
International Journal of Computer Applications (0975 – 8887)

Volume 62– No.10, January 2013

25

Parallel and Distributed Code Clone Detection
using Sequential Pattern Mining

Ali El-Matarawy

Faculty of Computers and
Information, Cairo University

Mohammad El-Ramly
Faculty of Computers and

Information, Cairo University

Reem Bahgat
Faculty of Computers and

Information, Cairo University

ABSTRACT

This research presents a parallel and distributed data mining

approach to code clone detection. It aims to prove the value

and importance of deploying parallel and distributed

computing for real-time large scale code clone detection. It is

implemented this approach in a family of clone detectors,

called PD EgyCD (Parallel and Distributed Egypt Clone

Detector). In this approach, This research builds on an earlier

work of the authors for code clone and plagiarism detection

using sequential pattern mining by adding parallelism and

distribution to our earlier tool EgyCD. Our approach uses data

mining through a tailored Apriori-based algorithm for code

clone detection. And it uses parallelization and distribution to

achieve excellent performance to scale up to clone detection

on very large systems. This approach has been implemented

as a database application which leverages the capabilities of

modern database tools. Two versions have been developed of

this distributed technique. The first one uses client-server

technique in which all clients and the server deal with only

one database. The second one uses agents where each client

acts as a separate agent and has its own database and after

working on a sub-problem, it submits its partial solution to the

server to finally get the complete solution (set of code clones).

Experiments show that agents technique is faster than client-

server one. Distribution enhances performance very much.

Speed improvement is a function of the number of

clients/agents used. Our conclusion is that data mining,

combined with parallel and distributed computing, can

efficiently be deployed for code clone detection of very large

systems.

Keywords

Code clones, textual approach, lexical approach, syntactic

approach, clone types, parallel code clone detector,

distributed code clone detector, clone relation terminologies,

data mining, apriori property, sequential pattern mining.

1. INTRODUCTION
It is very common in computer programming to copy a part of

the program from one place and paste it in another place and

then adapt it to fit in the new place. This happens for a variety

of reasons [1]. Hence, software often includes multiple copies

of the same piece of code, which are known as code clones.

Research suggests that between 7% and 23% of the code-base

of typical software system consists of code clones [2, 3].

Sometimes code clones are created for legitimate reasons, but

other times they are not and they deteriorate the quality of the

code. One of the main drawbacks of code clones is that the

developer should modify multiple copies of the same piece of

code if a change or a correction is needed in one copy. Often

this deteriorates code quality if some clones were forgotten

and left unchanged [1].

A recent study on industrial systems shows that inconsistent

changes/updates to cloned code are frequent and lead to

severe unexpected behavior [4]. Other studies suggest that

code clones can make maintainability difficult [5, 6] and

introduce subtle errors in software systems [7, 8]. Thus code

clones are considered one of the bad “smells” of code [9].

Hence, detection, monitoring, removal and management of

code clones has become an important topic in software

maintenance and evolution research that received significant

attention in the last decade in particular [9].

Several techniques have been proposed to find code clones

and their locations in the code [1].

In a previous research, we developed EgyCD [17], a

sequential clone detection tool that employs a tailored Aprori-

based sequential pattern mining (SPM) algorithm for code

clone detection. The tool was implemented as a database

application that can detect 100% of Type 1, Type 2 and Type

3 code clones in multiple languages provided that a language

definition table is properly filled with language specific

information. EgyCD demonstrated the applicability and

benefits of using data mining techniques for code clone

detection.

However, due to the exhaustive nature of Apriori-based

algorithms, speed and scalability were issues that needed

improvement in EgyCD. The same problem faces many other

code clone detection techniques. For such tools to operate on

very large scale code bases and provide real-time response,

employing parallel and distributed techniques is crucial.

However, not all algorithms and source code representations

can easily be distributed. We have the advantage that Apriori-

based algorithms, and the associated representation of source

code as items and itemsets, can easily be parallelized and

distributed.

