragment is a 

continuous part of the source code, maybe consists of one line 

or more. It can be of any granularity, e.g., function definition, 

begin-end block, or sequence of statements.  

Definition 2: Code Clone. A Clone occurs when a code 

fragment is identical to another code fragment according to 

some basic criteria, this criteria may be syntactically and/or 

semantically identical, or a little bit changing in renaming 

identifiers,…., etc.  

Definition 3: Clone Types. There are two main kinds of 

similarity between code fragments. Fragments can be similar 

based on the similarity of their program text, or they can be 

similar based on their functionality (independent of their text). 

The first kind of clone is often the result of copying a code 

fragment and pasting into another location. In the following 

we provide the types of clones based on both the textual 

(Types I to III) [10] and functional (Type IV) similarities.  

Type I: Identical code fragments except for variations in 

whitespace, layout and comments.  

Type II: Syntactically identical fragments except for 

variations in identifiers, literals, types, whitespace, layout and 

comments.  

Type III: Copied fragments with further modifications such 

as changed, added or removed statements, in addition to 

variations in identifiers, literals, types, whitespace, layout and 

comments.  

Type IV: Two or more code fragments that perform the same 

computation but are implemented by different syntactic 

variants.  

Clone Relation Terminologies.  

Clone detection tools report clones in the form of Clone Pairs 

(CP) or Clone Classes (CC) or both. These two terms speak 

about the similarity relation between two or more cloned 

fragments. The similarity relation between the cloned 

fragments is an equivalence relation (i.e., a reflexive, 

transitive, and symmetric relation) [11]. A clone-relation 

holds between two code portions if (and only if) they are the 

same sequences. Sequences are sometimes original character 

strings, strings without whitespace, sequences of token type, 

transformed token sequences and so on. In the following we 

define clone pair and clone class in terms of the clone relation 

[12]:  

Clone Pair: A pair of code portions/fragments is called a 

clone pair if there exists a clone-relation between them, i.e., a 

clone pair is a pair of code portions/fragments which are 

identical or similar to each other.  

Clone Class: A clone class is the maximal set of code 

portions/fragments in which any two of the code 

portions/fragments hold a clone-relation, i.e., form a clone 

pair. 

3. RELATED WORK 
Various approaches to code clone analysis have been 

proposed including string–based, token-based, syntax tree-

based, metrics-based, graph-based (e.g., program dependence 

graphs; PDGs [13-15]) and hybrid approaches. Most of these 

were developed in sequential tools. This limits the scalability 

and performance of such tools and their applicability to very 

large code bases.  

Very few approaches and tools utilized parallel and 

distributed programming. This is due to the inherited 

complexity in such programming approaches on one hand and 

the difficulty of breaking and distributing the used source 

code representation across multiple machines (e.g., syntax 

tees, PDGs, etc.) on the other hand. Application of such 

techniques on top of existing clone detection tools will enable 

very large scale clone detection across multiple projects and 

huge code bases and real-time and online duplicate code 

detection.  

Livieri et. al. developed an approach for distributed large 

scale code clone detection. It is an extension to a successful 

token-based code clone detection tool, CCFinder. They 

implemented a distributed version of the tool named, D-

CCFinder. They applied this tool successfully to a vast 

collection of open source programs. [18]  

Hummel et. al. implemented an incremental index-based 

distributed code clone detection approach to detect Type I and 

Type II clones. They applied their approach on a case study of 

73 MLOC of Eclipse, using 100 machines with detection time 

of 36 minutes. Since the clone index can be updated 

incrementally while the software changes, cloning 

information can be kept accurate at all times. Distribution is 

supported by the fact that clone index can be distributed 

across different machines, enabling index creation, 

maintenance and clone retrieval to be parallelized [16]. 

Our approach similarly seeks scalability and performance 

improvement via parallelization and distribution. But it is 

different in that it is the first that combines parallelization and 

distribution with data mining for code clone detection. 

4. DATA MINING OVERVIEW. 
 

Data mining [20, 21] is the process of extracting interesting 

(non-trivial, implicit, previously unknown and potentially 

useful) information or patterns from large information 

repositories such as: relational database, data warehouses, 

XML repository, etc. Also data mining is known as one of the 

core processes of Knowledge Discovery in Database (KDD). 

Sequential Pattern Mining. 

Definition 1: Sequential pattern mining [21] is trying to find 

the relationships between occurrences of sequential events, to 

find if there exists any specific order of the occurrences.  

