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ABSTRACT 

Many-Valued logics have been developed to represent 

mathematical model of imprecision, vagueness, uncertainty 

and ambiguity in the information. In real world each and 

every species is vague, human knowledge and the natural 

languages have a bunch of vagueness or imprecise 

information.  This paper attempts to present three main 

theories of many-valued logics to treat the vagueness: Fuzzy 

Logic, Vague Logic and Neutrosophic Logic. Author touches 

the various perspectives logical, algebraic operation, graphical 

representations and the practical usage. This paper addresses 

the modeling of vagueness. 

Author introduces the framework, Vague Inference System 

(VIS) for modeling the vagueness using vague logic. 
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1. INTRODUCTION 
In the Classical Set Theory introduced by Cantor, values of 

elements in a set are only two possibilities: either exists or not 

exist in the set. The theory cannot handle the ambiguity and 

uncertainty. Theories of Fuzzy sets, Vague sets and 

Neutrosophic sets are the generalizations of Classical Set 

Theory for treating vagueness and uncertainty. A sentence is 

vague if and only if the sentence is neither absolutely true nor 

absolutely false. Fuzzy logic has been essential means of 

implementing machine intelligence. Therefore, Fuzzy Logic 

cannot be ignored in order to bridge the gap between natural 

language and machine language. 

Fuzzy Logic (FL), one form of many-valued logic was 

conceived by Prof. Lotfi Zadeh [1].  It deals with the 

imprecise information, as a way of treating data by permitting 

partial set membership rather than crisp set membership. In 

FL the value (degree) for the Linguistic variables can be 

ranging between 0 and 1. When the Linguistic variables are 

used, these degrees may be dealt by specific functions called 

membership functions. Fuzzy Logic represents the “degrees of 

truth”. For example, let consider a person with 33 years old. 

Someone can consider him as “old” and the other one can 

consider him as the “young”. The degree of membership 

varies from person to person. 

 In Fuzzy Set Theory, each element x ∈  U (Universe of 

discourse) is assigned a single membership value. Gau [4] 

point out that the single membership value contains the 

evidences for both favoring and opposing x. It cannot treat the 

two evidences individually, even cannot treat the two 

evidences at the same duration. 

In order to solve this problem, Gau and Buehrer introduced 

notion of Vague set [4] which allows the interval based 

membership function over point based membership function. 

It is the further generalization of Fuzzy Set Theory. The 

Vague set theory becomes a promising tool to deal with 

imprecise, uncertain or vague knowledge with improved 

performance but having complex problem solution.  

Later on Intuitionistic Fuzzy Sets [2] and Interval Valued 

Intuitionistic Fuzzy Sets were introduced. These sets can only 

handle incomplete information not the indeterminate 

information and inconsistent information. To handle the 

indeterminate data, Florentine Smarandache introduced the 

notion of Neutrosophic logic [7] which is again the many-

valued logic based on Neutrosophy.  As a generalization of 

Fuzzy Logic, in Neutrosophic Logic indeterminacy is 

included. Fuzzy theory has failed when the relations are 

indeterminate. The inclusion of indeterminate information 

with Fuzzy Logic is nothing but the Neutrosophic Logic. 

To implement the machine intelligence, it is often needed to 

compare the different many-valued logics. This paper is 

written with the aim of collecting the three main theories of 

many-valued logic at one place. As these theories have many 

facets: the logical facet, the set-theoretic facet and the 

graphical facet. Firstly author discusses the notions of Fuzzy, 

Vague and Neutrosophic Sets.  Then, Author presents the set 

theoretic operations with respect to the mentioned set theories. 

After this Author includes the graphical representation of 

membership functions associated with linguistic variables. 

Lastly Author addresses the modeling of vagueness in which 

author proposes the framework to model the vagueness using 

Vague Logic. 

2. BASIC CONCEPT 
In this section author briefly recall the basic definition and the 

graphical representation of membership functions of Fuzzy 

Set, Vague set and the Neutrosophic Set. Let U be a Universe 

of Discourse, where an element of U is denoted by x. 

2.1 Definitions 
Definition1. (Fuzzy Set) A fuzzy set A = {< x, μA(x) > |x ∈  

U} in a universe of discourse U is characterized by a 

membership function, μA, as follows: 

μA : U → [0, 1]. 

Definition2. (Vague Set) A Vague set V in a universe of 

discourse U is characterized by a true membership function, tV 

and a false membership function, fV , as follows: 

  tV : U → [0, 1],  

fV : U → [0, 1],   

tV (x) + fV (x) ≤ 1,where tV (u) is a lower bound on the grade 

of membership of x derived from the evidence for x, and fV 

(u) is a lower bound on the grade of membership of the 

negation of x derived from the evidence against x. 

Definition3. (Neutrosophic Set) A Neutrosophic set N defined 

on universe U. x = x (t, i, f) ∈ N with t, i and f being the real 

standard or non-standard subsets of] 0-, 1+ [. t is the degree of 

true-membership function, i is the degree of indeterminate-
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membership function and f is the degree of false-membership 

function in the set N. 