This research introduces two improvements that enhance code

clone detection using data mining in EgyCD. The first

enhancement is using parallel programming with multiple

threads on a single machine. This version of PD EgyCD

increased speed by almost 20% as experiments show. The

second enhancement is using distribution across multiple

machines. There are two versions of this enhancement. The

first is a client-server version and the second uses agents. In

the agents version, agents work autonomously independent of

each other to develop separate parts of the solution. Finally,

they send their partial solutions to a server to integrate them

and produce a complete solution. Distributed versions scale

up seamlessly with the growth of available hardware.

An experiment has been performed to test and compare these

versions using 2151 randomly selected files from Java JDK

version 6, containing about 310861 lines of code. The size of

these files is 21.8 MB. All EgyCD versions (stand alone,

multi threaded and distributed) have been tested. Results are

very promising. They suggest that despite the exhaustive

nature and slow performance of Apriori-based algorithms in

clone detection compared to other techniques, distribution can

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.10, January 2013

26

scale up these techniques to detect clones in very large

projects.

The rest of this paper is organized as follows: Section 2

presents code clones basic definitions and terminology.

Section 3 briefly discusses related work. Section 4 is an

overview for data mining techniques relevant to code clone

detection. Section 5 introduces our approach for code clone

detection using multi threading and distribution. Three case

studies are reported in Section 7. Section 8 presents an

analysis of the results and discusses advantages and

limitations of our approach. Finally Section 9 is the

conclusion and future work.

2. BASIC DEFINITIONS
To make this paper self-contained, we start by introducing the

basic established terminology used in the field of code clone

detection and management. We mainly followed the same

basic definitions of Roy et. al. [1] and Roy and Cordy [3].

Definition 1: Code Fragment. A code fragment is a

continuous part of the source code, maybe consists of one line

or more. It can be of any granularity, e.g., function definition,

begin-end block, or sequence of statements.

Definition 2: Code Clone. A Clone occurs when a code

fragment is identical to another code fragment according to

some basic criteria, this criteria may be syntactically and/or

semantically identical, or a little bit changing in renaming

identifiers,…., etc.

Definition 3: Clone Types. There are two main kinds of

similarity between code fragments. Fragments can be similar

based on the similarity of their program text, or they can be

similar based on their functionality (independent of their text).

The first kind of clone is often the result of copying a code

fragment and pasting into another location. In the following

we provide the types of clones based on both the textual

(Types I to III) [10] and functional (Type IV) similarities.

Type I: Identical code fragments except for variations in

whitespace, layout and comments.

Type II: Syntactically identical fragments except for

variations in identifiers, literals, types, whitespace, layout and

comments.

Type III: Copied fragments with further modifications such

as changed, added or removed statements, in addition to

variations in identifiers, literals, types, whitespace, layout and

comments.

Type IV: Two or more code fragments that perform the same

computation but are implemented by different syntactic

variants.

Clone Relation Terminologies.

Clone detection tools report clones in the form of Clone Pairs

(CP) or Clone Classes (CC) or both. These two terms speak

about the similarity relation between two or more cloned

fragments. The similarity relation between the cloned

fragments is an equivalence relation (i.e., a reflexive,

transitive, and symmetric relation) [11]. A clone-relation

holds between two code portions if (and only if) they are the

same sequences. Sequences are sometimes original character

strings, strings without whitespace, sequences of token type,

transformed token sequences and so on. In the following we

define clone pair and clone class in terms of the clone relation

[12]:

Clone Pair: A pair of code portions/fragments is called a

clone pair if there exists a clone-relation between them, i.e., a

clone pair is a pair of code portions/fragments which are

identical or similar to each other.

Clone Class: A clone class is the maximal set of code

portions/fragments in which any two of the code

portions/fragments hold a clone-relation, i.e., form a clone

pair.

3. RELATED WORK
Various approaches to code clone analysis have been

proposed including string–based, token-based, syntax tree-

based, metrics-based, graph-based (e.g., program dependence

graphs; PDGs [13-15]) and hybrid approaches. Most of these

were developed in sequential tools. This limits the scalability

and performance of such tools and their applicability to very

large code bases.

