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ABSTRACT 

The paper applies the difference equations to unify the study 

of observability and controllability conditions of discrete-time 

multi-input multi-output (MIMO) nonlinear control systems. 

The necessary and sufficient condition for irreducibility of the 

set of nonlinear multi input- multi output (MIMO) is 

presented in terms of the greatest common left divisor of two 

polynomial matrices describing the behavior of the system 

which is suitable for constructing an observable and 

accessible state space realization. We show that the concepts 

of controllability and observability are related to systems of 

difference equations. It is well known that a solvable system 

of linear algebraic equations has a solution if and only if the 

rank of the system matrix is full .This method is more clear, 

straight-forward and therefore better suited for 

implementation in different computer packages such as 

Matlab.  
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1.      INTRODUCTION 

To describe the behavior of the real-life processes we 

frequently use input-output (i/o) models. This allows 

representing the object of practical interest in a compact and 

convenient form by means of difference equations. State-

space description usually becomes the basis for analysis and 

control of nonlinear multi input – multi output (MIMO) 

systems. Multiple-input multiple-output (MIMO) techniques 

are a key enabling technology for high-rate wireless 

communications.  The concepts of stabilizability and 

detectability play very important roles in optimal control 

theory. All real world systems comprise multiple interacting 

variables. For example one tries to increase the flow of water 

in a shower by turning on the hot tap, but then the temperature 

goes up, one wants to spend more time on holiday, but then 

one needs to spend more time at work to earn more money. 

Obviously these kinds of multi tasks are complex to 

understand and as a result, the concepts of control system 

design are introduced to get an appropriate output. Of course, 

one could attempt to solve the problem by using several SISO 

(Single Input Single Output) control loops, but this might not 

prove satisfactory, so the researchers extended MIMO 

concepts in [6,7,8]. Most of the ideas presented in early parts 

of the book and research apply to multivariable systems. The 

main difficulty in the MIMO case is that we have to work 

with matrix, rather than scalar transfer functions.   

Thus, the problem encounters and the main goal of this paper 

is to bridge the gap between  modeling approaches and to 

present the algorithm allowing us to construct a minimal state-

space model from an arbitrary set of nonlinear higher order i/o 

difference equations, whenever applicable. One of the central 

themes in the systems and control theory is the problem of 

representing a system in a form that is convenient for the 

particular purpose and of transforming one representation into 

another. Particularly, for linear systems, it is well known that 

an arbitrary set of higher order input – output difference 

equations can be always transformed into an input – output 

equivalent set of equations, having reduced form [4] and [9]. 

The main purpose of this technical note is to introduce and 

characterize the non linear i/o equations for non linear control 

systems described by the set of higher order difference 

equations and to transform the set of equations via nonlinear 

i/o equations wherever applicable. Once the set of nonlinear 

higher order difference equation is in the row and column 

reduced matrix form, it is extremely easy to transform these 

equations into the state space equation. So the row and 

column reduced forms of the set of higher order i/o equations 

will be instrumental  to all the further developments of multi 

input multi output (MIMO) realization problem. The key for 

the success of difference equations in the nonlinear case is, its 

computational nature.  

In MIMO control design, a key design objective is usually to 

achieve zero steady-state errors for certain classes of 

references and disturbances [8].  However, we have also seen 

that this requirement can produce secondary effects on the 

transient behavior of these errors. So the basic key elements 

studied are state estimation by an observer and state-estimate 

feedback. Using state-estimate feedback ideas, we can design 

a multivariable controller which stabilizes and control the 

systems and, at the same time it ensures zero steady-state 

error for constant references and disturbances. 

Recently difference equations have gained popularity in the 

study of non linear control systems [10], both in discrete and 

continuous time. The difference equations utilizes the 

algebraic properties of polynomials with coefficients from 

different field of meromorphic functions of systems variable 

and the strong interplay between the ring of non commutative 

skew polynomials and the tangent linearized equations of non 

linear higher order input output difference equations [2]. 

Much kind of problems have been addressed up to now 

among controllability, irreducibility, system reduction, 

realization, transfer equivalence and model matching [6,10]. 

Transfer function formalism has been recently introduced into 

nonlinear domain and this formalism is also based on 

difference equations approach [9]. The coordinate-free 

necessary and sufficient reliability conditions were formulated 

in terms of polynomial matrices [1]. Moreover, it is known 

that if the system under consideration is not in the irreducible 

form, then the state space realization is not minimal, i.e. 

accessible. Our result can be also understood as a 

generalization of the polynomial realization algorithm 

obtained for non linear time invariant systems. 