In data mining [22] frequent itemsets are used to illustrate 

relationships within large amounts of data. The classical 

example is the analysis of the buying-behavior of customers. 
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The database consists of a set of transactions, and each 

transaction is a set of items from a universal itemset I. 

The goal is to find itemsets I that are subsets of many 

transactions T in the database D, ( I ∈ T ).  An itemset is 

called frequent, if it occurs in a percentage that exceeds a 

certain given support count σ [19]: 

σ (I) = 
   ∈         

   
 ≥ σ 

 

EgyCD is not interested in the percentage of itemsets. Instead 

it is interested in their count  

 σ (I) =    ∈           ≥ σ  where σ > 1 

 

Most SPM algorithms are based on Apriori algorithm [21]. 

Sequential pattern mining was first introduced in [14] by 

Agrawal. Given the transaction database with three attributes 

customer-id, transaction-time and purchased-items, the 

mining process were decomposed into five phases: 

Sort Phase: the original transaction database is sorted with 

customer-id as the major key and transaction time as the 

minor key, the result is set of customer sequences. 

L-itemsets Phase: the sorted database is scanned to obtain 

large 1-itemsets according to the predefined support 

threshold.. 

Transformation Phase: the customer sequences are replaced 

by those large itemsets they contain, all the large itemsets are 

mapped into a series of integers to make the mining more 

efficient. At the end of this phase the original database is 

transformed into set of customer sequences represented by 

those large itemsets.  

Sequence Phase: all frequent sequential patterns are 

generated from the trans-formed sequential database. 

Maximal Phase: those sequential patterns that are contained 

in other super sequential patterns are pruned in this phase, 

since it is only interested in maximum sequential patterns. 

Since most of the phases are straightforward, researches 

focused on the sequence phase in [14]. 

5. GENERAL DESCRIPTION of EGYCD. 
 

Here, a describing of the original sequential EgyCD algorithm 

is presented first before describing PD EgyCD versions in the 

next section. It is exactly the same as we presented it first in 

[17]. For source code, each statement is a transaction. An 

itemset is a sequence of statements. Each statement is treated 

as a line of code (LOC). Following Apriori-based approaches, 

EgyCD builds up larger itemsets (clones in this case) from 

combining smaller ones and then efficiently searches the 

source code to verify their presence. If present, they are then 

used to form larger clones or itemsets. EgyCD tool consists of 

four steps: 

a. The user selects the source files either it is in the directory 

or in different directories to apply the tool on. 

b. The, tool transforms the source code to transactions of 

itemsets. 

c. EgyCD algorithm is applied to discover frequent itemsets 

in the source code that exceed a given frequency 

threshold. 

d. The algorithm prunes all plagiarized text that appear 

completely in other plagiarized text to avoid duplicate 

results and report only original plagiarized not included in 

others. 

Now a briefly description of how EgyCD algorithm works. 

Assume that T is the set of all source code statements, where 

each statement is considered a transaction. First, the algorithm 

starts by getting the first itemset F which is the set of all 

repeated statements in the source code. Then it initializes a 

counter i to 1. It also initializes a set CC equal to F where CC 

is a set will always contain all code clones discovered so far.  

Set CCi is a sub set of CC always contains all code clones of 

length i while i increases for an iteration to the next. The 

second step is to do Cartesian product CCi x F and store the 

results in CCi+1. The third step is checking each item in the 

Cartesian product of length i + 1 against Apriori property 

which states that any subset of any frequent itemset should be 

frequent, to reduce the time of this check, only two subsets for 

any item in CCi+1 are checked, the first subset is equal to the 

same item in CCi+1 but after removing its first element, and 

the second subset is equal to the same item in CCi+1 but after 

removing its last element. If any of those two subsets is not 

frequent the item will be removed from CCi+1. The fourth step 

is checking each item in the Cartesian product of length i + 1 

to see if it  exists in the set of all transactions T (i.e., the set of 

all source code lines in sequence)  or not. If an item in the 

Cartesian product set exists as subsequence of transactions in 

T, then it is added to the code clones set, CC. Since the result 

of the Cartesian product can be massive, it is possible to 

generate the results on the fly in the memory without storing 

them and process them directly in the third step by checking 

their presence in the transactions. The fifth step is prune all 

code clones in CC of length i that exist in code clones of 

length i + 1. The fifth step is incrementing i by 1. The sixth 

step is trying to reduce the set F by pruning all items that 

didn't appear as a last item in any of code clones of length i . 