Very few approaches and tools utilized parallel and

distributed programming. This is due to the inherited

complexity in such programming approaches on one hand and

the difficulty of breaking and distributing the used source

code representation across multiple machines (e.g., syntax

tees, PDGs, etc.) on the other hand. Application of such

techniques on top of existing clone detection tools will enable

very large scale clone detection across multiple projects and

huge code bases and real-time and online duplicate code

detection.

Livieri et. al. developed an approach for distributed large

scale code clone detection. It is an extension to a successful

token-based code clone detection tool, CCFinder. They

implemented a distributed version of the tool named, D-

CCFinder. They applied this tool successfully to a vast

collection of open source programs. [18]

Hummel et. al. implemented an incremental index-based

distributed code clone detection approach to detect Type I and

Type II clones. They applied their approach on a case study of

73 MLOC of Eclipse, using 100 machines with detection time

of 36 minutes. Since the clone index can be updated

incrementally while the software changes, cloning

information can be kept accurate at all times. Distribution is

supported by the fact that clone index can be distributed

across different machines, enabling index creation,

maintenance and clone retrieval to be parallelized [16].

Our approach similarly seeks scalability and performance

improvement via parallelization and distribution. But it is

different in that it is the first that combines parallelization and

distribution with data mining for code clone detection.

4. DATA MINING OVERVIEW.

Data mining [20, 21] is the process of extracting interesting

(non-trivial, implicit, previously unknown and potentially

useful) information or patterns from large information

repositories such as: relational database, data warehouses,

XML repository, etc. Also data mining is known as one of the

core processes of Knowledge Discovery in Database (KDD).

Sequential Pattern Mining.

Definition 1: Sequential pattern mining [21] is trying to find

the relationships between occurrences of sequential events, to

find if there exists any specific order of the occurrences.

In data mining [22] frequent itemsets are used to illustrate

relationships within large amounts of data. The classical

example is the analysis of the buying-behavior of customers.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.10, January 2013

27

The database consists of a set of transactions, and each

transaction is a set of items from a universal itemset I.

The goal is to find itemsets I that are subsets of many

transactions T in the database D, (I ∈ T). An itemset is

called frequent, if it occurs in a percentage that exceeds a

certain given support count σ [19]:

σ (I) =
 ∈

 ≥ σ

EgyCD is not interested in the percentage of itemsets. Instead

it is interested in their count

 σ (I) = ∈ ≥ σ where σ > 1

Most SPM algorithms are based on Apriori algorithm [21].

Sequential pattern mining was first introduced in [14] by

Agrawal. Given the transaction database with three attributes

customer-id, transaction-time and purchased-items, the

mining process were decomposed into five phases:

Sort Phase: the original transaction database is sorted with

customer-id as the major key and transaction time as the

minor key, the result is set of customer sequences.

L-itemsets Phase: the sorted database is scanned to obtain

large 1-itemsets according to the predefined support

threshold..

Transformation Phase: the customer sequences are replaced

by those large itemsets they contain, all the large itemsets are

mapped into a series of integers to make the mining more

efficient. At the end of this phase the original database is

transformed into set of customer sequences represented by

those large itemsets.

Sequence Phase: all frequent sequential patterns are

generated from the trans-formed sequential database.

Maximal Phase: those sequential patterns that are contained

in other super sequential patterns are pruned in this phase,

since it is only interested in maximum sequential patterns.

Since most of the phases are straightforward, researches

focused on the sequence phase in [14].

5. GENERAL DESCRIPTION of EGYCD.

Here, a describing of the original sequential EgyCD algorithm

is presented first before describing PD EgyCD versions in the

next section. It is exactly the same as we presented it first in

[17]. For source code, each statement is a transaction. An

itemset is a sequence of statements. Each statement is treated

as a line of code (LOC). Following Apriori-based approaches,

EgyCD builds up larger itemsets (clones in this case) from

combining smaller ones and then efficiently searches the

source code to verify their presence. If present, they are then

used to form larger clones or itemsets. EgyCD tool consists of

four steps:

a. The user selects the source files either it is in the directory

or in different directories to apply the tool on.

b. The, tool transforms the source code to transactions of

itemsets.

c. EgyCD algorithm is applied to discover frequent itemsets

in the source code that exceed a given frequency

threshold.

d. The algorithm prunes all plagiarized text that appear

completely in other plagiarized text to avoid duplicate

results and report only original plagiarized not included in

others.

