
International Journal of Computer Applications (0975 – 8887)

Volume 61– No.9, January 2013

46

Obscuring Mobile Agents by Source Code Obfuscation

Veena Garg

Department of Computer
Engineering

YMCA University of science &
Technology, Faridabad, India

Atul Srivastava

Department of Computer
Science

Echelon Institute of
Technology, Faridabad, India

Atul Mishra

Department of Computer
Engineering

YMCA University of science &
Technology, Faridabad, India

ABSTRACT

Security and performance are most essential and prime

challenges for networking phenomenon. Computation on the

remote host is generally done through links. Thus security is

needed when the code is on the way to the destination host. A

program travelling over the link is extremely venerable to be

forged for malfunctioning. On the other hand Software’s are

commonly distributed with all information in the code itself,

for example java byte codes. Byte codes are easy to reverse

engineer. Any rival company may get the algorithms and

techniques used in the product. Therefore a protection is

needed to keep information secret. In both the cases

obfuscation seem to be promising solution to the problem.

Obfuscation makes code less understandable without

changing its functionality. In this paper we have proposed an

obfuscator that converts source code of a mobile agent into

unintelligible code. Whole paper mainly focuses on

obfuscating mobile agents whereas the technique can be used

for any software obfuscation.

Keywords

Mobile agents, network management, network security,

obfuscation, code confidentiality.

1. INTRODUCTION
Application of networks in daily life has grown enormously in

last few years. Therefore network management has become

biggest challenge to achieve. Traditionally network

management is done using client server approach to poll

agents on network elements. But this approach has several

limitations like poor bandwidth utilization; extensive

processing capability at the manager node that imposes delays

in the process. Mobile agents offer comparatively better

approach to perform same task with less cost in terms of time

and bandwidth capacity. But the facility does not come

without cost, as mobile agents suffer from security point of

view. Mobile agents are java programs that have capability to

move from node to node in a network with code and state.
On the other hand, mobile agent technology has some

limitations, primarily in the area of security. This unbarred

mobility of mobile agents makes them venerable to be caught

by malicious invader who can modify the code or state and

resend it with her functionalities. These limitations have

raised many concerns about the practical utilization of mobile

agents.

It becomes essential to protect mobile agents from such

attacks. The mobile agent and mobile agent platform i.e. host

both have same security requirements as network

confidentiality, integrity, anonymity, availability. Threats to

the security generally fall into the classes [3]: masquerade,

denial of service, eavesdropping, alteration, unauthorized

access, copy and replay and so on. The components of a

mobile agent system categorize the security threats by acting

as source and target of an attack [3]: Threats from external

entities to hosts/agents, Threats from hosts to mobile agent,

Threats from mobile agent to other mobile agents, Threats

from mobile agent to hosts.

This paper mainly focuses on the solution to protect mobile

agents from malicious hosts. Malicious host can capture the

mobile agent and can read sensitive information or modify the

code to alter its functionality or implanting a virus, worm or

Trojan horse within the code according to her intension.

Of late, many researchers have shown their sincere efforts to

make mobile agents more and more protected such as

reference states [1], state appraisal mechanism[2], itinerary

recording with replication [3], cryptographic traces [4],

computing with encrypted functions [5], environmental key

generation [6] to name a few.

But these approaches fail provide code confidentiality as they

either address preventive measures or detective mechanisms.

Obfuscation seems to be strong enough to opt it for code

confidentiality. Obfuscation is a technique that makes the

object code or data illegible without changing its functionality

or meaning. It is widely used by the application developers to

protect their algorithms to be copied by the rival developers.

Rest of the paper is organized as, section two throws light on

some of the existing techniques for obfuscation. Section three

explains the obfuscation techniques proposed in this paper.

Section four gives complete design of the obfuscator. Section

five shows experimental results and section six finally

concludes the paper.

2. RELATED WORK

Mobile agents have additional capability of mobility over the

links without losing the computation data along with the

computing capabilities. This makes mobile agents superior

than many other approaches for remote computation. One

drawback that obstructs mobile agents to be used universally

is assurance that mobile agents travels in the network and

returns back to the manager intact. Numerous efforts have

been made to make mobile agents resilient against

manipulation in the functionality while travelling over the

links.

Encryption looks to be working in this scenario but that incurs

additional overhead at both the ends of communication. Other

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.9, January 2013

47

techniques like police office model [7, 9] and to configure

additional hardware [3, 9] are also attempts in the same

direction but these are expensive and also restrict autonomy of

mobile agent. Obfuscation comes out to better option that

generates a program harder to understand without

compromising with the functionality. Control flow

obfuscation techniques [8] make transformations in the

control flow of the program that is difficult to understand.

Control aggregation obfuscations group the program

statements in different way.