Finally the algorithm iterates over steps two to six until all 

items of the Cartesian product don't exist in any transactions. 

Below is the pseudo code of the algorithm.    

1. T = set of all source lines 

2. F = set of repeated source lines 

3. CC = F  

4. stillMore = true 

5. i = 1 

6. While (stillMore) 

7. { 

8. stillMore = false 

9. CCi+1 = CCi x F 

10. If i > 1 then 

11. CCi+1 = Check_Apriori(CCi+1,CCi) 

12. End if 

13. For all e ∈ CCi+1 
14. { 

15. if e ∈ T then 
16. add e to CC 

17. stillMore = true 

18. end if 

19. }  

20. prune CC by removing all e ∈ CC 

where |e| = i and e  S and S ∈ 
CC where |S| = i+1 

21. i = i + 1 

22. prune all non used elements in F  

23. } 

Pseudo-code of EgyCD Algorithm 
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1. Check_Apriori(CCi+1,CCi) 

2. { 

3. For all e ∈ CCi+1 
4. { 

5. a = all elements in e except 

first element 

6. if a ∉ CCi then 
7. prune e from CCi+1 

8. else 

9. b = all elements in e 

except last element  

10. if b ∉ CCi then 
11. prune e from CCi+1 

12. end if 

13. end if 

14. } 

15. Return CCi+1 

16. } 

Pseudo-code of Check_Apriori(CCi+1,CCi) 

 

6. IMPLEMENTATION DETAILS   
 

PD EgyCD algorithms were implemented as database 

applications using Adaptive Server SQL Anywhere version 

11.0 with add on In-Memory version 11.0 and PowerBuilder 

version 11.5. This has multiple advantages. First, it perfectly 

matches the application of Apriori-based algorithms which are 

developed for mining databases. Second, the expressive 

power of SQL supports processing of transactions very easily 

and smoothly. Finally, PowerBuilder has powerful 

visualization capabilities that helped us visualize code clones 

in very simple ways and can also be upgraded with new views 

if needed.  

6.1 Parallel Implementation  
The main limitation in EgyCD is its speed and this comes 

from the Cartesian product process especially in detecting 

code clones of length 2, 3 and 4 [17, 19]. In this 

implementation, we speed up the calculation of the Cartesian 

product by dividing it over a specific number of threads. 

Before doing so, we need to tell each thread which elements 

of the first itemset it should deal with. Each item, i.e., a 

statement is stored in a database record and an integer field 

(item_thread) is added to the items table to indicate which 

thread is processing this item. Also we added a (clone_thread) 

field to the corresponding table to identify by which thread 

this code clone has been generated.  

In Pseudo-code 1 of EgyCD algorithm, only the third line 

changes from:  

CC = F  

to:  

CC = {x: x ∈ F and item_thread = thread_no} 

This means that the thread only takes a subset of F to work on 

and use during its iterations to find larger frequent itemsets.  

Simply each thread is responsible to get all code clones that 

starts by those items that he is responsible. To avoid a 

complex assembler routine that concatenate resultant code 

clones by each thread we relaxed the prune process of F set , 

if this process is not relaxed then each thread will produce a 

part of code clone not a complete code clone and then the 

assembler routine will be responsible in making a concatenate 

and merge among these code clones parts and it is so difficult 

to get the same number of code clones in case of using only 

one thread or the normal version. 

Our experiments, as described in section 7, prove that 

parallelization on the same machine using multiple-threads 

can speed code clone detection by about 20%. 

6.2 Distributed Programming 

Implementation  
To further accelerate EgyCD, two distributed versions have 

been developed. The first version is a client-server 

implementation of EgyCD that can handle very large systems 

in a reasonable time by adding more machines as clients. The 

second version is an agent-based implantation of EgyCD. An 

agent is this context with an autonomous client that has its 

own database and does its work independently.  

6.2.1 Client-server EgyCD  
This version is similar to the parallel version in using 

multiple-threads. But in the client-server version we have two 

applications: the server application and the client, and one 

database server. The server application runs on the server 

machine and it is responsible of distributing the repeated 

items among clients. After that, it frequently checks whether 

all clients have finished their work. When they are all done, it 

calls the assembler and merger routines to concatenate code 

clones generated by different clients.  

The following changes to EgyCD apply to both distributed 

versions of PD EgyCD. We added a field item_agent to the 

corresponding table to teach each client which lines/items it 

should deal with. We added clone_agent field to identify by 

which client/agent this code clone has been generated.  