2.2 Graphical Representation of 

Membership Functions 
Figure 1 represents the graphical representation of fuzzy 

membership function whose values lie between 0 to1. There 

can be different type of membership functions, triangular, 

trapezoidal, Gaussian, sig and many more. 

 

Fig 1 Fuzzy Membership Function 

Figure 2 represents the membership functions (tv and fv) 

associated with the vague set variable. The region that comes 

between Support and Against Region is the Hesitation region. 

The total scope of these regions is between 0 to1 i.e. Against 

Region + Support Region + Hesitation Region =1. 

 

Fig 2 Vague Membership Function 

 

Fig 3(a) Neutrosophic true-membership function 

Figure 3 represents the Neutrosophic membership functions 

(true, indeterminate and false) respectively. Author has 

represented separately all these function because there are no 

boundary constraints in the Neutrosophic logic. 

 

Fig 3(b) Neutrosophic intermediate-membership function 

 

Fig 3(c) Neutrosophic false-membership function 

3. ALGEBRAIC OPERATIONS 
There are many definitions for logic connectives when 

considering many-valued Logic. Likewise, there are 

definitions for Fuzzy Set, Vague set and for Neutrosophic Set. 

In this section we present the basic algebraic operations on the 

respective set theories. It includes Union, Intersection and 

complement.  

3.1 Fuzzy Set Operations 
Let A, B, C be three fuzzy sets with membership functions µA, 

µB and µC respectively defined on the universe of discourse U.  

The operations for all x are as follows: 

Definition4. (Complement) The complement of a Fuzzy set A 

is defined by 

µAꞋ(x) =1-µA(x) 

Definition5. (Union) The union of two fuzzy sets A and B is a 

fuzzy set C, written as C = A ∪  B, is defined by 

µC (x) = max (µA(x), µB(x)) 

Definition6. (Intersection) The intersection of two fuzzy sets 

A and B is a fuzzy set C, written as C = A ∩ B, is defined by 

µC(x) =min (µA(x), µB(x)) 

3.2 Vague Set Operations 
Let A, B, C be three vague sets with true membership and 

false membership functions tA, fA, tB, fB and tC, fC respectively 

defined on the universe of discourse U.  The operations for all 

x are as follows: 

Definition7. (Complement) The complement of a vague set A 

is defined by 

 
tAꞋ(x) =fA(x) 

1-fAꞋ(x) =1-tA(x) 
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Definition8. (Union) The union of two vague sets A and B is a 

vague set C, written as C = A ∪  B, is defined by 

tC(x)=max(tA(x), tB(x)) 

1-fC(x) =1-min (fA(x), fB(x)) 

Definition9. (Intersection) The intersection of two vague sets 

A and B is a vague set C, written as C = A ∩ B, is defined by 

tC(x)=min(tA(x), tB(x)) 

1-fC(x) =1-max (fA(x), fB(x)) 

3.3 Neutrosophic Set Operations 
Let A, B, C be three Neutrosophic sets with true membership, 

indeterminacy and false membership functions tA, iA, fA, tB, iB, 

fB and  tC, iC, fC respectively defined on the universe of 

discourse U.  The operations for all x are as follows: 

Definition10. (Complement) The complement of a 

Neutrosophic set A is defined by  

tAꞋ (x) = {1+} – tA(x)  

iAꞋ(x) = {1+} – iA(x)  

fAꞋ(x) = {1+} – fA(x)  

Definition11. (Union) The union of two Neutrosophic sets A 

and B is a Neutrosophic set C, written as C = A∪B, is defined 

by 

tC(x) = tA (x) + tB(x) - tA(x) × tB(x)  

iC(x) = iA (x) + iB(x) - iA(x) × iB(x)  

fC(x) = fA (x) + fB (x) - fA(x) × fB(x)  

Definition12. (Intersection) The intersection of two 

Neutrosophic sets A and B is a Neutrosophic set C, written as 

C = A ∩ B, is defined by 

tC(x) = tA(x) × tB(x)  

iC(x) = iA(x) × iB(x)  

fC(x) = fA(x) × fB(x) 

4. VAGUENESS IN PRACTICAL USAGE 
In this section we review the interpretations of membership 

functions by considering different examples. 

Consider a vague predicate “Allen is tall” represented by 

µ(Allen)=0.8 as shown in Figure 4. According to Fuzzy 

definition 80% people says Allen is tall.  

 

Fig 4 Membership function for tall 

Since this definition includes both the evidence for u and 

evidence against u. Consider the same predicate by [0.6, 0.8]. 

According to vague definition 60% people says Allen is tall 

and 20% says Allen is not tall. Remaining 20% are in 

hesitation region. 

When the predicate is represented as [0.6, 0.3, 0.5], is 

interpretive as 60% people says Allen is tall, 30% people are 

not sure about the tallness of Allen and the 50% people says 

Allen is not tall. Neutrosophic representation includes the 

indeterminacy of the vagueness of predicate i.e. 30% in this 

case. Human beings have their limitation of perception, 

judgment, and processing-capability in real life situations. In 

the case of fuzzy set, there is no higher order check for this 

single membership value [4]. 

