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ABSTRACT
This paper develops a production, recycling-disposal inventory
problem over a finite time horizon in fuzzy and bi-fuzzy environ-
ments. The production and recycling process are performed in a
plant which is located very near to the market. The products of the
plant are continuously transfer to the market. Here, the dynamic
demand is satisfied by production and recycling. The use units are
collected continuously from the customers and then either recycled
or disposed. Recycling products can be used as new products which
are sold again in the market. The rate of production, recycling
and disposal are assumed to be function of time. The setup cost,
idle cost and environment pollution recovery cost for production-
recycling system in industry are also included. The optimum results
are presented both in tabular form and graphically.
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1. INTRODUCTION
During the last few decades, production-recycling system is
an important area of inventory studies due to growing envi-
ronmental concern and environmental regulations like ’Kyoto
Protocol’in industry. Fig-3 represents a single plant production-
recycling-disposal system in fuzzy and bi-fuzzy environments.
Some units are bought back from market for a recoverable
inventory after using by the customers. The serviceable stock is
delivered to the customer demand. The serviceable stock can be
satisfied by either production or by recycling. The non-recycling
items are disposed. The non-serviceable stock is filled up by
used products from the customers. The non-serviceable stock is
supplied for either recycling or disposal. A number of research
papers have already been published on the above type of models
by (cf. Minner and Kleber (2001), Dobos and Richter (2006),
Maity et al.(2009), Ilgin and Gupta(2010), Taleizadeh et. al.
(2012) and others).

In the classical inventory models, normally static lot size models
are formulated. But in the manufacturing environment, the
static models are not adequate in analyzing the behavior of such
systems and in deriving the policies for their control. Moreover

it is usually observed in the market that sales of the fashionable
goods, electronic gadgets, seasonable products, food grains,
etc., increases with time. For these reasons, dynamic models of
production inventory systems have been considered and solved
by some researchers (cf. Giri and Chaudhuri (1998), Maity and
Maiti (2005a) and others). In these models, demand is assumed
to be continuous functions of time and till now, only a very
few researchers (cf. Maity and Maiti (2005b)) have taken time
dependent production function.
Here, production cost has three parts. (i) raw material cost which
is constant per unit product (ii) Labour cost which is inversely
proportional per unit product (iii) Environmental pollution cost
is proportional to the product. The cost is expenditure due to
growing environmental concern (cf. Zhang et al. (1997), Gungor
and Gupta(1999), Ilgin and Gupta(2010)) and according to
the rule of environmental regulations like ’Kyoto Protocol’
for Industry. The ’Kyoto Protocol’ was established in 1997 at
Kyoto, Japan. The purpose of ’Kyoto Protocol’ are (i) Clean
Development Mechanism (ii) Scientific efforts aimed at under-
standing detail of total net carbon exchange (iii)Global-warming
potential (iv) Campus carbon neutrality (v) Carbon sequestration
in terrestrial ecosystems, etc. So environmental pollution cost
is an important part in production system for industry. Also the
recycling process can reduce the environmental pollution, save
the crisis natural resources and raw materials. Therefore, the
recycling process can play an important role in industry.
Prof. Zadeh(1965) first applied a new concept Fuzzy Set Theory
to accommodate the uncertainty in non-stochastic sense. After
that, Liu and Liu(2003) have developed a class of fuzzy ramdom
optimization: expected value models. Maity et al. (2008)
have developed a production recycling model with imprecise
holding cost of defective units is a natural phenomenon in a
production process. Bi-fuzzy sets were originally presented by
Zadeh (1971) and were further elaborately by Gottwald(1979),
Mendel(2002), Marusak(2009). Till now, none has considered a
two plant optimal production-inventory system producing ran-
dom defective units of an item with a fuzzy resource constraint
and some imprecise inventory costs via optimal control theory.
Genetic Algorithms are exhaustive search algorithms based
on the mechanics of natural selection and genesis (crossover,
mutation etc.)(cf. Goldberg (1989), Maiti and Maiti(2007) and
others). Because of its generality, it has been successfully ap-
plied to many optimization problems, for its several advantages
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over conventional optimization methods. Holland was inspired
by Darwin’s theory about evolution and constructed GAs based
upon the fundamental principle of the theory: ‘Survival of the
fittest’. The theoretical basis for the GA is the Schema Theorem
which states that individual chromosomes with short, low-order,
highly fit schemata or building blocks receive an exponentially
increasing number of trials in successive generations. In natural
genesis, we know that chromosomes are the main carriers of
hereditary information from parent to offspring and that genes,
which present hereditary factors, are lined up on chromosomes.
At the time of reproduction, crossover and mutation take place
among the chromosomes of parents. In this way hereditary
factors of parents are mixed-up and carried to their offsprings.
Again according to Darwinian principle, only the fittest animals
can survive in nature. So a pair of fittest parent normally
reproduces a better offspring.

In this paper, the production and disposal rates are function of
time and unknown taken as control variables. Moreover, the re-
cycling rate is unknown constant and control variable. Here,
production cost is greater than the recycling cost. Also non-
serviceable holding cost is less than serviceable holding cost.
The total cost is minimized and solved by genetic algorithm
technique. None has considered a plants production, recycling-
disposal inventory problem in fuzzy and bi-fuzzy environments.
The optimum production, recycling-disposal and stock levels are
determined for known dynamic demand function. The model is
illustrated through numerical examples and results are also pre-
sented graphically.

2. NECESSARY KNOWLEDGE ABOUT FUZZY
AND BI-FUZZY SETS

A fuzzy set is a class of objects in which there is no sharp bound-
ary between those objects that belong to the class and those
that do not. Let X be a collection of objects and x be an el-
ement of X, then a fuzzy set Ã in X is a set of ordered pairs
Ã = {(x, µ

Ã
(x))/x ∈ X}

where µ
Ã

(x) is called the membership function or grade of
membership of x in Ã which maps X to the membership space
M which is considered as the closed interval [0,1].
Fuzzy Number: A fuzzy number Ã is a convex normalized
fuzzy set on real line < such that
(i) it exists exactly one x0 ∈ < with µ

Ã
(x0) = 1 (x0 is called

the mean value of M̃ ),
(ii) µ

Ã
(x) is piecewise continuous.