Now a briefly description of how EgyCD algorithm works.

Assume that T is the set of all source code statements, where

each statement is considered a transaction. First, the algorithm

starts by getting the first itemset F which is the set of all

repeated statements in the source code. Then it initializes a

counter i to 1. It also initializes a set CC equal to F where CC

is a set will always contain all code clones discovered so far.

Set CCi is a sub set of CC always contains all code clones of

length i while i increases for an iteration to the next. The

second step is to do Cartesian product CCi x F and store the

results in CCi+1. The third step is checking each item in the

Cartesian product of length i + 1 against Apriori property

which states that any subset of any frequent itemset should be

frequent, to reduce the time of this check, only two subsets for

any item in CCi+1 are checked, the first subset is equal to the

same item in CCi+1 but after removing its first element, and

the second subset is equal to the same item in CCi+1 but after

removing its last element. If any of those two subsets is not

frequent the item will be removed from CCi+1. The fourth step

is checking each item in the Cartesian product of length i + 1

to see if it exists in the set of all transactions T (i.e., the set of

all source code lines in sequence) or not. If an item in the

Cartesian product set exists as subsequence of transactions in

T, then it is added to the code clones set, CC. Since the result

of the Cartesian product can be massive, it is possible to

generate the results on the fly in the memory without storing

them and process them directly in the third step by checking

their presence in the transactions. The fifth step is prune all

code clones in CC of length i that exist in code clones of

length i + 1. The fifth step is incrementing i by 1. The sixth

step is trying to reduce the set F by pruning all items that

didn't appear as a last item in any of code clones of length i .

Finally the algorithm iterates over steps two to six until all

items of the Cartesian product don't exist in any transactions.

Below is the pseudo code of the algorithm.

1. T = set of all source lines

2. F = set of repeated source lines

3. CC = F

4. stillMore = true

5. i = 1

6. While (stillMore)

7. {

8. stillMore = false

9. CCi+1 = CCi x F

10. If i > 1 then

11. CCi+1 = Check_Apriori(CCi+1,CCi)

12. End if

13. For all e ∈ CCi+1
14. {

15. if e ∈ T then
16. add e to CC

17. stillMore = true

18. end if

19. }

20. prune CC by removing all e ∈ CC

where |e| = i and e S and S ∈
CC where |S| = i+1

21. i = i + 1

22. prune all non used elements in F

23. }

Pseudo-code of EgyCD Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.10, January 2013

28

1. Check_Apriori(CCi+1,CCi)

2. {

3. For all e ∈ CCi+1
4. {

5. a = all elements in e except

first element

6. if a ∉ CCi then
7. prune e from CCi+1

8. else

9. b = all elements in e

except last element

10. if b ∉ CCi then
11. prune e from CCi+1

12. end if

13. end if

14. }

15. Return CCi+1

16. }

Pseudo-code of Check_Apriori(CCi+1,CCi)

6. IMPLEMENTATION DETAILS

PD EgyCD algorithms were implemented as database

applications using Adaptive Server SQL Anywhere version

11.0 with add on In-Memory version 11.0 and PowerBuilder

version 11.5. This has multiple advantages. First, it perfectly

matches the application of Apriori-based algorithms which are

developed for mining databases. Second, the expressive

power of SQL supports processing of transactions very easily

and smoothly. Finally, PowerBuilder has powerful

visualization capabilities that helped us visualize code clones

in very simple ways and can also be upgraded with new views

if needed.

6.1 Parallel Implementation
The main limitation in EgyCD is its speed and this comes

from the Cartesian product process especially in detecting

code clones of length 2, 3 and 4 [17, 19]. In this

implementation, we speed up the calculation of the Cartesian

product by dividing it over a specific number of threads.

