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ABSTRACT 

We present an approach to find the edge congestion sum and 

dilation sum forembedding of square of cycle on n vertices, 

Cn
2, and Cn

2
−1 + K1 into arbitrary tree. The  embedding 

algorithms use a technique based on consecutive label 

property. Our algorithm calculates edge congestion in linear 

time. 

General Terms 

Graph embedding 

Keywords 

Embedding, dilation, congestion, cycles, wheel. 

1. INTRODUCTION 

Definition: A graph       is a pair where  the set of all 

vertices in G and E is is the set of all edges in G. We call a 

graph G(V,E) is finite if V and E  both are finite. 

Definition: Let G(V,E) and        ) be two finite graphs. A 

1-1 mapping        is called an embedding. Graph   is 

called a host graph and graph   is called guest or virtual 

graph. 

The Dilation Problem 

Definition: Let G(V,E) and        ) be two finite graphs. Let 

  be an embedding of    into    Then the dilation of    into   

with respect to   ,denoted by        , is defined as 

                                      

where              denotes the length of the shortest path 

between     and      in  . 

Definition: The dilation of   in to   is denoted by       , is 

defined as                    where the minimum is 

taken over all embedding   of G in to H. 

Definition: The dilation problem is to find an embedding of 

  onto   that gives minimum dilation. 

The Dilation Sum Problem 

Definition: The dilation sum of an embedding f of   into   is 

denoted by   
       and is defined as 

  
      =                       

Definition: The dilation sum of G into H, denoted by 

D’(G,H), is defined as  D’(G,H)=min   
       

where the minimum is taken over all embeddings  of G into 

H. 

 

The Congestion Sum Problem 

Definition: The congestion of an embedding is the maximum 

number of edges of the guest graph that are embedded to any 

single edge of the host graph. For an embedding f, of G in to 

H, let there is a unique path, for every edge      in     , in 

  from      to     . Let              denotes this path       

and           denotes congestion on the edge   in 

    .Then 

                                          Definition: 

Let   be an arbitrary embedding of   in to  . Then the 

congestion sum of  is defined as 

                          

The minimum congestion sum of   in to  is defined as 

      =min.         

where the minimum is taken over all embedding   of   into 

 . 

Definition: The congestion sum problem is to find an 

embedding of   on to   that gives minimum congestion sum. 

We shall denote           by      . 

REMARK: The congestion sum problem and dilation sum 

problem are same. 

2. OVERVIEW OF THE ARTICLE 

The dilation-sum of a graph embedding arises from VLSI 

designs, data structures and data representations, net-works 

for parallel computer systems, biological models that deal 

with cloning and visual stimuli, parallel architectures, 

structural engineering, and so on [20]. The dilation-sum 

problem of an arbitrary graph on a path is called the linear 

layout or the linear arrangement problem in the VLSI 

literature [20]. The concept of embedding is widely studied in 

the literature of fixed interconnection parallel architectures 

[21].The dilation problem is NP-complete for two classes 

of‘almost’ catepillars on a path [18] and trees of maximum 

degree 3 on paths [20, 27]. From the above NP-complete 

results, the dilation-sum problem is expected to be harder than 

the dilation problem [27]. That is why, even though  there are 

numerous results and discussions on the dilationsum problem 

and the congestion-sum problem, most of them deal with only 

approximation results. 

The dilation-sum problem has been studied for binary trees 

into paths [8, 12], hypercubes into grids [5], complete graphs 

into hypercubes [19]. The bounded cost of dilation and 

congestion has been estimated for the embedding on binary 

trees [27]. Most of the work on the dilation-sum problem and 

the dilation problem are for the particular case in which the 

host graph is a path, or a cycle [20].The concept of cutwidth is 

a special case of congestion when the host graph is a path [11, 

26, 29]. There are several results on the congestion problem 
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for various architectures such as trees into cycles [11], trees 

into stars [28], trees into hypercubes [4, 22], hypercubes into 

grids [5, 6, 25], complete binary trees into grids [23], and 

ladders and caterpillars into hypercubes [7, 10]. There are also 

other general results on embeddings [2]. There are algorithms 

for the embedding of Cycles and wheel into arbitrary tree [30] 

and k sequential m –ary into hypercube[31]. We apply 

Lemma 1 for estimation, and use the consecutive label 

property for characterization. We use the characterization 

results to construct optimal embeddings of these graphs into 

trees to solve the congestion-sum problem in polynomial time. 

We use the estimation results to show the proof of correctness 

of the algorithms. Since the well knowninorder, preorder, 

postorder traversals satisfy the consecutive label property, we 

use them to construct linear time embeddings. In this article 

we produce an embedding based on consecutive label 

property which gives us minimum congestion sum. 

3. THE FUNDAMENTAL LEMMA  

Definition: Let        is a finite graph with   vertices. Then 

we say that   is a complete graph if there is a direct edge 

between every pair of vertices in  . The  complete graph on   

vertices is denoted by   . A graph        on   vertices 

{1,2,3,……,n} is called a cycle, denoted by  ,  if         is 

an edge for all           , and       is also an edge. 

Definition: Let    and    be complete graph and cycle on   

vertices respectively. Let                      and 

         . Then a wheel on n vertices            is 

a graph obtained by         by joining each vertex of      

to each vertex of    with an edge. 

We assume that a wheel has at least 5 vertices. 

Definition: A tree is a connected acyclic graph. If a node of 

the tree is labeled as the root then it is called a rooted tree. 

Definition: Let   be an ordered rooted tree with vertex 

labels      . A sub tree    of   is consecutively labeled if 

the labels of sub tree    are consecutive numbers. 