Example 1: In particular if Ã = (a1, a2, a3) be a Triangular
Fuzzy Number (TFN)( cf. Fig. 1) then µ

Ã
(x) is defined as fol-

lows

µÃ(x) =


x−a1
a2−a1

for a1 ≤ x < a2
a3−x
a3−a2

for a2 < x ≤ a3
0 otherwise

where a1, a2 and a3 are real numbers.
Lemma-1: Let ã = ( a1, a2, a3) ) be a triangular fuzzy number
and r is a crisp number. The expected value of ã is

E[ã] =
1

2

[
(1− ρ)a1 + a2 + ρa3

]
, 0 < ρ < 1.

=
a1 + 2a2 + a3

4
, ρ = 0.5. (1)

Proof: The Proof of the lemma-1 is in reference in Liu and
Liu(2002).

Fig. 1. Triangular Fuzzy Number(TFN)

2.1 Bi-fuzzy set
Generally speaking, a level-2 fuzzy set is a fuzzy set in which the
elements are also fuzzy sets, and the bi-fuzzy variable is a fuzzy
variable with fuzzy parameters. Level-2 fuzzy sets were origi-
nally presented by Zadeh(1971). Such sets are fuzzy sets whose
elements themselves are ordinary fuzzy sets. They are very use-
ful in circumstances where it is difficult to determine some ele-
ments for a fuzzy set.
Definition 1 In Mendel (2002), a type-2 fuzzy set, denoted Ã, is
characterized by a type-2 membership function µÃ(x, u), where
x ∈ X and u ∈ J)x ⊆ [0, 1], i.e.,

Ṽ = {Ṽ , µṼ (Ṽ )) | ∀x ∈ Γ̃(U) : µṼ > 0} (2)

where each ordinary fuzzy set Ṽ is defined by

Ṽ = {(x, µṼ (x)) | ∀x ∈ U : µṼ > 0} (3)

For convenience, the membership grades µṼ (Ṽ ) of the fuzzy
sets .Ṽ ∈ Γ̃(U) are called ’outer-layer’ membership grades,
whereas the membership grades µṼ (x̃) of the elements x ∈ U
are called inner-layermembership grades. Since level-2 fuzzy
sets are still fuzzy sets, their mathematical behavior is defined
by the fuzzy set operators. Type-2 fuzzy sets were introduced
by Zadeh( 1975) as another extension of the concept of an or-
dinary fuzzy set, and it was elaborated by Mendel(2002). Such
sets are fuzzy sets whose membership grades them as ordinary
fuzzy sets. They are very useful in circumstances where it is
difficult to determine an exact membership function for a fuzzy
set.Normally speaking, a Fu-Fu variable is a fuzzy variable un-
der fuzzy environment.
Example 2: ˜̃

ξ = (sL, ξ̃, sR) with ρ = (ρL, ρM , ρR) is called
Fu-Fu variable,( cf. Fig. 2), if the outer-layer and inner-layer
membership functions are as follows

µ˜̃
ξ
(x) =


(
x− sL
ρ̃− sL

)
if sL ≤ x ≤ ρ̃

0 otherwise(
sR − x
sR − ρ̃

)
if ρ̃ ≤ x ≤ sR

and

µρ̃(x) =


(
x
′ − ρL

ρM − ρL

)
if ρL ≤ x

′ ≤ ρM

0 otherwise(
ρR − x

′

ρR − ρM

)
if ρM ≤ x

′ ≤ ρR

where ρ̃ is the center of ξ̃, which is a triangular fuzzy variable,
sL ∈ R and sR ∈ R are the smallest possible value and the
largest possible value of ˜̃

ξ, sL ∈ R, sM ∈ R and sR ∈ R are
the the smallest possible value, the most promising value and the
largest possible value of ρ̃, respectively.
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Fig. 2. Triangular Bi-fuzzy variable

Lemma-2: The expected value for the bi-fuzzy variable ˜̃c = (c̃−
l1, c̃, c̃+ r1) with c̃ = (c− l2, c, c+ r2) we obtain that

E[˜̃c] = c+
(r1 + r2)− (l1 + l2)

4
(4)

Proof: Let ˜̃c = (c̃− l1, c̃, c̃+ r1), where c̃ = (c− l2, c, c+ r2).
Therefore

E(˜̃c) =
E(c̃− l1) + 2E(c̃) +E(c̃+ r1)

4
(UsingLamma− 1)

=
E(c̃)− l1 + 2E(c̃) +E(c̃) + r1

4

=
4E(c̃)− l1 + r1

4

= E(c̃) +
r1 − l1

4

= c+
r2 − l2

4
+
r1 − l1

4

= c+
(r1 + r2)− (l1 + l2)

4

Particular case: When l2 = 0 = r2 ⇒ ˜̃c = c̃ ⇒ E(˜̃c) =

c+ r1−l1
4

Lemma-3: Assume that ξ and η are fuzzy/ bi-fuzzy variables
with finite expected values. Then for any real numbers a and b,
we have

E[aξ + bη] = aE[ξ] + bE[η] (5)

Proof: The proof of the Lemma-3 is in reference Xu and Zhou
(2009).

3. ASSUMPTIONS AND NOTATIONS
The model under consideration is developed with the following
assumptions and notations.

3.1 Assumptions:
For the product recycling, disposal model, it is assumed that,

(i) demand rate is known and time dependent,
(ii) shortages are not allowed,
(iii) production rate is time dependent and unknown

taken as decision variable ,
(iv) this is a single item inventory model with finite time length,
(v) recycling item is same to a new product, it’s rate is constant

and unknown taken as decision variable.
(vi) disposal item is rejected unit, it’s rate is constant

and unknown taken as decision variable .
(vii) lead time is zero,
(viii) all return units have the same level of quality,
(ix) holding cost of non-serviceable item is

less than that for serviceable product.
(x) holding cost of non-serviceable item is less

than that for serviceable product.
(xi) Unit production cost is less than the unit recycling cost.
(xii) environment pollution cost for production in

industry is also included.
(xiii) The holding costs, setup costs and idle costs

are taken to be fuzzy in nature.
(xiv) The unit production cost is taken to be bi-fuzzy in nature.