Before doing so, we need to tell each thread which elements

of the first itemset it should deal with. Each item, i.e., a

statement is stored in a database record and an integer field

(item_thread) is added to the items table to indicate which

thread is processing this item. Also we added a (clone_thread)

field to the corresponding table to identify by which thread

this code clone has been generated.

In Pseudo-code 1 of EgyCD algorithm, only the third line

changes from:

CC = F

to:

CC = {x: x ∈ F and item_thread = thread_no}

This means that the thread only takes a subset of F to work on

and use during its iterations to find larger frequent itemsets.

Simply each thread is responsible to get all code clones that

starts by those items that he is responsible. To avoid a

complex assembler routine that concatenate resultant code

clones by each thread we relaxed the prune process of F set ,

if this process is not relaxed then each thread will produce a

part of code clone not a complete code clone and then the

assembler routine will be responsible in making a concatenate

and merge among these code clones parts and it is so difficult

to get the same number of code clones in case of using only

one thread or the normal version.

Our experiments, as described in section 7, prove that

parallelization on the same machine using multiple-threads

can speed code clone detection by about 20%.

6.2 Distributed Programming

Implementation
To further accelerate EgyCD, two distributed versions have

been developed. The first version is a client-server

implementation of EgyCD that can handle very large systems

in a reasonable time by adding more machines as clients. The

second version is an agent-based implantation of EgyCD. An

agent is this context with an autonomous client that has its

own database and does its work independently.

6.2.1 Client-server EgyCD
This version is similar to the parallel version in using

multiple-threads. But in the client-server version we have two

applications: the server application and the client, and one

database server. The server application runs on the server

machine and it is responsible of distributing the repeated

items among clients. After that, it frequently checks whether

all clients have finished their work. When they are all done, it

calls the assembler and merger routines to concatenate code

clones generated by different clients.

The following changes to EgyCD apply to both distributed

versions of PD EgyCD. We added a field item_agent to the

corresponding table to teach each client which lines/items it

should deal with. We added clone_agent field to identify by

which client/agent this code clone has been generated.

The client application works exactly like the parallel

programming version except that the third line of the

algorithm mentioned in section 5 will change again from:

CC = F

To:

CC = {x: x ∈ F and item_agent = agent_no

and item_thread = thread_no}

All the work related to the parallel programming

implementation is included in the client application not in the

server application.

6.2.2 Agent-based EgyCD
In the agent-based implementation, there are two applications:

the server application and the agent application. An agent is

nothing but a smarter client that works autonomously. Each

agent has its own database. The Server application does the

same work as in client-server version. It imports data and

divides the items among the number of clients/agents. When

the agent application starts it loads all the tables it needs from

the server database and starts getting its solution as in the

client-server version. After that, it sends the solution to the

server application to integrate with other solutions. The main

difference from the previous version is that once started,

agents are autonomous and work independent from the server

and its database.

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.10, January 2013

29

7. CASE STUDIES.
EgyCD is capable of detecting clones of Types I, II and III

[17]. Here, we are interested in evaluating the improvement

and impact of using the parallel and distributed version. We

have three cases study for detecting Type I.

7.1 Case Study I
The first case study shows what improvement in times results

for using multi-threads. It is applied or a set of files. This is

the example set of 25 C language files bundled with NICAD

clone detector. We divided them into 5 groups; the first group

contains 5 files and each consequent group contains the files

of the pervious group and has 5 additional files, so the last

group contains 25 files. The total size of these files is 332 KB

and they collectively contain about 9180 lines of code.

The hardware used in this case is Intel® Core™ 2 Duo CPU

E7200 Processor, 2.53 GHz, 2GB RAM, running windows

XP.

Table 1shows the execution time for different numbers of

threads (1,2, 3, 5).

Table 1: Results of Running Multi-Threaded EgyCD.

Time is measured in seconds.

Seq. LOC
Number of Threads

1 2 3 5

1 1915 0.96 0.84 0.72 0.72

2 4304 4.92 4.08 3.84 3.60

3 5949 8.40 6.36 6.00 6.00

4 7424 12.60 11.88 11.40 11.16

5 8454 17.64 12.72 14.64 14.88

Notice that increasing the number of threads up to specific

number will not lead to decreasing the time, instead you will

get increasing in time, this specific number depends on how

many processors you have and the size of data and address

buses.