Suppose there are 30 citizens during a voting process. At 

some time, 18 votes for “yes", 7 votes for “no" and 5 are 

“undecided”. Using Neutrosophic notation, it can be 

expressed as x (0:18; 0:5; 0:7). Using fuzzy it is not possible 

to separate the voting process in favour or against. Using 

Vague notation we can separate the votes in favour or votes in 

against but with constraint tv + fv≤1. Neutrosophic Notation 

has no restrictions on the boundary. In Neutrosophic Set, 

indeterminacy is quantified explicitly and true-membership, 

indeterminacy-membership and false-membership are 

independent. This assumption is very important in many 

applications. 

The above examples indicate that Neutrosophic set is more 

natural than the vague set and vague set performance is better 

than the Fuzzy Set. But it is not possible to implement all the 

fuzzy based applications in vague set or in Neutrosophic Set 

[9].  

5. MODELING OF VAGUENESS 
This section presents how the vagueness can be modeled 

using Fuzzy Logic and the Neutrosophic Logic. There is no 

reference in the literature for modeling of vagueness using 

Vague Logic. In this section author proposes the new 

framework, Vague Inference System to model the vagueness 

using Vague Logic. 

5.1 Modeling of Vagueness Using FL 
The key unit of the Fuzzy Logic system is Fuzzy Inference 

System (see Figure 5). The main task of this system is 

decision making. Fuzzy inference is the process of articulating 

the mapping from a given input to an output using fuzzy logic. 

This mapping provides a base for decisions to be made. 

 

Fig 5 Fuzzy inference system 

5.2 Modeling of Vagueness Using NL 
In this author discusses the Neutrosophic inference system to 

model the vagueness using Neutrosophic logic. In the 

referenced model the Neutrosophication unit accepts the crisp 

input and assigns the appropriate membership functions 
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(truth-membership function, indeterminacy membership 

function, falsity-membership function). After this, input 

variables are mapped to output variable in Neutrosophic 

inference Engine using the Neutrosophic rule base. The 

resulting Neutrosophic value is mapped to crisp value in De-

neutrosophication step. 

 

Fig 6 Neutrosophic Inference System 

5.3 Modeling of Vagueness Using VL 
In this paper author proposes a new framework which adopts 

the Fuzzy Inference System to construct a Vague Inference 

System. 

 

Fig 7 Vague Inference System 

Vague Inference System (VIS) constitutes 4 main 

components: 

a) Vaguefication Unit 

b) Vague Inference Engine 

c) Vague Rule Base  

d) De-Vaguefication Unit 

Vaguefication Unit: modeling perpetually involves a process 

called Vaguefication. Vaguefication is a mathematical 

procedure for converting an element in the universe of 

discourse into the membership value of the vague set. 

Vaguefication Unit contains the true-membership function 

and the false-membership function. It takes the crisp inputs 

and converts into appropriate vague sets using true and false 

membership functions stored in the Vague Knowledge Base. 

Suppose vague set V is defined on the universe of discourse 

U; for any x ∈ U, the result of vaguefication is simply tv(x) 

and 1-fv(x).Vaguefication unit considers the constraint 

tv(x)+fv(x)≤1.   

Vague Inference Engine: The evaluations of the rules and 

the combination of results are performed using Vague Set 

operations.  After this, Vague Inference Engine evaluates the 

rules stored in the Vague Rule Base.   

Vague Rule Base:  A VIS implements a mapping from its 

input to output. This mapping is performed by number of If-

Then type vague rules (with respect to true membership 

functions and false membership functions).  Antecedent of a 

rule defines a vague region (Support Region and Against 

Region) in the input space, while the consequent specifies the 

output in the vague region. After the vague inference step, the 

final result will be a vague set or multiple vague sets which 

would be defined on the universe of possible actions. 

De-Vaguefication Unit: To obtain the crisp output the vague 

values should be converted into crisp value. This is the task of 

De-Vaguefication unit. It performs the action according to the 
specified true and false membership functions of the output 

variable. 

6. CONCLUSION 
Author examined the three theories of many-valued logic: 

Fuzzy, vague and Neutrosophic Logic on the various 

perspectives. Neutrosophic sets are the most expressive way 

to capture the vagueness of data over the vague set due to the 

inclusion of indeterminate function. Vague sets are the more 

expressive way to model the vagueness of data over fuzzy set 

due to the separation of true and false membership functions 

that provides the evidence for favour and evidence for against.  

Author compared many-valued logic by their notions, 

algebraic operations, practical usage, and most importantly, 

the graphical representations of membership functions. 

Author has shown in practical usage by examples, using a 

Neutrosophic Set is more natural than using a vague Set or 

Fuzzy Set. Author has also discussed the modeling of 

vagueness with fuzzy logic and the Neutrosophic Logic. 

Author has introduced a framework Vague Inference System 

(VIS) to model the Vague Logic, which adopts the Fuzzy 

Inference System. In future Author will try to implement the 

various applications using the Vague Inference System. 
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