3.2 Notations:
xSi(t) serviceable stock at time t for ith production cycle.
xSj(t) serviceable stock units at time t for jth

production and recycling cycle.
xR(t) stock of non serviceable units at time t for production cycles.
xRj(t) stock of non serviceable at time t for jth

production and recycling cycle.
u(t) u0 + u1t, production rate(decision variable) for

each production up to m cycles.
p(t) p0, constant recycling rate taken as a decision variable.
u
′
(t) u

′
0 + u

′
1t, production rate (decision variable) for each

production from m+1 cycle to m+n cycle.
d(t) d0 − d1e−βt, demand function,

where d0p, d1p are known and β > 0.
(α0 + α1t)d(t) return function.

z(t) (z0 + z1t), disposal rate(decision variable).
Cp recycling cost per unit.
˜̃Cu

˜̃Cu0 +
˜̃Cu1
u(t)

+ ˜̃Cu2(u(t))γ1 + ˜̃Cu3(u(t))γ2 ,
bi-fuzzy production cost per unit.
Where ˜̃Cu0 is bi-fuzzy raw material cost,
˜̃Cu1 is bi-fuzzy labour cost,
˜̃Cu2 is bi-fuzzy wear and tear cost,
˜̃Cu3 is bi-fuzzy environmental pollution cost
and γi, i = 1, 2 are positive constants.

Cr purchasing cost per recovered item.
Cz disposal cost per unit item.
h̃R fuzzy holding cost of non-serviceable

product per unit per unit time.
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h̃S fuzzy holding cost of serviceable product per unit per unit time.
s̃u fuzzy setup cost for the first ith production cycle.
s̃p fuzzy setup cost for the first jth recycling cycle.
m number of only production cycles, positive integer.
n number of production and recycling cycles, positive integer.
tu time interval of each production cycle.
tp time interval of each production and recycling cycle.
t
′
ui time duration of production for ith production cycle.
t
′
pj time duration of production for

jth production and recycling cycle.
Ĩdu fuzzy idle cost for each production cycle.
Ĩdp fuzzy idle cost for each recycle cycle.

Fig. 3. Block diagram for production, recycling and disposal
model

4. RECYCLING MODEL FORMULATION IN
FUZZY AND BI-FUZZY ENVIRONMENTS

This paper develops a single plant production, recycling-
disposal system over a finite time horizon in fuzzy and bi-fuzzy
environments. The holding costs, setup costs, idle costs are
fuzzy in nature. But the production cost is bi-fuzzy in nature as
the purchasing of raw materials faces is how to make purchasing
decisions, in order to obtain required raw materials at a lower
price and at the same time meet production demand in terms of
item, quality, quantity, due date, and so on.

The production and the recycling process are performed in a
plant which is located very near to the market and the prod-
ucts of plants are continuously transfer to the market. Here, the
dynamic demand is satisfied by production and recycling. The
used units are bought back and then either recycled or disposed
in the said plant. The use units are collected continuously from
the customers. Recycling products can be used as new products
which are sold again. The rate of production, recycling and dis-
posal are assumed to be function of time. The setup cost, idle
cost and environment pollution cost for production in industry
are also included. The production cost has three parts. (i) raw
material cost which is constant per unit product (ii) Labour cost
which is inversely proportional per unit product (iii) Environ-
mental pollution cost is proportional to the product. The cost is
expenditure due to growing environmental concern and accord-
ing to the rule of environmental regulations like ’Kyoto Protocol’
for Industry. At the beginning, production satisfies the demand.
After sometime, production and recycling fill up the demand.
The first m cycles are presented for production and next n cy-
cles exist both for production and recycling. The period of each
of first m cycle and last n cycle are tu and tp respectively. The
time interval of each of first m cycles is equal. Similarly the time
interval of each of last n cycles is equal. Production takes t

′
ui

duration in ith, i = 1, 2...,m production cycle. Also production

and recycling takes t
′
pj duration in jth, j = 1, 2, ..., n produc-

tion and recycling cycle. We collect reused product at the rate
of (α0 + α1t)d(t) continuously from the market. At the time of
collection we also consider the disposal at the rate of (z0 + z1t).
The total time horizon T = mtu + ntp. The optimization prob-
lem is to maximize total profit over the finite planning horizon,
T and it is given in fig-3.
In plant-I, the bi-fuzzy cost function ˜̃J1 is given below:

Min ˜̃J1 = bi-fuzzy production costs + fuzzy holding costs for
+ serviceable stocks fuzzy set up costs + fuzzy idle costs

=

m∑
i=1

(i−1)tu+t
′
ui∫

(i−1)tu

˜̃Cuu(t)dt+

m∑
i=1

itu∫
(i−1)tu

h̃S xSi(t)dt

+ mS̃u +

m∑
i=1

(tu − t
′
ui)Ĩdu

+

n∑
j=1

mtu+(j−1)tp+t
′
pj∫

mtu+(j−1)tp

˜̃Cuu
′
(t)

+

n∑
j=1

mtu+jtp∫
mtu+(j−1)tp

h̃S xSj(t)dt

+ nS̃p +

n∑
j=1

(tp − t
′
pj)Ĩdp (6)

In plant-II, the bi-fuzzy cost function ˜̃J2 is given below:

Min ˜̃J2 = fuzzy holding costs for NS stocks
+ fuzzy recycling stock + collect cost + disposal cost

=

m∑
i=1

itu∫
(i−1)tu

h̃R xRi(t)}dt

+

n∑
j=1

mtu+jtp∫
mtu+(j−1)tp

h̃R xRj(t)dt

+

n∑
j=1

mtu+(j−1)tp+t
′
pj∫

mtu+(j−1)tp

Cpp(t)dt

+

T∫
0

[
Cr(α0 + α1t)d(t) + Cz z(t)

]
dt (7)

subject to

dxSi(t)

dt
=

{
u(t)− d(t)
if(i− 1)tu ≤ t ≤ (i− 1)tu + t

′
ui

−d(t) if(i− 1)tu + t
′
ui ≤ t ≤ itu

(8)

dxSj(t)

dt
=


u
′
(t) + p(t)− d(t)

ifmtu + (j − 1)tp ≤ t ≤ mtu
+(j − 1)tp + t

′
pj

−d(t)
ifmtu + (j − 1)tp + t

′
pj ≤ t ≤ mtu + jtp

(9)
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dxR(t)

dt
=
{

(α0 + α1t)d(t)− z(t) if0 ≤ t ≤ mtu (10)

dxRj(t)

dt
=


(α0 + α1t)d(t)− p(t)− z(t)
ifmtu + (j − 1)tp ≤ t ≤ mtu
+(j − 1)tp + t

′
pj

(α0 + α1t)d(t)− z(t)
ifmtu + (j − 1)tp + t

′
pj ≤ t ≤ mtu + jtp

(11)

where

d(t) = d0 − d1e−βt xS(0) = 0 = xS(itu), xS(jtp) = 0

xR(0) = 0, u(t) = u0 + u1t, p(t) = p0, z(t) = z0 + z1t

u
′
(t) = u

′
0 + u

′
1t i = 1, 2, ...,m, j = 1, 2, ..., n.