An extensive comparison among normal EgyCD in which no

threads are used is submitted in [17], so no need to make extra

comparison especially that multi-threaded, client-server or

agent-based version for related tools are very few and hence a

difficulties in getting them for comparing arises.

Table 2 shows that an almost improvement of 20% on average

is achieved in speed of code clone detection by using multiple

threads to start with. But increasing the number of threads, on

a single processor, does not improve data-mining based code

clone detection.

Table 3 shows the total number of code clones detected using

multi-threaded EgyCD. No differences in detecting number of

code clones among different threads, this proves the

correctness of using multi-threaded in which distributing the

itemsets among threads. Really relaxing the pruning process

of F set leads to this correctness otherwise in most cases it is

impossible to get the same number of code clones as the

normal version or one thread will produce.

Table 2: Percentage of Improvement in Time Efficiency by

Using Multi-Threaded EgyCD.

Seq.

LOC
Number of Threads

2 3 5

1 1915 13% 25% 25%

2 4304 17% 22% 27%

3 5949 24% 29% 29%

4 7424 6% 10% 11%

5 8454 28% 17% 16%

Table 3: Total Number of Code Clones for Multi-

Threaded EgyCD.

Seq. LOC
Number of Threads

1 2 3 5

1 1915 80 80 80 80

2 4304 231 231 231 231

3 5949 345 345 345 345

4 7424 431 431 431 431

5 8454 486 486 486 486

7.2 Case Study II
The second case study examines the increase in speed using

client-server EgyCD. The third case study does the same for

the agent-based version. The second and the third case studies

is applied for very large scale to show that EgyCD can detect

code clones for large scale systems, we randomly selected

2151 files from the JDK. Their size is 21.8 MB. The hardware

used consists of 4 machines with Intel® Core™ i3-2310M

Processor, 2.10 GHz, 4GB RAM, running windows 7

Professional and Sybase® Adaptive Server SQL Anywhere™

version 11.

In the second case study, client-server EgyCD was applied to

selected subsets of the described data set, increasing in size,

where each subset included the previous one and more source

code. We used 1, 2 and 4 clients, each running on its own

machine.

Table 4: Results of Running Client-server EgyCD. Time is

measured in hours. % Column Shows the Percentage of

Improvement in Execution Time.

Seq. LOC
Number of Clients

1 2 % 4 %

1 59665 0.07 0.06 14% 0.04 34%

2 102777 0.37 0.32 13% 0.18 52%

3 154267 0.63 0.42 33% 0.31 51%

4 230485 4.55 2.73 40% 2.00 56%

5 310861 7.54 4.60 39% 3.17 58%

Average % 28% 50%

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.10, January 2013

30

Graph 1. Results of Experiment with Client-server

EgyCD.

Table 4 and Graph 1 show the results of the experiment taken

for each source code subset for each number of clients.

7.3 Case Study III

The third case study shows the application of the agent- based

distributed version of EgyCD on the same data sets used in

case study II. Table 5 and Graph2 show the results of this

experiment. As obviously expected, with the increase of the

number of used agents, performance improves but not by the

same ratio. This is due to the overhead of setting up each

agent to work independently and then integrating the results.

Table 5. Results of Running Distributed Agent-based

EgyCD. Time is measured in hours. % Column Shows the

Percentage of Improvement in Execution Time.

Seq.

LOC

Number of Agents

1 2 % 4 %

1 59665 0.07 0.05 23% 0.03 59%

2 102777 0.37 0.27 26% 0.15 59%

3 154267 0.63 0.37 41% 0.23 63%

4 230485 4.55 2.14 53% 1.41 69%

5 310861 7.54 4.07 46% 2.49 67%

Average % 38% 63%

Table 5 shows that using two agents instead of using one

agent leads to decreasing the time by 38% percent on average

and using four agents decreases processing time by 63%.