These include inline methods, outline methods, interleave

methods and clone methods. Control ordering obfuscations

alter the execution order of the statements. These include

reverse loop counter and control flow flattening. Control

computation obfuscations hide the real control flow in the

program. These include insert dead code, remove common

library calls and programming idioms, reducible to non-

reducible code, parallelize code and loop transformation.

Some efforts are also made in the form of data obfuscations

[8] in which transformations alter the data and data structures

of the program. These obfuscations can be categorized as:

Data storage and encoding obfuscations data storage affects

the way data stored in memory and data encoding affects the

way data is interpreted. These obfuscations include substitute

a variable with code, promote scalar to objects, changing

scope of the variable like local to global and changing the

variable by an expression.

Data aggregation obfuscations alter the grouping of data.

These include splitting the array into multiple arrays, merging

the multiple arrays into one, fold the array and flatten the

array. Similarly split the class into multiple classes, insert new

bogus classes and merge variables. Data ordering obfuscations

change the order of data. These include reorder arrays, reorder

the variables and methods.

Some preventive transformations [8] aim not to obscure the

code but to make it more difficult to break for the de-

obfuscator. Target transformations try to make automatic de-

obfuscation techniques more difficult. Inherent

transformations try to explore known weaknesses in the de-

obfuscators.

Undoubtedly obfuscator adds up the cost of computation and

other parameters [10] that evaluate the quality of an

obfuscation method. Potency defines to what degree the

transformed code is more obscure than original code.

Resilience defines how well the transformed code can resist

with the automated de-obfuscation attacks. Stealth defines

how well the obfuscated code mixes with the rest of the

program. Cost is the execution time and space overhead in the

obfuscated code as compared to the original code.

3. PROPOSED TECHNIQUES

Java programs are easy to reverse engineering as they are well

defined. A malicious user may reverse engineer the mobile

agent code and can understand and/or change the

functionality. Obfuscation is the technique to confuse the

attacker while understanding the code of the mobile agents.

Obfuscation can be applied on source program before

compilation and then letting obfuscated then compiled file

travel over the network or on the other hand obfuscating

compiled file i.e. byte codes. In this paper first kind of

obfuscation is addressed. The technique proposed in this

paper comprises of four steps to obfuscate a program. First

step renames the identifiers to conceal the purpose associated

with them, second addresses data structures like scalar

variables and arrays and globalization of local variables, in

third step all matrices are represented using sparse matrix

representation. In fourth step flow of control is handled by

interleaving the methods. Detailed obfuscator design is

described in following subsections:

3.1 Hiding Variable Names
It is often seen that programmers name the variables

according to their purpose e.g. ipAddress, hostname etc. Such

variable names directly imply meaning that can ease the

attacker to understand the motive of using the variables. Same

venerability lies with functions as well. In the first step

variable names and method names are identified in the

program and a kind of crossover between them is performed.

Crossover is a technique used in neural networks [11].

Slightly manipulated crossover is applied on the variable

names and function names that lead a strong illusion for the

attacker. Variable names may be purpose specific like

ipAddress, hostname, etc. similarly function names may be

like getIpAdd (), getHostname () etc. A crossover is

performed between these names and these identifiers are

exchanged amongst themselves such as variable ipAddress is

replaced by getHostname, getIpAdd () is replaced by

hostname () and so on. This kind of exchange leads different

name with different purpose associated with it. Attacker will

try to put her intelligence in that to get the idea of code

segment according to the name assigned to it. Some dummy

variables are also defined with the same strings identified in

this step that have no significance with the functionality of the

program. Names similar to the actual variables such as ipAdd,

hostip, hostAdd etc can be defined in the program to make it

more complex to understand the purpose of the variable.

3.2 Dimensionality Manipulation
Generally it is easier to understand scalar variables than a

multidimensional array. In the second step the obfuscator

converts all scalar variables into matrix like structure in

slightly different manner. Any program has two types of

variables viz. global and local. Initially all the variables are

made global variables whether they are local or global (Fig 1).

A two dimensional array is defined with size decided by

number of variables in the application. A separate global

variable matrix is defined for each type of variables. Let there

be n variables of integer type then an integer type matrix of

size n*n is defined to store these variables at random places.

Other locations are marked unnecessary and are fed with

random values. Location information of actual variables is

preserved by the obfuscator and is used throughout the

program.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.9, January 2013

48

 Fig 1: Globalizing all variables

This scheme incurs surplus use of space. This drawback is

overcome in the next section where two dimensional arrays

are considered to be sparse matrices and a better

representation scheme makes optimum use of space.

In case of one dimensional array a matrix folding technique

[12] is used that folds the array from the middle and enhances

dimensionality.