Where the bi-fuzzy variables are given by ˜̃Cui =
(C̃ui − Cui1, C̃ui, C̃ui + Cui3), with C̃ui = (Cui −
Cui2, Cui, Cui + Cui4), i = 1, 2, 3.

And the TFNs are given by

h̃i = (hi1, hi2, hi3), i = R,S,

Ĩdj = (Idj1, Idj2, Idj3), j = u, p.

5. EQUIVALENT CRISP MODEL

In plant-I, the expected cost function E[˜̃J1] is given below:

MinE[˜̃J1] =

m∑
i=1

(i−1)tu+t
′
ui∫

(i−1)tu

E[ ˜̃Cu]u(t)dt

+

m∑
i=1

itu∫
(i−1)tu

E[h̃S ]xSi(t)dt+

m∑
i=1

(tu − t
′
ui)E[Ĩdu]

+ mE[S̃u] +

n∑
j=1

mtu+(j−1)tp+t
′
pj∫

mtu+(j−1)tp

E[ ˜̃Cu]u
′
(t)

+

n∑
j=1

mtu+jtp∫
mtu+(j−1)tp

E[h̃S ]xSj(t)dt

+ nE[S̃p] +

n∑
j=1

(tp − t
′
pj)E[Ĩdp] (by lemma-3) (12)

In plant-II, the expected cost functionE[˜̃J2] (by using lemma-3)
is given below:

MinE[ ˜̃J2] =

m∑
i=1

itu∫
(i−1)tu

E[h̃R]xRi(t)}dt

+

n∑
j=1

mtu+jtp∫
mtu+(j−1)tp

E[h̃R]xRj(t)dt

+

n∑
j=1

mtu+(j−1)tp+t
′
pj∫

mtu(j−1)tp

Cpp(t)dt

+

T∫
0

[
Cr(α0 + α1t)d(t) + Cz z(t)

]
dt (13)

Subject to (8)-(11).

6. SOLUTION METHODOLOGY
Using (12)-(14), from (8) the serviceable stock function for
ith(i = 1, 2, ...,m) production cycle is given by

xSi(t) =



(u0 − d0)(t− (i− 1)tu) + u1
t2−((i−1)tu)2

2

−d1 (e−βt−e−β(i−1)tu )
β

if(i− 1)tu ≤ t ≤ (i− 1)tu + t
′
ui

xSi((i− 1)tu + t
′
ui)− d0(t− (i− 1)tu − t

′
ui)

−d1 (e−βt−e−β((i−1)tu+t
′
ui

)
)

β

if(i− 1)tu + t
′
ui ≤ t ≤ itu

and using (12)-(14), from (9) the serviceable stock function for
jth(j = 1, 2, ..., n) production and recycling cycle is given by

xSj(t) =



(u
′
0 + p0 − d0)(t−mtu − (j − 1)tp)

+u
′
1
t2−(mtu+(j−1)tp)2

2

−d1
(e−βt − e−β(mtu+(j−1)tp))

β
ifmtu + (j − 1)tp ≤ t ≤ mtu
+(j − 1)tp + t

′
pjxSj(mtu + (j − 1)tp)

−d0(t−mtu − (j − 1)tp − t
′
pj)

−d1
(e−βt − e−β(mtu+(j−1)tp+t

′
pj

)
)

β
ifmtu + (j − 1)tp + t

′
pj ≤ t ≤ mtu + jtp

(14)

Again using (12)-(14), from (10) non serviceable stock only pro-
duction cycles is given by

xR(t) =

 (α0d0 − z0)t+ (α1d0 − z1) t
2

2
− α0d1

(1−e−βt)
β

+α1d1
te−βt

β
− α1d1

(1− e−βt)
β2

if 0 ≤ t ≤ mtu
(15)

and also using (12)-(14), from (11) the non serviceable stock for
jth(j = 1, 2, ..., n) production and recycling cycle is given by

xRj(t) =



xR(mtu + (j − 1)tp) + (α0d0 − p0 − z0)
(t−mtu − (j − 1)tp)

+(α1d0 − z1)
t2−(mtu+(j−1)tp)2

2

−α0d1
(e−β(mtu+(j−1)tp)−e−βt)

β

+α1d1
(te−βt − (mtu + (j − 1)tp)e

−β(mtu+(j−1)tp))

β

−α1d1
(e−β(mtu+(j−1)tp) − e−βt)

β2

ifmtu + (j − 1)tp ≤ t ≤ mtu + (j − 1)tp + t
′
pj

xRj(mtu + (j − 1)tp + t
′
pj) + (α0d0 − z0)

(t−mtu − (j − 1)tp − t
′
pj)

+(α1d0 − z1)
t2 − (mtu + (j − 1)tp + t

′
pj)

2

2

−α0d1
(e
−β(mtu+(j−1)tp+t

′
pj

)
−e−βt)

β

+α1d1(te−βt − (mtu + (j − 1)tp + t
′
pj)

e
−β(mtu+(j−1)tp+t

′
pj

)
) 1
β

−α1d1
(e
−β(mtu+(j−1)tp+t

′
pj

) − e−βt)
β2

ifmtu + (j − 1)tp + t
′
pj ≤ t ≤ mtu + jtp

(16)
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In plant-I, the expected cost function E[˜̃J1] is given below:

E[˜̃J1] =

m∑
i=1

[
E[ ˜̃Cu0]

{
u0t

′
ui +

u1

2

(
((i− 1)tu + tui)

2

− ((i− 1)tu)2
)}

+E[ ˜̃Cu1]t
′
ui (17)