Graph 5 shows a graph comparison among the three agent

system used, it is so clear that increasing the no of agents

leads to decreasing the execution time in detecting code

clones.

By comparing Tables 4 and 5, we see that agent-based EgyCD

performs better by 26% on average. (average of reduction in

time from client-server to agents version) This suggests that

autonomous independent agents perform better than clients in

data mining clone detection.

Graph 2. Results of Experiment with Agent-based EgyCD.

8. Analysis of the Results
In this section we analyze the results of our experiments and

discuss the pros and cons of EgyCD. Our experiments showed

that:

 Data mining techniques are suitable for code clone

detection.

 Parallelism and distribution capabilities that are

supported by modern database engines can be used

to build fast distributed clone detectors.

 Using multi-threading on the same machine to

speed up EgyCD reduced processing time by 20%.

 Using distributed multi-threading across multiple

machines reduced processing time by about 63% at

best when using 4 machines with agents.

 Agent-based clone detection is faster than client-

based, i.e. having independent clients with separate

databases.

 Aporiori-based algorithms and the representation of

source code as items and clones as frequent itemsets

can easily be distributed using distribution

capabilities of modern database engines.

 With enough machines, code clone detection can be

done at very large scale using these techniques.

On the other hand,

 Due to the exhaustive nature of Apriori-based

algorithms, they can recover all code clones from a

code base but slower than other code clone

detection approaches.

 So, further non Apriori-based data mining

techniques are worth of investigation in search for

faster performance.

0

2

4

6

8

10

5
9
6
6

5
 1
0
2
7

7
7

 1
5
4
2

6
7

 2
3
0
4

8
5

 3
1
0
8

6
1

Ti
m

e
 in

 H
o

u
rs

Siz in Lines

Detecting Time

1 Client

2 Clients

4 Clients

0

2

4

6

8

10

5
9
6
6

5
 1
0
2
7

7
7

 1
5
4
2

6
7

 2
3
0
4

8
5

 3
1
0
8

6
1

Ti
m

e
 in

 H
o

u
rs

Siz in Lines

Detecting Time

1 Agent

2 Agents

4 Agents

International Journal of Computer Applications (0975 – 8887)

Volume 62– No.10, January 2013

31

9. Conclusions and Future Work
In this paper, we presented new versions of EgyCD which is a

data mining code clone detector. The first is a multi- threaded

(parallel) version. The second and third are client- server and

agent-based (distributed) versions.

Parallelism and distribution scale up data-mining-based clone

detection to very large scale systems with reasonable time

efficiency. We implemented the algorithms in a database-

based language-independent family of clone detector tools

called PD EgyCD. We presented a comparison with all

versions of EgyCD to show the advantages and limitations of

the new added features.

Future work will include the deployment of further data

mining and non Apriori-based sequential pattern mining

algorithms to further investigate the value of this family of

algorithms in clone detection.

10. ACKNOWLEDGMENTS
Thanks to. Chanchal K. Roy, for his support, technical

comments and research as well as his encouragement for this

work, also thanks for Auni Ku and Ira for his support.

11. REFERENCES

[1] C. K. Roy, J. R. Cordy, R. Koschke, Comparison and

Evaluation of Code Clone Detection Techniques and

Tools: A Qualitative Approach. Comparison and

Evaluation of Code Clone Detection Techniques, Science

of Computer Programming, 74, 470-495, 2009.
[2] B. Baker, On Finding Duplication and Near-Duplication

in Large Software Systems, in: Proceedings of the 2nd

Working Conference on Reverse Engineering, WCRE

1995, pp. 86-95, 1995.

[3] C. K. Roy and J. R. Cordy, An Empirical Study of

Function Clones in Open Source Software Systems. In

Proceedings of the 15th Working Conference on Reverse

Engineering, WCRE 2008, pp. 81-90, 2008.

[4] E. Juergens, F. Deissenboeck, B. Hummel and S.

Wagner. Do Code Clones Matter? In Proceedings of the

31st International Conference on Software Engineering

(ICSE’09), pp. 485–495, Vancouver, Canada, May 2009.