In this paper we consider a general class of nonlinear discrete-

time control systems described by input-output difference 

equations. We begin by reviewing the basic properties of 
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controllable and observable nonlinear dynamical systems and 

investigate the key relationships between their state-space and 

input-output representations. One of the main contributions of 

this paper is the derivation of a set of necessary and sufficient 

algebraic conditions for existence of a local observable state-

space realization of an input-output equation. An immediate 

consequence of the necessary conditions is that a generic 

input-output equation does not necessarily admit an 

observable state-space realization. The sufficient conditions, 

on the other hand, can be used to construct input-output 

equations that are guaranteed to have a state-space realization. 

More importantly, the paper also provides a simple algorithm 

for deriving the state-space realization directly from the input-

output equation whenever possible. 

An uncontrollable realization may result if the input-output 

model itself is not minimal which contains common poles or 

zeros in the linear case, such a realization obviously is 

unsuitable for control design purposes [10]. To address this 

difficulty, we provide an algorithm (Polynomial Realization) 

for extracting a minimal realization for the external model and 

formulate the necessary and sufficient algebraic conditions for 

its existence. 

This paper is organized as follows: section 2 describes the 

problem statement and general framework. The definitions 

and basic properties of controllable and observable state space 

are observed in section 3. Section 4 & 5 explores the main 

properties of input-output maps generated by a state-space 

system. Necessary and sufficient condition for irreducibility 

of nonlinear MIMO systems is given section 6. Section 7 

concludes the paper.  

2.    CANONICAL FORMS FOR     

SYSTEMS WITH OUTPUT 

Consider an input-output discrete-time process described by 

the following input-output (I/O) equation  

                          
                                  

Where                       represent the input and output 

of the process respectively, and    is a smooth function. 

Without loss of generality, we assume that,  

                 

The first issue that we address is the state-space realization of 

an input-output equation. State-space representation of the 

form 

                    

                                                             (2) 

Where           is the state vector and        and         are 

smooth (  ) functions. The Jacobian of   with respect to 

               is nonsingular. Now we shall seek the 

necessary and sufficient conditions for existence of a minimal 

realization and an explicit algorithm for deriving it from a non 

minimal observable realization whenever it exists.  

For systems with one output, the C-matrix is a row vector. 

The essential step then is the realization that there always 

exists a similarity transformation of a state-space model such 

that the C-vector is transformed into the first unit vector. 

Furthermore, the A-matrix is transformed such that it contains 

only   free parameters. In this section we will use a third-

order system with the D matrix equal to zero. The system is 

defined as follows: 

    
         

              
              

  

   
      
      
      

  

                                        and      

Now the system is converted into observer canonical form. 

The observer canonical form of a third-order system is given 

by 

          

     

     

     

       
  
  
  

  

                  

Such that  

     
     

             
        

             
      

In order to build this state-space model, we first need the 

transfer function polynomials corresponding to the matrices 

      and  . These polynomials can be used to build the 

state-space model. 

3.    CONTROLLABILITY AND 

OBSERVABILITY OF STATE-SPACE 

REALIZATIONS 

Controllability and observability represent two major concepts 

of modern control system theory. These concepts were 

introduced by R. Kalman in 1960.  A system is observable if 

and only if the system state     can be found by observing the 

input   and output   over a period of time from      to     
  . In order to be able to do whatever we want with a dynamic 

system with a control input, the system must be controllable 

[2, 6, 9]. The system controllability is roughly defined as an 

ability to do whatever we want with our system, or in more 

technical terms, the ability to transfer our system from any 

initial state H to any desired final state I J in a finite time. In 

order to see what is going on inside the system under 

observation, the system must be observable. It is well known 

that a solvable system of non linear equations has a solution if 

and only if the rank of the system matrix is full. Observability 

and controllability tests will be connected to the rank rests of 

certain matrices [6]. Throughout the paper, without loss of 

generality, we assume that the origin is an equilibrium state of 

the system, i.e.,           and restrict the state vector to an 

open neighborhood of the origin. The linearization of the 

system in (2) about     is denoted by 

 

                                                          (3)                                                                          

       

                                                               (4)                                                                    

            

Where                                        
The controllability and observability matrices of (3) are 

denoted by         [  
       

                       
            

     respectively. Initially we define 

Controllability and Observability of (2). 
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Definition 1 The state-space representation of 

                    

             

 is said to be controllable, if its linearization is also 

controllable of rank (  ) =  , and strongly observable,  its 

linearization about the origin is also observable of rank 
       . It is said to be strongly minimal if it is both locally 

controllable and observable. 