+
E[ ˜̃Cu2]

u1(γ1 + 1)

{
(u0 + u1(i− 1)tu + t

′
ui)

γ1+1

− (u0 + u1(i− 1)tu + t
′
ui)

γ1+1

}
+

E[ ˜̃Cu2]

u1(γ2 + 1)

{
(u0 + u1(i− 1)tu + t

′
ui)

γ2+1

− (u0 + u1(i− 1)tu + t
′
ui)

γ2+1

}
+ (18)

E[h̃S ]((u0 − d0)(
((i− 1)tu + t

′
ui)

2 − ((i− 1)tu)2

2

+
u1

2
(
((i− 1)tu + t

′
ui)

3 − ((i− 1)tu)3

3

−((i− 1)tu)2t
′
ui) +

m∑
i=1

(tu − t
′
ui)E[Ĩdu]

+ d1
(e−β((i−1)tu+t

′
ui

) − e−β(i−1)tu)

β2

+d1
e−β(i−1)tut

′
ui

β
+ xSi((i− 1)tu + t

′
ui)(tu − t

′
ui)

− d0
(itu)2 − ((i− 1)tu + t

′
ui)

2

2

+d0

(
(i− 1)tu + t

′
ui)(tu − t

′
ui) +

n∑
j=1

(tp − t
′
pj)E[Ĩdp]

+ d1
(e−β(itu) − e−β((i−1)tu+t

′
ui

))

β2

+ d1
e−β((i−1)tu+t

′
ui

)(tu − t
′
ui)

β

)]
+mE[s̃u] + nE[s̃p]

+

n∑
j=1

[
E[ ˜̃Cu0]

{
u
′
0t
′
pj +

u
′
1

2

(
(tu + (j − 1)tp + t

′
pj)

2

− (mtu + (j − 1)tp)
2

)}
+E[ ˜̃Cu1]t

′
pj

+
E[ ˜̃Cu2]

u1(γ + 1)

{(
u
′
0 + u

′
1(tu + (j − 1)tp + t

′
pj

)γ+1

−
(
u
′
0 + u

′
1mtp + (j − 1)tu + t

′
pj

)γ+1}
+ E[h̃S ]((u

′
0 + p0 − d0)(

(mtu + (j − 1)tp + t
′
pj)

2

2

− (mtu + (j − 1)tp)t
′
pj) +

u
′
1

2
(
(mtu + (j − 1)tp + t

′
pj)

3

3

− ((mtu + (j − 1)tp)
2t
′
pj) + d1

(e
−β(mtu+(j−1)tp+t

′
pj

)
)

β2

+ d1
e−β(mtu+(j−1)tp)t

′
pj

β
+ xSj(mtu + (j − 1)tp + t

′
pj)

− d0
(mtu + jtp)

2 − (mtu + (j − 1)tp + t
′
pj)

2

2

+ d0(mtu + (j − 1)tp + t
′
pj)(tp − t

′
pj)

+ d1
(e−β(mtu+jtp) − e−β(mtu+(j−1)tp+t

′
pj

)
)

β2

+ d1
e
−β(mtu+(j−1)tp+t

′
pj

)
(tp − t

′
pj)

β
)

]
In plant-II, the expected cost function E[˜̃J2] is given below:

MinE[˜̃J2] = E[h̃R]

[
(α0d0 − z0)

(mtu)2

2

+ (α1d0 − z1)
(mtu)3

6
− α0d1

β
(mtu −

1− e−βmtu
β

)

]
+ E[h̃R]

n∑
j=1

[xRj(mtu + (j − 1)tp)t
′
pj + (α0d0 − p0

−z0)(
(mtu + (j − 1)tp + t

′
pj)

2 − (mtu + (j − 1)tp)
2

2

− (mtu + (j − 1)tp)t
′
pj) + (

(α1d0 − z1)

2

(
(mtu + (j − 1)tp + t

′
pj)

3 − (mtu + (j − 1)tp)
3

3

− (mtu + (j − 1)tp)
2t
′
pj)

− α0d1β
−2(e

−β(mtu+(j−1)tp+t
′
pj

) − e−β(mtu+(j−1)tp))

− α0d1
e−β(mtu+(j−1)tp)t

′
pj

β

− α1d1
(mtu + (j − 1)tp)e

−β(mtu+(j−1)tp)

β
t
′
pj

− α1d1((mtu + jtp)e
−β(mtu+jtp)

−(mtu + (j − 1)tp + t
′
pj)e

−β(mtu+(j−1)tp+t
′
pj

)
)

− α1d1
e−β(mtu+(j−1)tp)t

′
pj

β2

−α1d1(e
−β(mtu+(j−1)tp+t

′
pj

) − e−β(mtu+(j−1)tp))

+ xRj(mtu + (j − 1)tp + t
′
pj)(tp − t

′
pj)

−(α0d0 − z0)(
(mtu + jtp)

2 − (mtu + (j − 1)tp + t
′
pj)

2

2

− (mtu + (j − 1)tp + t
′
pj)(tp − t

′
pj))

− (α1d0 − z1)

2
(
(mtu + jtp)

3 − (mtu + (j − 1)tp + t
′
pj)

3

3

− (mtu + (j − 1)tp + t
′
pj)

2(tp − t
′
pj))

−α0d1(e−β(mtu+jtp) − e−β(mtu+(j−1)tp+t
′
pj

)
)

− α0d1e
−β(mtu+(j−1)tp+t

′
pj

)
(tp − t

′
pj)

−α1d1
(mtu + (j − 1)tp + t

′
pj)e

−β(mtu+(j−1)tp+t
′
pj

)

β
(tp − t

′
pj)

− α1d1β
−2((mtu + jtp)e

−β(mtu+jtp)

−(mtu + (j − 1)tp + t
′
pj)e

−β(mtu+(j−1)tp+t
′
pj

)
)

− α1d1
(e−β(mtu+jtp) − e−β(mtu+(j−1)tp+t

′
pj

)
)

β3

6



International Journal of Computer Applications (0975 - 8887)
Volume 61 - No. 22, January 2013

−α1d1
e
−β(mtu+(j−1)tp+t

′
pj

)
(tp − t

′
pj)

β2
+ spj

b2 ]

+ Cs(d0T − d1
1− e−βT

β
)

−Cr
(
α0d0T +

α1d0T
2

2
− α0d1(1− e−βT )