[5] J. H. Johnson. Identifying Redundancy in Source Code

Using Fingerprints. In Proceeding of the 1993

Conference of the Centre for Advanced Studies

Conference (CASCON’ 93), pp. 171–183, Toronto,

Canada, October 1993.

[6] B. Baker. On Finding Duplication and Near-Duplication

in Large Software Systems. In Proceedings of the Second

Working Conference on Reverse

Engineering(WCRE’95), pp. 86–95, Toronto, Ontario,

Canada, July 1995.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem and D. R. Engler.

An Empirical Study of Operating System Errors. In

Proceedings of the 18th ACM symposium on Operating

systems principles (SOSP’01), pp. 73–88, Banff, Alberta,

Canada, October 2001.

[8] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner:

Finding Copy-Paste and Related Bugs in Large-Scale

Software Code. IEEE Transactions on Software

Engineering, 32(3):176–192, 2006.

[9] M. Fowler. Refactoring: Improving the Design of

Existing Code. Addison-Wesley, 2000.

[10] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E.

Merlo, Comparison and Evaluation of Clone Detection

Tools, Transactions on Software Engineering, 33(9):577-

591, 2007.

[11] Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue.

CCFinder: A Multilinguistic Token-Based Code Clone

Detection System for Large Scale Source Code.

Transactions on Software Engineering, Vol. 28(7): 654-

670, July 2002.

[12] Chanchal Kumar Roy and James R. Cordy, A Survey on

Software Clone Detection, Technical Report No. 2007-

541, School of Computing, Queen’s University at

Kingston, Ontario, Canada, September 26, 2007.

[13] Raghavan Komondoor and Susan Horwitz. Using Slicing

to Identify Duplication in Source Code. In Proceedings

of the 8th International Symposium on Static Analysis

(SAS’01), Vol. LNCS 2126, pp. 40-56, Paris, France,

July 2001.

[14] Agrawal, R. and Srikant, R. 1995. Mining sequential

patterns. In Eleventh International, Conference on Data

Engineering, P. S. Yu and A. S. P. Chen, Eds. IEEE

Computer Society, Press, Taipei, Taiwan, 3-14.

[15] Chao Liu, Chen Chen, Jiawei Han and Philip S. Yu.

GPLAG: Detection of Software Plagiarism by Program

Dependence Graph Analysis. In the Proceedings of the

12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD’06), pp.

872-881, Philadelphia, USA, August 2006.

[16] B. Hummel, E. Juergens, L. Heinemann, M. Conradt,

Index-based Code Clone Detection: Incremental,

Distributed, Scalable. Int. Conf. Software Maintenance

(ICSM), 2010.

[17] A. Matarawy, M. El-Ramly and R. Bahgat. Code Clone

Detection Using Data Mining, Conference of Institute of

Statistical Studies and Research (ISSR), Cairo

University. (to appear in Dec. 2012).

[18] S. Livieri, Y. Higo, M. Matushita, K. Inoue, Very-Large

Scale Code Clone Analysis and Visualization of Open

Source Programs Using Distributed CCFinder: D-

CCFinder, Graduate School of Information Science and

Technology, Osaka University1-3 Machikaneyama,

Toyonaka, Osaka 560-8531, Japan, 2007

[19] Vera Wahler, Dietmar Seipel, J¨urgen Wolff v.

Gudenberg, and Gregor Fischer. Clone Detection in

Source Code by Frequent Itemset Techniques, Source

Code Analysis and Manipulation, 2004. Fourth IEEE

International Workshop on16-16 Sept. 2004.

[20] M.-S. Chen, J. Han, and P. S. Yu. Data mining: an

overview from a database perspective. IEEE Trans. On

Knowledge And Data Engineering 8, 866-883,1996.

[21] Q. Zhao, S.S. Bhowmick, Sequential pattern mining: a

survey, Technical Report Center for Advanced

Information Systems, School of Computer Engineering,

Nanyang Technological University, Singapore, 2003.

[22] Jiawei Han, Micheline Kamber: Data Mining – Concepts

and Techniques, Kaufmann, 2001.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9523
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9523
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9523