The client application works exactly like the parallel 

programming version except that the third line of the 

algorithm mentioned in section 5 will change again from:  

CC = F  

To:  

CC = {x: x ∈ F and item_agent = agent_no  

and item_thread = thread_no}  

All the work related to the parallel programming 

implementation is included in the client application not in the 

server application.  

6.2.2 Agent-based EgyCD  
In the agent-based implementation, there are two applications: 

the server application and the agent application. An agent is 

nothing but a smarter client that works autonomously. Each 

agent has its own database. The Server application does the 

same work as in client-server version. It imports data and 

divides the items among the number of clients/agents. When 

the agent application starts it loads all the tables it needs from 

the server database and starts getting its solution as in the 

client-server version. After that, it sends the solution to the 

server application to integrate with other solutions. The main 

difference from the previous version is that once started, 

agents are autonomous and work independent from the server 

and its database. 
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7. CASE STUDIES.  
EgyCD is capable of detecting clones of Types I, II and III 

[17]. Here, we are interested in evaluating the improvement 

and impact of using the parallel and distributed version. We 

have three cases study for detecting Type I.  

7.1 Case Study I  
The first case study shows what improvement in times results 

for using multi-threads. It is applied or a set of files. This is 

the example set of 25 C language files bundled with NICAD 

clone detector. We divided them into 5 groups; the first group 

contains 5 files and each consequent group contains the files 

of the pervious group and has 5 additional files, so the last 

group contains 25 files. The total size of these files is 332 KB 

and they collectively contain about 9180 lines of code.  

The hardware used in this case is Intel® Core™ 2 Duo CPU 

E7200 Processor, 2.53 GHz, 2GB RAM, running windows 

XP. 

Table 1shows the execution time for different numbers of 

threads (1,2, 3, 5). 

Table 1: Results of Running Multi-Threaded EgyCD. 

Time is measured in seconds. 

Seq. LOC 
Number of Threads 

1 2 3 5 

1 1915 0.96 0.84 0.72 0.72 

2 4304 4.92 4.08 3.84 3.60 

3 5949 8.40 6.36 6.00 6.00 

4 7424 12.60 11.88 11.40 11.16 

5 8454 17.64 12.72 14.64 14.88 

Notice that increasing the number of threads up to specific 

number will not lead to decreasing the time, instead you will 

get increasing in time, this specific number depends on how 

many processors you have and the size of data and address 

buses. 

An extensive comparison among normal EgyCD in which no 

threads are used is submitted in [17], so no need to make extra 

comparison especially that multi-threaded, client-server or 

agent-based version for related tools are very few and hence a 

difficulties in getting them for comparing arises. 

Table 2 shows that an almost improvement of 20% on average 

is achieved in speed of code clone detection by using multiple 

threads to start with. But increasing the number of threads, on 

a single processor, does not improve data-mining based code 

clone detection. 

Table 3 shows the total number of code clones detected using 

multi-threaded EgyCD. No differences in detecting number of 

code clones among different threads, this proves the 

correctness of using multi-threaded in which distributing the 

itemsets among threads. Really relaxing the pruning process 

of F set leads to this correctness otherwise in most cases it is 

impossible to get the same number of code clones as the 

normal version or one thread will produce. 

Table 2: Percentage of Improvement in Time Efficiency by 

Using Multi-Threaded EgyCD. 

 

Seq. 

 

LOC 
Number of Threads 

2 3 5 

1 1915 13% 25% 25% 

2 4304 17% 22% 27% 

3 5949 24% 29% 29% 

4 7424 6% 10% 11% 

5 8454 28% 17% 16% 

 

Table 3: Total Number of Code Clones for  Multi-

Threaded EgyCD. 

Seq. LOC 
Number of Threads 

1 2 3 5 

1 1915 80 80 80 80 

2 4304 231 231 231 231 

3 5949 345 345 345 345 

4 7424 431 431 431 431 

5 8454 486 486 486 486 

7.2 Case Study II  
The second case study examines the increase in speed using 

client-server EgyCD. The third case study does the same for 

the agent-based version. The second and the third case studies 

is applied for very large scale to show that EgyCD can detect 

code clones for large scale systems, we randomly selected 

2151 files from the JDK. Their size is 21.8 MB. The hardware 

used consists of 4 machines with Intel® Core™ i3-2310M 

Processor, 2.10 GHz, 4GB RAM, running windows 7 

Professional and Sybase® Adaptive Server SQL Anywhere™ 

version 11.  