β

+
α1d1Te

−βT

β
− α1d1(1− e−βT )

β2

)
− Cz(z0T +

z1T
2

2
)

+

n∑
j=1

Cptp

Where (By using Lemma-1)

E[h̃j ] =
(hR1 + 2hR2 + hR3)

4
, j = R,S

E[Ĩdk] =
(Idk1 + 2Idk2 + Idk3)

4
, k = u, p

E[S̃k] =
(Sk1 + 2Sj2 + Sk3)

4
, k = u, p

and (By using Lemma-2)

E[ ˜̃Cui] = Cui +
(Cui2 + Cui4)− (Cui1 + Cui3)

4
, i = 0, 1, 2

E[ ˜̃C
′

ui] = C
′
ui +

(C
′
ui2 + C

′
ui4)− (C

′
ui1 + C

′
u03)

4
, i = 0, 1, 2

The total expected cost function is given by

Max J = E[˜̃J1] +E[˜̃J2] (19)
and (8) -(14) (20)

The objective function (23) with constraints (24) is minimized
using the following GA optimization technique.

7. GENETIC ALGORITHM(GA) FOR
SINGLE-OBJECTIVE PROGRAMMING
PROBLEM

Genetic Algorithms are exhaustive search algorithms based
on the mechanics of natural selection and genesis (crossover,
mutation etc.) and have been developed by Holland (cf. Holland
(1975)), his colleagues and his students at the University of
Michigan (cf. Goldberg (1989)).

A GA for a particular problem must have the following six com-
ponents.

(a) A genetic representation for potential solu-
tions(chromosomes) to the problem

(b) A way to create an initial population of potential solutions
(chromosomes).

(c) A way to evaluate fitness of each solution.
(d) An evolution function that plays the role of environment, rat-

ing solutions in term of their fitness, i.e., selection process for
mating pool.(e) Genetic operators- crossover,mutation that alter the compo-
sition of children

(f) Values of different parameters that the genetic algorithm uses
(Population size, probabilities of applying genetic opera-
tors etc).

Procedures for different GA components

(a) Chromosome representation: The concept of chromosome
is normally used in the GA to stand for a feasible solution to the
problem. A chromosome has the form of a string of genes that

can take on some value from a specified search space. The spe-
cific chromosome representation varies based on the particular
problem properties and requirements. Normally, there are two
types of chromosome representation – (i) the binary vector rep-
resentation based on bits and (ii) the real number representation.
In this research work, the real number representation scheme is
used.
Here, a ’K dimensional real vector’ X=(x1, x2, .... xK ) is used
to represent a solution, where x1, x2, .... xK represent different
decision variables of the problem.

(b) Initialization: A set of solutions (chromosomes) is called a
population. N such solutions X1, X2, X3, ... XN are randomly
generated from search space by random number generator such
that each Xi satisfies the constraints of the problem. This solu-
tion set is taken as initial population and is the starting point for
a GA to evolve to desired solutions. At this step, probability of
crossover pc and probability of mutation pm are also initialized.
These two parameters are used to select chromosomes from mat-
ing pool for genetic operations- crossover and mutation respec-
tively.

(c) Fitness value: All the chromosomes in the population are
evaluated using a fitness function. This fitness value is a mea-
sure of whether the chromosome is suited for the environment
under consideration. Chromosomes with higher fitness will re-
ceive larger probabilities of inheritance in subsequent genera-
tions, while chromosomes with low fitness will more likely be
eliminated. The selection of a good and accurate fitness function
is thus a key to the success of solving any problem quickly. In
this thesis, value of a objective function due to the solution X, is
taken as fitness of X. Let it be f(X).

(d)Selection process to create mating pool: Selection in the
GA is a scheme used to select some solutions from the popula-
tion for mating pool. From this mating pool, pairs of individu-
als in the current generation are selected as parents to reproduce
offspring. There are several selection schemes, such as roulette
wheel selection, local selection, truncation selection, tournament
selection, etc. Here, roulette wheel selection process is used in
different cases. This process consists of following steps-

(i) Find total fitness of the population F=
N∑
i=1

f(Xi)

(ii) Calculate the probability of selection pri of each solution Xi
by the formula pri=f(Xi)/F .

(iii) Calculate the cumulative probability qri for each solution

Xi by the formula qri=
i∑

j=0

prj

(iv) Generate a random number ’r’ from the range [0..1].
(v) If r<qr1 then select X1 otherwise select Xi(2≤i≤N) where

qri−1≤r<qri.
(vi) Repeat step (iv) and (v) N times to select N solutions from

current population. Clearly one solution may be selected more
than once.

(vii) Let us denote this selected solution set by P 1(T ).

(e)Crossover: Crossover is a key operator in the GA and is used
to exchange the main characteristics of parent individuals and
pass them on the children. It consists of two steps:

(i) Selection for crossover: For each solution of P 1(T ) generate
a random number r from the range [0..1]. If r<pc then the
solution is taken for crossover, where pc is the probability of
crossover.

(ii) Crossover process: Crossover taken place on the selected
solutions. For each pair of coupled solutions Y1, Y2 a ran-
dom number c is generated from the range [0..1] and Y1,
Y2 are replaced by their offspring’s Y11 and Y21 respectively

7
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where Y11=cY1+(1-c)Y2 , Y21=cY2+(1-c)Y1, provided Y11,
Y21 satisfied the constraints of the problem.

(f) Mutation: The mutation operation is needed after the
crossover operation to maintain population diversity and recover
possible loss of some good characteristics. It is also consist of
two steps:

(i) Selection for mutation: For each solution of P 1(T ) generate
a random number r from the range [0..1]. If r< pm then the
solution is taken for mutation, where pm is the probability of
mutation.

(ii) Mutation process: To mutate a solution X=(x1, x2, ., xK)
select a random integer r in the range [1..K]. Then replace
xr by randomly generated value within the boundary of rth
component of X.

Following selection, crossover and mutation, the new population
is ready for it’s next iteration, i.e., P 1(T ) is taken as population
of new generation. With these genetic operations a simple ge-
netic algorithm takes the following form. In the algorithm T is
iteration counter, P(T) is the population of potential solutions for
iteration T, Evaluate(P(T)) evaluate fitness of each members of
P(T).