 Fig 2: Array folding

For arrays with dimensionality more than two can be flattened

[12] to be two dimensional arrays. This is not done directly

but first multidimensional array is flattened to linear array

then array folding is applied.

 Fig 3: Array flattening

This irritates the attacker while understanding the terminology

of the program and makes a huge crowd of two dimensional

arrays that is enough to vex the attacker.

3.3 Sparse Matrix Representation
The frustration is enhanced by converting the traditional

representation of two or multidimensional arrays into sparse

matrix representation [13]. Sparse matrix is a type of matrix in

which most of the entries are zero. Thus traditional

declaration of such matrices occupies a lot of space in storing

zeroes that is not required. Sparse matrix representation

provides better space utilization. Following figure shows a

sparse matrix representation of a two dimensional array:

 Fig 4: Simple Matrix and Sparse matrix Representation

3.4 Function Infusion
Control flow reveals essential information of the program.

Program method calls and definitions make it easier to

understand the control flow of the program. By obscuring the

methods and procedure calls the attacker can be confused to

understand the actual flow of the code. In this step [14] an

abstraction is introduced at method level of the program. Here

all the method bodies and their parameters are integrated into

one common method. Selection of the code to be executed can

be made intelligently by adding a selection parameter in the

argument list of the common method.

Fig 5: Infusing Methods

Moreover, for enhanced illusion some dummy variables are

also introduced in the argument list and in the body of

common method dead code, manipulating these dummy

variables is inserted. The attacker would be hitting her head in

understanding the actual flow of the code and the purpose of

the dead code inserted. Following figure shows a

demonstration of the technique discussed.

Class A

{

Method M1 (Type x)

{

 SM1......;

}

Method M1 (Type x)

{

 SM1......;

}

}

Method Call:

A a;

a.M1(x);
a.M2(y);

Class A

{

Method M1 (Type x, Type

y, Type d1, Type d2, Type

d3)

{

D1 = d1++;

D2 = d1;

D3 = d2 * d1; d2 = d3*

d1; If(s (condn) || (D1 < =

D2) {

 SM1......;

}

If(s (condn) || (D1 > D2

&& D3)
{

 SM2......;

}

}

}

Method Call:

A a;

a.M1 (s1 ,x,y,d1,d2,d3);
a.M2(s2 ,x,y,d1,d2,d3);

k = 0;

for (i = 0; i < n; i++)

for (j = 0; j< m; j++)

if (M[i] [j] != 0)

S[k] [0] = i;

S[k] [1] = j;

S[k] [2] = M[i] [j];

k++:

for (i = 0; i < n; i++) for

(i = 0; i < n; i++) M[i][j] =

......;

int a [3][3][3];

a [i][j][k] =;

int a1 [27];

a 1 [3(3 * i + j) +k] = ...;

int D[10];

for (i = 0; i <= 9; i++)

D [i] = 2*D [i+1];

...

...

....

int D1 [2.5];

for (j = 0; j <= 1; j++)

for (k = 0; k <=4; k++)

if (k == 4)

D1 [j, k] = 2*D1 [j+1, 0];

else

D1 [j, k] = 2*D1 [j, k+1];

main ()

{

 int i;

 func ()

 {

 int j;

 }

}

main ()

{

 int i, j;

 func ()

 {

 }

}

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.9, January 2013

49

4. OBFUSCATOR DESIGN
Above described techniques can be implemented by parser

that takes the program as input and obfuscates it and produces

obfuscated program that has the same functionality with

negligible overheads. This program is compiled and byte

codes are sent.

To accomplish this, a huge and efficient parser is required

which implements all four steps discussed above. We

developed it in parts and tried to obfuscate the program in

steps. We have shown sample codes and their obfuscated

versions in the above section. The figure 6 shows complete

design of the obfuscator. The AcceptInput () method accepts

the un obfuscated program file as input and collects variable

and method names. These variable and method identifiers are

stored in an array named identifier. Second module generates

a crossover point from which the rounded crossover between

identifiers is applied. This practice exchanges the identifiers

with other ones without changing their definition and purpose.

The function LocalToGlobal () changes the scope of the local

variables to global variables. In the next section three

functions are applied simultaneously; first scalar variables are

assigned to random location of a square matrix. Second, the

functions FlattenArray () and FoldArray () changes other

arrays into matrices. All these matrices are converted into

sparse matrix representation in the function module

ToSparseMatrix (). In the last step functions

CollectArguements () and MarkBody () gathers argument list

and body of each method in the program file F1. The function

InfuseInOneFunction () makes a common big method and

deploys all the arguments and bodies collected so far. After

this complete obfuscated file is generated that functionally

reflects the same behavior like the original program. I.