The block of inputs and outputs are  

                              

                        

respectively, for some fixed block size   ≥ 1we define the 

state transition map of the system resulting from an initial 

state   and input sequence            by 

            
         

          
       

    

Applying the state equation (2), sequentially to 

evaluate                  yields 

                                                                (5)                                                                                 

                                                         

Where 

                     
              

       . 

   and    is mapped with Jacobian with respect to    and  . 

 
           

  
               

           

  
             

The solution for this equation must satisfy the boundary 

condition                        

Theorem 1 

The rank of the controllability sub matrix  

                           is       
 
    and that of 

the full matrix is   . 

Proposition 1  

The partial derivatives of functions            in (5) are 

given by 

   
             

        ,  

   
     

          

                                                 

       
   

  

  

 
    

  

 

       
  

 
 
 
 

        
 
  

 
      

  

        
 
 
 
 

   

        
 
 
 

         

    

        
 
 
 
  

 
 
 

          (6) 

Where 

                                         

                                                   

                            

   
                         

for a smooth function          , vector field          

and co vector field            . 

The representations of    
         

  in proposition 1 

extend the controllability and observability matrices to non 

equilibrium states and inputs. In particular,    
           

and    
          when      these matrices at   

          coincide with the controllability and 

observability matrices of the linearized system given by (3). 

Proposition 2 

i) If the system given by (2) is locally controllable, then 

there exits an open neighborhood       of the origin 

and a smooth function   :        →   ,             
Such that if             then 

                          . 

ii) If the system given by (2) is locally observable, then 

there exist  an open neighborhoods      ,   
        of the origin and a smooth  function Ω :      

                           , such that if   =         

then                     and         . 

The proposition implies that if the system is locally 

controllable then any two states in a neighborhood of the 

origin can be transferred to one another by means of a finite 

control sequence. Local observability implies that any state in 

a neighborhood of the origin can be uniquely determined from 

a finite sequence of the input and output vectors. 

Proof of the Proposition: 

Consider the map           . The Jacobian of     with 

respect to           
       has rank  , since the system is 

locally controllable. There exits an       permutation 

martrix П = [ П   П  ], П        , such that     П   is 

invertible.   

Partitioning    П   = 
П 

  

П 
    , 

Let     П 
  u and define the map   :              by 

           =      П      . Since             П   is 

invertible by the implicit function theorem. There are open 

neighborhoods        ,       ,      , and function 

              such that    =                    

and             proves the preposition.  Also it is noted 

that if      then П    П         and   =     is unique. 

4.    PROPERTIES OF DYNAMICAL 

INPUT-OUTPUT MAPS 

The key properties of an input-output map, generated by the 

dynamical systems which possess a state equation in the form 

of (2) by [7]. These properties will serve as the necessary 

conditions for the existence of a minimal state-space 

realization [13,14]. We begin by formulating the block 

representation of the input-output map. Evaluating  

                        

recursively in terms of                  and     
              using (1), we obtain 
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 where the     row of    denoted by   ,    ,….,  is given 

by  

          
                                                                                                                      

                                                                                           (7) 

for       and of course  

                                

we also define 

             
                                     

We now derive an input-output map corresponding to an 

observable state-space realization given in (2). By proposition 

(2),      can be solved for locally in terms of      and     .  

That is,                   for some local function     

Using this expression for      in (5) yields 

                                               

Thus the input-output map          that is 

                                                                        

The corresponding block input-output equation becomes, 

                             

                                                 

It is worth mentioning that this input-output equation is 

locally unique if and only if    . In all other cases for 

which     , each different  function        yields a 

different input-output map. 

Definition 2 The input-output 

                                            

is said to be a Dynamical Input Output Map if it coincides 

locally with the unique input-output map corresponding to an 

observable state-space realization of order  . 

An observable state-space realization of order n can always 

generate dynamical input output map of higher order    . 