GA Algorithm

1. Set iteration counter T=0.
2. Initialize probability of crossover pc and probability of muta-

tion pm.
3. Initialize P(T).
4. Evaluate(P(T)).
5. Repeat

a. Select N solutions from P(T), for mating pool using
Roulette-wheel selection process. Let this set be P (T )1.

b. Select solutions from P (T )1, for crossover depending on
pc .

c. Made crossover on selected solutions for crossover to get
population P (T )2.

d. Select solutions from P (T )2, for mutation depending on
pm .

e. Made mutation on selected solutions for mutation to get
population P (T + 1).

f. T ← T + 1.
g. Evaluate P (T ).

6. Until(Termination condition does not hold).
7. Output: Fittest solution(chromosome) of P(T).

8. NUMERICAL EXPERIMENT
To illustrate the production-recycling model numerically, we
consider input data in Tables-1,-2 & -3 for crisp data, fuzzy data
and bi-fuzzy data respectively. For these input data and by using
the above single objective genetic algorithm technique §7 and
using Lemma-2, we solve the problem (23)-(24) and we obtained
the optimal productions, optimal recycling and optimal disposal
which are u(t) = 25.19 + 0.6t, u

′
(t) = 17.2 + 0.4t, p(t) = 11

and z(t) = 0.71 + 0.16t. Also the optimal values of
xSi(t), xSj(t), xR(t), u(t), u

′
(t) , d(t) and p(t) are evaluated

using (23)-(24) for different values of t. We have shown
the optimum results of xSi(t), xR(t), u(t) and d(t) of
production-cycle in Table-4. Similarly, the optimum results of
xSj(t), xRj(t), u

′
(t), p(t) and d(t) for the production and

recycling-cycle are presented in Table-5. We get optimal profit
by using GA technique as 871.349$.

Table-1
Input crisp Data:

d0 d1 β Cp Cz
in $ in $

15 0.2 0.05 1.6 0.15

Cr γ1 γ2 α0 α1 T
0.11 0.1 0.12 0.12 0.1 15

Table-2
Input fuzzy Data: (in $)

h̃R h̃S Ĩdu
(1.1, 1.3, 1.5) (1.3, 1.5, 1.7) (3, 4, 5)

Ĩdp S̃u S̃p
(2.5, 3.5, 4.6) (3, 4, 5) (3, 5, 5)

Table-3
Input bi-fuzzy Data:(in $)

˜̃Cu0
˜̃Cu1

(C̃u0 − 5, C̃u0, C̃u0 + 7) (C̃u1 − 14, C̃u1, C̃u1 + 15)

C̃u0 = (3.5, 6.0, 7.5) C̃u1 = (11.5, 15.6, 20.8)
˜̃Cu2

˜̃Cu3
(C̃u2 − 1, C̃u2, C̃u2 + 2) (C̃u3 − 0.9, C̃u3, C̃u3 + 1.4)

C̃u2 = (1.4, 1.7, 2.9) C̃u3 = (0.6, 1, 2.1)

Table-4
Optimal values of xSj(t), xRj(t), u

′
(t), p(t) and d(t),

j = 1, 2, 3.

t 0 1.28 3 3.01 4.01 6
xSi(t) 0 15.33 0 0.16 16.2 0
xR(t) 0 1.73 6.78 6.86 8.28 15.4
u(t) 29.13 29.77 − 30.53 31.14 −
d(t) 15.7 15.32 16.63 15.67 15.42 14.97

Table-5
Comparison of the results obtained with different GA parame-
ters.

No. Npop−size Pc Pm Generations Objective
α = 0.6

1 60 0.3 0.2 500 871.349
2 80 0.4 0.3 500 883.542
3 100 0.5 0.4 500 883.214
4 60 0.3 0.2 1000 885.856
5 80 0.4 0.3 1000 887.652
6 100 0.5 0.4 1000 890.214

α = 0.8
1 60 0.3 0.2 500 891.124
2 80 0.4 0.3 500 891.142
3 100 0.5 0.4 500 893.124
4 60 0.3 0.2 1000 894.214
5 80 0.4 0.3 1000 894.541
6 100 0.5 0.4 1000 895.214

α = 1.0
1 60 0.3 0.2 500 897.124
2 80 0.4 0.3 500 897.252
3 100 0.5 0.4 500 898.214
4 60 0.3 0.2 1000 899.214
5 80 0.4 0.3 1000 899.124
6 100 0.5 0.4 1000 905.124

Table-5 shows the experimental results obtained by a GA with
different GA parameters. The tested GA parameters contain the
population size Npop−size, the probability of crossover Pc and
the probability of mutation Pm. We compare these results when
different parameters are put with the same or different genera-
tions as a stop criterion. It appears that almost all the objective
values differ little from each other, which implies that the al-
gorithm is robust to the GA parameters setting and effective to
solve multiple objective programming problem. Figure-2 picto-
rially represents the optimum result for production, recycling,
demand and serviceable stock. Figure-4.3 pictorially also repre-
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sents the optimum result for non serviceable stock. The increas-
ing demand rate is very small.

Fig. 4. Optimal production, demand, recycling and serviceable
stock

9. CONCLUSION
In this paper, we develop a two plants production, recycling-
disposal system over a finite time horizon in fuzzy and bi-fuzzy
environment. The holding cost, setup cost, idle cost are fuzzy
in nature. But the production cost is bi-fuzzy in nature as the
purchasing of raw materials faces how to make purchasing deci-
sions, in order to obtain required raw materials at a lower price
and at the same time meet production demand in terms of item,
quality, quantity, due date, and so on. Here, the dynamic demand
is satisfied by production and recycling. Recycling products can
be used as new products which are sold again. The rate of pro-
duction, recycling and disposal are assumed to be control vari-
ables. The cost is expenditure due to growing environmental con-
cern and according to the rule of environmental regulations like
’Kyoto Protocol’ for Industry. At the beginning, production sat-
isfies the demand. After sometime, production and recycling fill
up the demand. The total cost is minimized as an optimal control
problem. It is solved by single objective genetic algorithm tech-
nique. The model is illustrated through numerical examples and
results are also presented both in tabular form only. The model
can be extended for imperfect production, recycling-disposal op-
timization problem in uncertain environment.