In the second case study, client-server EgyCD was applied to 

selected subsets of the described data set, increasing in size, 

where each subset included the previous one and more source 

code. We used 1, 2 and 4 clients, each running on its own 

machine. 

Table 4: Results of Running Client-server EgyCD. Time is 

measured in hours. % Column Shows the Percentage of 

Improvement in Execution Time. 

Seq. LOC 
Number of Clients 

1 2 % 4 % 

1 59665 0.07 0.06 14% 0.04 34% 

2 102777 0.37 0.32 13% 0.18 52% 

3 154267 0.63 0.42 33% 0.31 51% 

4 230485 4.55 2.73 40% 2.00 56% 

5 310861 7.54 4.60 39% 3.17 58% 

Average %   28%  50% 
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Graph 1.  Results of Experiment with Client-server 

EgyCD. 

Table 4 and Graph 1 show the results of the experiment taken 

for each source code subset for each number of clients. 

7.3 Case Study III 
 

The third case study shows the application of the agent- based 

distributed version of EgyCD on the same data sets used in 

case study II. Table 5 and Graph2 show the results of this 

experiment. As obviously expected, with the increase of the 

number of used agents, performance improves but not by the 

same ratio. This is due to the overhead of setting up each 

agent to work independently and then integrating the results. 

Table 5. Results of Running Distributed Agent-based 

EgyCD. Time is measured in hours. % Column Shows the 

Percentage of Improvement in Execution Time. 

Seq. 
 

LOC 

Number of Agents 

1 2 % 4 % 

1 59665 0.07 0.05 23% 0.03 59% 

2 102777 0.37 0.27 26% 0.15 59% 

3 154267 0.63 0.37 41% 0.23 63% 

4 230485 4.55 2.14 53% 1.41 69% 

5 310861 7.54 4.07 46% 2.49 67% 

Average %   38%  63% 

Table 5 shows that using two agents instead of using one 

agent leads to decreasing the time by 38% percent on average 

and using four agents decreases processing time by 63%.  

Graph 5 shows a graph comparison among the three agent 

system used, it is so clear that increasing the no of agents 

leads to decreasing the execution time in detecting code 

clones. 

By comparing Tables 4 and 5, we see that agent-based EgyCD 

performs better by 26% on average. (average of reduction in 

time from client-server to agents version) This suggests that 

autonomous independent agents perform better than clients in 

data mining clone detection.  

 

Graph 2. Results of Experiment with Agent-based EgyCD. 

8. Analysis of the Results  
In this section we analyze the results of our experiments and 

discuss the pros and cons of EgyCD. Our experiments showed 

that:  
 

 Data mining techniques are suitable for code clone 

detection.  

 Parallelism and distribution capabilities that are 

supported by modern database engines can be used 

to build fast distributed clone detectors.  

 Using multi-threading on the same machine to 

speed up EgyCD reduced processing time by 20%.  

 Using distributed multi-threading across multiple 

machines reduced processing time by about 63% at 

best when using 4 machines with agents.  

 Agent-based clone detection is faster than client-

based, i.e. having independent clients with separate 

databases.  

 Aporiori-based algorithms and the representation of 

source code as items and clones as frequent itemsets 

can easily be distributed using distribution 

capabilities of modern database engines.  

 With enough machines, code clone detection can be 

done at very large scale using these techniques.  

On the other hand,  

 Due to the exhaustive nature of Apriori-based 

algorithms, they can recover all code clones from a 

code base but slower than other code clone 

detection approaches.  

 So, further non Apriori-based data mining 

techniques are worth of investigation in search for 

faster performance.   
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9. Conclusions and Future Work 
In this paper, we presented new versions of EgyCD which is a 

data mining code clone detector. The first is a multi- threaded 

(parallel) version. The second and third are client- server and 

agent-based (distributed) versions. 

Parallelism and distribution scale up data-mining-based clone 

detection to very large scale systems with reasonable time 

efficiency. We implemented the algorithms in a database-

based language-independent family of clone detector tools 

called PD EgyCD. We presented a comparison with all 

versions of EgyCD to show the advantages and limitations of 

the new added features. 

Future work will include the deployment of further data 

mining and non Apriori-based sequential pattern mining 

algorithms to further investigate the value of this family of 

algorithms in clone detection. 
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