Definition: Let   be an ordered rooted tree with vertex labels 

      . A labeling of   satisfies the consecutive label 

property if for every vertex  of  , the sub trees of   rooted at 

 are consecutively labeled. 

Definition: Let        be a graph, then for each   
  define the eccentricity of        as  

                       .  

A vertex with minimum eccentricity is called a central 

vertex. 

The eccentricity of   is denoted by 

                       . 

Definition: For each      , we  define                  

A vertex   for which      is minimum is called median of  . 

The median eccentricity of   is denoted by     , is defined 

as 

                      

Definition: A graph         is called square of a graph 

     ) if E’ contains all edges       where     are  in   

such that distance between   and   is less than or equal to   in 

 . Similarly         is called the   th power of       if  ’ 

contains all edges       , where      are in   and distance 

between   and   is less than or equal to   in  . 

Lemma 1: Let   be an embedding of a graph   in to arbitrary 

tree  . Let   be an edge of   and    is component of    . 

Then the congestion on the edge         is given by 

           
                 

where   is a sub graph of   induced by vertices 

                  and       denotes the degree of   in  . 

Proof: Let                                      where    

and    are components of      . By definition of       

     =    ……………(1) 

Also by definition of  , 

    =      
                ……………….(2) 

By (1) and (2), we have 

           
                 

4. EMBEDDING OF   
  AND     

 +   IN 

TO ARBITRARY TREE 

Now we denote     
 +   by   

  and the square of   by   
 . 

Here   consists of a vertex   only.   

Lemma2 : Let   be an arbitrary embedding of    
  into an 

arbitrary tree    such that       . Let   be an edge of   and 

let   and    be two components of     such that   is in   . 

Then the minimum congestion of edge   ,      is given by 

      ≥                     
                              

 

Proof:      
   

              and  

                                        

                                               . 

where   is sub graph of   
  induced by              .  

Now using lemma 1,           
                we have 

                                      

                             

This completes the proof. 

Let us denotes the number of leaf nodes in the tree  by   . 

Lemma 3: Let   be an arbitrary embedding of    
  into an 

arbitrary tree    such that       . Let         be some 

edge of   and let   and    be two components of     such 

that   is in    and    has     nodes. Also say   
  

         is rooted at  . Then 

     
                         

        
 

  where   
 is the number of leaf nodes in   . 

Proof: Let   
 denotes the sub tree of    rooted at   then it is 

true that                           
   .Now using lemma 

2,we have 

     
                          

        
    . 

Lemma 4:  Let   be an arbitrary embedding of    
  into an 

arbitrary tree    such that        .Then 

     
                                   . 
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Proof: Let the degree of   in   be   and 

                          be edges incident to  . Let 

             be components of    . 

            are sub tree rooted at              

respectively. Let   
              for            ,and 

each    has   -1 nodes and    
 leaf nodes.   

 is rooted at s. 

            

      
            

                  
                       

≥(                   
         

   )+( 

                   
         

 

  )+…………….+(      
             

         
 

  )=                               . 

Theorem 1: The congestion sum of    
  into an arbitrary tree 

T  is at least                    . 

Proof:  Let   be an arbitrary embedding of    
 into an 

arbitrary tree T  such that       . Then  by lemma 4  

     
                               

               is minimum when s is median of T and its 

value is δ(T).Thus 

    
               

    

                   
                       
                       

The minimum is taken over all embeddings  of   
  into T. 

Theorem2:  The congestion sum of    
  into an arbitrary tree 

T  is                  . 

Proof: Let   be an embedding of   
  on to arbitrary tree T. 

Let   satisfies consecutive label property and       , 

where   is the median of   . Let   be an edge of   and let 

  and    be two components of     such that   is in 

  .Then by using lemma 1, 

           
                 

where   is a sub graph of   induced by vertices 

                  

Taking G=   
  and G1 is sub graph of   

  induced by 

                 . Then consecutive label property implies 

that the vertices of   are consecutive numbers. If    contain a 

leaf node and   is not in    then     contains only single 

vertex hence number of edges in    is zero i.e.           
  .If    does not contain a leaf node and   is not in    then 

number of edges in   is           . 

Using these in lemma 2 we get 

      =                    
                              

 

Using these in lemma 3 and lemma 4 we have 

           =                              .  

Since             the medianof  , then              

=    . 

      
                                  = 

                    . 

Now using theorem 1, we have 

    
    =                     . 

 

Corollary1: The congestion sum of   
  on an arbitrary tree 

is            . 

Proof: there is no contribution of the term      when the 

graph is of   
  .So using theorem 2 we have 

    
                    . 

5. INORDER EMBEDDING 

ALGORITHM 

Now, we  give an algorithm named inorder algorithm, to find 

an embedding that gives minimum congestion sum.  

Input: The input of the algorithm is a graph   and an ordered 

rooted tree  . can be   
  or   

 where n is the centre of the 

graph when it is   
   

Algorithm:First  find the median of given tree. The centre is 

mapped to the median of the tree if the guest graph is   
 . 

The remaining vertices            of G are mapped to 

the vertices of tree in inorder traversal. 

Output:  The output is an embedding with minimum 

congestion sum. 

As the inorder of a tree holds the consecutive labeling 

property, so this mapping gives us minimum congestion sum, 

using theorem 2. 

 

Fig.1Optimal embedding of   
  into arbitrary tree. 

6. FUTURE SCOPE 

We have solved the congestion-sum problem for square of 

cycles into arbitrary trees. The question that arisesnow is how 

far we can carry out similar extensions to larger powers r.The 

embeddings we have constructed in this article aresimple and 

elegant. They produce the optimal congestionsumin linear 

time. In this article, the host graph is anarbitrary tree. The 

domain of host graphs may be extendedto a few architectures 

such as X trees and pyramids. 
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