10. REFERENCES

[1] Dobos, I. and Richter, K., (2000). A production / recycling
model with quality consideration. International Journal of
Production Economics, 104, 571-579.

[2] Giri, B. C., Yun, W. Y and Dohi, T., (2005). Optimal de-
sign of unreliable productioninventory systems with variable
production rate, European Journal of Operational Research,
162: 372 386.

[3] Gold Goldberg,D., (1989). Genetic Algorithems in Search,
Obtimization and Machine Learning, Addision Wealey, MA,
USA.

[4] Gottwald, S., (1979). Set theory for fuzzy sets of higher
level. Fuzzy Sets and Systems 2(2), 125-151.

[5] Grzegorzewski, P., (2002). Nearest interval approximation
of a fuzzy number, Fuzzy Sets and Systems 130, 321-330.

[6] Holland, H. J., (1975). Adaptation in Natural and Artificial
Systems, University of Michigan.

[7] Gungor,A., Gupta,S. M., (1999). Issues in environmentally
conscious manufacturing and product recovery: a survey,
Computers & Industrial Engineering, 36, 811-853.

[8] Ilgin,M. A. , Gupta,S. M., (2010). Environmentally con-
scious manufacturing and product recovery (ECMPRO): A
review of the state of the art. Journal of Environmental Man-
agement 91,(3), 563-591.

[9] Liu, Y., Liu,B., (2003). A class of fuzzy ramdom optimiza-
tion: expected value models, Information Science 155, 89-
102.

[10] Liu,B., Liu,Y.K., (2002). Expected value of Fuzzy vari-
able and Fuzzy expected value Models, IEEE Transactions
of Fuzzy Systems 10(4), 445-450.

[11] Mendel, J.M., John, R.I.B., (2002). Type-2 Fuzzy Sets
Made Simple. IEEE Transactions on Fuzzy Systems 10(2),
117-127.

[12] Minner, S. and Kleber, R., (2001). Optimal control of pro-
duction and remanufacturing in a simple recovery model
with linear cost functions, Spektrum, 23: 3-24.

[13] Maiti, M. K., Maiti,M., (2007). Determination of with-
drawal schedule in single-species cultivation via genetic
algorithm. Applied Mathematics and Computation 188(1),
322-331

[14] Maity, A.K., Maity,K., Maiti,M., (2008). A production-
recycling-inventory system with imprecise holding costs,
Applied Mathematical Modelling 32, 2241-2253.

[15] Maity, A.K., Maity,K., Mondal.S., Maiti,M., (2009). A
Production-recycling-inventory model with learning effect,
Optimization and Engineering 10, 427-437.

[16] Maity,K., Maiti,M., (2005). Numerical approach of multi-
objective optimal control problem in imprecise environment,
Fuzzy Optimization and Decision Making, Netherland, 4(4),
313-330.

[17] Mendel, J.M.,(1999). Computing with words when words
can mean different things to different people. Presented
at Internat. ICSC Congress on Computational Intelligence:
Methods, Applications, 3rd Annual Symp. on Fuzzy Logic
and Applications, Rochester, New York, 22-25

[18] Zadeh, L.A.:(1975) The concept of a linguistic variable and
its application to approximate reasoning, Information Sci. 8,
199-249.

[19] Taleizadeh, A., Niaki S., Seyedjavadi, S M. H.,(2012)
Multi-product multi-chance-constraint stochastic inventory
control problem with dynamic demand and partial back-
ordering: A harmony search algorithm, Journal of Manufac-
turing Systems, 31(2) 204-213.

[20] Marusak, Marusak,P. M., Tatjewski, P., (2009). Effective
dualmode fuzzy dmc algorithmswith online quadratic opti-
mization and guaranteed stability, Int. J. Appl. Math. Com-
put. Sci., Vol. 19, No. 1, 127-141.

[21] Xu, J., Zhou,X., (2009). Fuzzy Link Multiple-Objective
Decision Making, Springer- Verlag, Berlin.

[22] Zadeh,L., (1965). Fuzzy sets, Information and Control. 8,
338-353.

[23] Zadeh, L.,(1971). Quantitative fuzzy semantics. Informa-
tion Sciences 3(2),177-200.

[24] Zhang, H. C., Kuo, T. C., Lu, H., (1997). Environmentally con-
scious design and manufacturing: A state-of-the-art survey, Jour-
nal of Manufacturing, 16, 352-371.

11. AUTHOR PROFILE
D. K. Jana
D. K. Jana is an Assistant Professor in Haldia Institute of
Technology Haldia,Purba Medinipur, and West Bengal India.
He received his M.Sc in Applied Mathematics from Vidyasager
University. His research interests are in Inventory and optimal
control of production systems in fuzzy, fuzzy rough, uncertain
environments. He published many research papers in reputed

9



International Journal of Computer Applications (0975 - 8887)
Volume 61 - No. 22, January 2013

international journals such as JOS, IJOR, OPSEARCH etc.

K. Maity
K. Maity received his PhD degree in Applied Mathematics from
Vidyasagar University in 2006. He is a Lecturer in the Depart-
ment of Mathematics, Mugberia Gangadhar Mahavidyalaya,
Purba Medinipur. His research and development efforts focus on
operational research, optimal control theory, fuzzy mathematics
and fuzzy logic. He has received the Prof.M.N. Gopalanan
Award for best doctorial thesis from ORSI in 2007. He pub-
lished many research papers in reputed international journals
such as EJOR,MCM, FODM, AJMMS, Information Sciences,

etc.

T. K. Roy

He is a Professor in the Department of Mathematics, Bengal
Engineering& Science, Howrah, Shibpur, W.B., India. His re-
search and development efforts focus on operational research,
optimal control theory, fuzzy mathematics and fuzzy logic. He
published many research papers in reputed international journals
such as EJOR,MCM, AMM, FODM, AJMMS, Information Sci-
ences, etc

10


	Introduction
	Necessary knowledge about Fuzzy and Bi-fuzzy sets
	Bi-fuzzy set

	Assumptions and Notations
	 Assumptions: 
	 Notations: 

	Recycling Model Formulation in fuzzy and bi-fuzzy environments
	 Equivalent Crisp model
	Solution Methodology 
	Genetic Algorithm(GA) for Single-Objective Programming Problem
	Numerical Experiment
	Conclusion
	REFERENCES
	AUTHOR PROFILE