Fig 6: Complete Obfuscator Design

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.9, January 2013

50

5. EXPERIMENTAL RESULTS
The way the agent code obfuscator was designed resulted in

the obfuscated agent code being different every time. Also the

output agent code appeared scrambled. However, the

obfuscation process was evaluated based on the following

metrics: Lines of Code (LOC), Complexity, and Reverse

Engineering using Cavaj. The simplest way to measure the

size of a program is to count the lines. This is the oldest and

most widely used size metric.

 Fig 7: Variation in Lines of Codes

The larger the number of lines of code, the more it becomes

difficult and time consuming to reverse-engineer a program.

But adding more codes might also implies longer transmission

times on network. Thus a compromise may have to be made to

achieve agent code confidentiality. In each attempt of

obfuscation the size of program slightly increases. Fig 7

shows the results of obfuscation of three programs in three

attempts. Furthermore, complexity of program is another

major issue. The obfuscator proposed in this paper changes

flow of control by integrating all methods and aggregates their

arguments and instruction bodies into one common method

and differentiation between method call is made by an

additional conditional statement. This additional conditional

check adds some complexity overhead to the program but also

strengthens security of program. But this exercise does not

increase cyclomatric complexity of the program.

Many reverse engineer tools are available in the market for

different language platforms like Cavaj is for Java. It is

observed that by reverse engineered code of unobfuscated

code is easily understandable. But in case of obfuscated code

it is too difficult to understand flow of control and sparse

matrix representation of variables as well as other data

structures. Dead code inserted in the step of method infusion

is not properly reverse engineered and produces errors while

recompiled.

6. CONCLUSION
Code confidentiality is most important for the software’s

available openly in the market and for the agents travelling

over the network. Many applications require agent to travel on

the link and take decisions such as e-commerce or network

management. Mobile Agent is one paradigm in which java

code travels over the links with the capability to make changes

at the receiving element. It has to be ensured that Mobile

agents reach to the destination intact. Code obfuscation offers

added security for a short period of time that is enough for the

mobile agent to complete the task and move on to next node.

In this paper we have opted for obfuscation of source code.

There are many techniques available which obfuscate byte

codes also. The combination of both, source code obfuscation

and byte code obfuscation can be seen as future perspective

for enhancement of this work.

7. REFERENCES
[1] Hohl, F. A Framework to Protect Mobile Agents by Using

Reference States:Technical Report Nr. 2000/03, Universitt
Stuttgart, 2000.

[2] Farmer, W., Guttman, J., and Swarup V.Security for

Mobile agents Authentication and State Appraisal. Fourth

European Symposium on Research in Computer Security,
pages 118-130, 1996.

[3] W. Jansen and T. Karygiannis. NIST special publication

800-19 – mobile agent security, 2000, National Institute of
Standards Technology.

[4] Sander, T., and Tschudin, C.F. Protecting Mobile Agents

Against Malicious Hosts. Vigna G. (Ed.) Mobile Agents

and Security. Springer-Verlag, 1997.

[5] Riordan, J., and Schneier, B. Environmental Key

Generation Towards Clueless Agents. Vigna, G. (Ed.),
Mobile Agents and Security, Springer-Verlag, 1998.

[6] Vigna, G. Cryptographic Traces for Mobile Agents. In

Vigna, G. (Ed.): Mobile Agents and Security, pages 137-
153, Springer-Verlag, 1998.

[7] Xudong Guan, Yiling Yang, Jinyuan You POM - A

Mobile Agent Security Model against Malicious Hosts,

Dept. of Computer Sci. & Eng., Shanghai Jiaotong
University, 200030, China.

[8] C. Collberg, C. Thomborson, and D. Low “A taxonomy of

obfuscating transformations”, Technical Report

148,Department of Computer Science, University of
Auckla, July 1997.

[9] Sandhya Armoogum and Asvin Caully ”Obfuscation

Techniques for Mobile Agent code confidentiality”,
March 2010.

[10] Arini Balakrishnan, Chloe Schulze ”Code Obfuscation
Literature Survey” , December 19th, 2005.

[11] David Beasley, David R.Bull, Ralph R.Martin “An

Overview of Genetic Algorithms: Part 2, Research

Topics”, University Computing,1993.

[12] S.Praveen and P.SojanLal “Array based java source code

obfuscation using classes with restructured arrays”, 2008.

[13] Andrej Brodnik, Milena Kovaˇ, ˇSpela Malovrh “Optimal

representation of sparse matrices, University of
Ljubljana,1999.

[14] S. Rugaber, K. Stirewalt, and L. Wills, “The Interleaving

Problem in Program Understanding,” 2nd Working

Conference on Reverse Engineering, Toronto, Ontario,
Canada, pp. 166-175, July 14-16 1995.