For example let  

                                      

be an     order locally observable system. The constant 

matrices             and             such that 

(        is observable, and that    and             have 

no common eigen values. It can be verified that the     order 

system  

                             

               

                                                                         (9) 

is locally observable. Moreover its output matches that of the 

original system provided     . 

Theorem 2 Let          be the block input output map of 

a dynamical system given in (11). Then            is 

nonsingular and                            is independent 

of the third variable   on a neighborhood of the origin. 

Proof of the Theorem  

Let the     order system 

                                      

be an observable realization of the dynamical input output 

map. Then the block input output map of the dynamical input 

output map is given by 

                         

Differentiating this with respect to   and   using chain rule, 

we get  

               
               

                
                                   (10) 

Differentiating               and  

                     with respect   yields  

             
                 

                    
                  

This implies that          is invertible. Thus  

                                           (11) 

is independent of     

5.    OBSERVABLE STATE SPACE 

REALIZATION 

We construct a suitable state vector corresponding to an input 

output map and use it to formulate and prove the necessary 

and sufficient conditions in order to map the dynamical input 

output map. An input map of (1) with the block of output map 

of (5) is defined along with the state vector be,      
                  . In order for      to qualify as a 

state vector, we need to show that        is a function of 

     and       and does not depend on             
Incrementing   ,  

                               

                             

Where  

                                       

                         (12)                              

Since the Jacobian of          with respect to y is 

nonsingular, by the implicit function theorem        can 

be  solved  in terms of            , and       Then there 

exists a smooth function   
   such that  

                                 
                                   (13)                                                              

locally. Thus 

                                      

            
                                     

                                                       (14) 

The following lemma shows that (14) is an observable 

realization of the input output map provided the necessary 

conditions stated earlier in theorem 3.  

Lemma 1 (Necessary) If the input output map (5) is 

such that              is a nonsingular 
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and                           is independent of the third 

variable v on a neighbourhood of the origin. Defining the state 

vector                     , then (14) is an observable 

state-space realization for the i/o map. 

Proof of the lemma:   Consider the state equation , it is 

enough to show that its right hand side does not depend of 

     .That is  

                
               

               
                             (15)  

From the definition of   ,  

      
                                      

Thus       
               does not depend on  , this 

implies  

           
                              

           

                  (16) 

Taking partial derivatives of (13) with respect to  , 

     
                                      

does not depend  on    by the hypothesis. Replacing 

    
           in (16) by      

           proves (15) and its 

necessary.  Since                         then      is 
an output of (14). Finally (14) with      as output is an 

observable realization, since its observability matrix is 

identity.    

6.   IRREDUCIBILITY OF THE I/O 

EQUATIONS & REALIZATION 

Definition  3 : A Control system of any set of i/o 

equations is said to be irreducible if there does not exist any 

non-zero autonomous variable in differential field   . 
Otherwise system the i/o equations are called reducible. 

Theorem 3 (Polynomial Realization 

Algorithm) The nonlinear control system of any set of i/o 

is reducible in the sense of Definition 3, if and only if the 

polynomial matrices      and       associated to system of 

i/o equations, are not relatively left prime. 

Consider a class of matrices       whose elements are 

polynomials                 of finite, but unbounded 

degree. A   differential field is a triple         where   is a 

field,   is an automorphism of   and   is a  -derivation. The 

 -differential field   will be the starting point for 

constructions used in characterizing theoretic properties of 

different nonlinear control systems.  Any automorphism 

   nd  -derivation induce a (left) non-commutative skew 

polynomial ring.  The left skew polynomial ring given by   

and   is the ring          of polynomials in   over   with 

the usual addition, and the (non-commutative) multiplication 

given by the commutation rule 

                          for any      . 

Proof (Sufficiency). Assume that the polynomial 

matrices      and      are not relatively prime. This means 

that      and      has a common left divisor      , which 

is not uni modular,  

                                            

Because of non- uni modularity of        will imply the 

existence at least one non zero analytic function, hence the 

system is reducible.  

7.  CONCLUSION 

In this paper we investigated the realization problem of a 

general class of nonlinear discrete time systems described by 

multi input and multi output difference equations and derived 

the necessary and sufficient conditions for existence of their 

observable state space realizations. Minimal (accessible and 

observable) realization problem of nonlinear MIMO systems 

described by the set of i/o equations are addressed based on 

the polynomial representation of the system.   
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