
International Journal of Computer Applications (0975 – 8887)

Volume 61– No.18, January 2013

6

A New Approach for Dynamic Job Scheduling in a

Volunteer Desktop Grid

Shaik Naseera

Professor, Department of CSE
Sreenivasa Institute of Technology and
Management Studies, Chittoor, India

K.V.Madhu Murthy, Ph.D

Professor
Department of CSE

Sri Venkateswara University
Tirupati, India.

ABSTRACT

Nodes in a volunteer desktop grid are based on the volunteer

participation of desktop nodes owned by the individual users.

The volunteer nodes contribute their idle resources for public

execution during their free time and withdraw during their

busy time due to high priority node owner’s private execution.

This property makes desktop grid dynamic in nature. Job

scheduling is mainly influenced by two factors: node

dynamism and heterogeneity. The job generation rate at each

node is different from other nodes in the desktop Grid and

hence the load at each node changes with time. This situation

leads to increased computational demands at some nodes than

from others and makes the grid often to get into unbalanced

environment. Job migration to remote nodes involves job

transmission latency. Since grid is a dynamic environment,

when the job reaches to the remote node for execution the

node might become busy and the selected target node may not

complete the execution of the job at the expected speed.

Therefore, the selection of a target node for job migration

plays an important role in improving the overall performance

of the desktop Grid. In this paper we present a new approach

for dynamic job scheduling that considers node dynamism and

job transmission latency into account for making scheduling

decisions. The algorithm is compared against the Resource

Exclusion and non migration algorithms and the simulation

results shows that the proposed algorithm has got considerable

improvement over the other two.

General Terms

Grid Computing, Desktop Grid, Algorithms.

Keywords

Volunteer nodes, desktop grid, job scheduling, job migration,

node dynamism, average turnaround time.

1. INTRODUCTION

Advances in the computing and networking technologies

made possible to manufacture powerful computing devices at

lower cost now days, therefore plenty of computing power

and resources are available with the user desktops. Desktop

grid aims to harvest a number of idle desktop computers

owned by individuals to achieve high throughput computing

by harvesting idle computing power contributed by the

volunteers [1]. The users volunteer their idle resources during

their free time and withdraw them during their busy time.

Desktop Grid has recently received the rapidly growing

interest and attraction because of the success of the most

popular examples such as SETI@Home [7] and

distributed.net [9].

Nodes connected in the desktop grid are heterogeneous in

nature and geographically distributed to different locations.

The nodes are connected and communicate with each other

over internet. Therefore, transmission latencies are involved

for any kind of communications between nodes.

To harvest idle computing power in desktop Grid, the jobs are

migrated from source node to remote node there by utilizing

the idle CPU time, memory, file system, database,

information service and any other sharable resources required

for execution from the network. In this view desktop Grid is

used for executing a large number of jobs at dispersed

resource sites.

Static scheduling algorithms assume that the complete state of

the system is known in advance to the scheduler to make the

scheduling decisions. Dynamic job scheduling algorithms

makes scheduling decision without having the prior

knowledge of the system state. Desktop grid is a dynamic

environment, the state of the system changes over time. Job

schedulers do not possess the prior knowledge about the state

of the system. It is not known to the scheduler, in what

environment the job will execute. The primary function of a

job scheduling strategy is to recommend decision that

improves the performance objective. Therefore the scheduler

must consider the appropriate parameters for taking job

scheduling decisions.

Generally, nodes connected in a desktop grid posses different

clock speeds hence the same job will have varying processing

times at different nodes (job processing time is calibrated

accordingly) and this leads to varying turnaround times. In

addition to this, Job transmission to remote nodes in a desktop

grid involves transmission latency. When the job reaches to

the remote node for execution the state of the system might

change and the selected target node may not be the best node

for the job to execute. To reflect this dynamism, job

scheduling algorithms must consider the change in the load

characteristics of the remote node when job is in transit from

source node to remote node. Therefore, the choice of

parameters that influences the performance objective of job

scheduling strategy is the node dynamism and turnaround

time offered by the node.

The proposed algorithm reliable node job scheduling strategy

(RJSS) in this paper considers the change in load

characteristics of the remote node while the job is in transit

along with the turnaround time offered by the remote node.

The rest of the paper is organized as follows: Section 2

describes the related work in this aspect, section 3 describes

the modeling issues and common assumptions considered,

section 4 describes the problem statement, section 5 describes

the mathematical model, section 6 describes the algorithm and

section 7 describes the simulation results.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.18, January 2013

7

2. PROBLEM DESCRIPTION

Nodes connected in a desktop grid migrates their jobs from

source node to target node for better turnaround time. The

nodes are dynamic in nature and hence the load changes

continuously with time at each node. Static scheduling

algorithms migrates jobs based on the prior knowledge of the

system state and dynamic scheduling algorithms do not

possess the prior knowledge of the system state. Therefore,

when a job is migrated from source node to destination node,

the load conditions at the remote node might change while job

is in transit and hence the selected target node for job

migration may not be the best node for the job to execute

further. This situation demands the need for the consideration

of change in load characteristics of the remote node while job

is in transit. We propose a new job scheduling strategy RJSS

that address the following properties of the desktop Grid.

Heterogeneity: Nodes connected in the desktop grid are

heterogeneous in nature and RJSS considers the processing

capability of each node while making the scheduling

decisions.

Dynamic: Desktop Grid user generates jobs at each node

randomly and hence the load changes dynamically at each

node.

Distributed: Each node in the desktop Grid takes scheduling

decisions for the locally generated jobs. Therefore, RJSS is

distributed in nature and has no central coordinator.

To make the model simple and realistic to the real desktop

grid environment, the following modeling issues and common

assumptions are considered. These considerations are made by

taking into the account of field study conducted and found in

the literature for the real grid environments.

2.1 Modeling Issues

 Each node i generates jobs on Poisson distribution with

mean λi.

 The byte size of the generated jobs at each node i follows

exponential distribution with mean μi.

 The time taken to complete/processing time of the job at

each node i is chosen from normal distribution with mean

 and variance

.

2.2 List of Common Assumptions

 We assume that the nodes connected in a desktop Grid are

reliable and does not undergo node failures and volunteer

inferences.

 There is a fixed bandwidth between two nodes (B is

constant).

 The Congestion towards a node is chosen fixed (C is

constant).

 The nodes communicate via ISP server located at

equidistant to all the nodes, therefore the logical distance

between nodes becomes constant (D is constant).

 The size of the load packet that contains the remote node

load information is assumed to be fixed for all the nodes.

Therefore, p is constant.

 The jobs are independent. Each job has different size and

processing time.

 When a node decides to send a job for remote execution, it

is dispatched completely to the remote node in its entirety.

 The queuing discipline followed by the scheduler is FCFS.

 The size of the result for each job is same as the

instruction/data size of the job and the result is sent to the

source node after completing the execution.

 The mean job arrival rate (, mean instruction/data size

of the job (), mean job processing time (), mean clock

speed (for nodes in a desktop grid are chosen from

sample space of normal distribution with appropriate mean

and variances (Ex:- is chosen from a sample space of

normal distribution with mean and variance
 .

Similarly same technique is followed for other parameters)

2.3 Problem Statement

“Let G be the desktop Grid consisting of N volunteer nodes.

The nodes are spread in a geographically different locations.

The nodes connected in the G are heterogeneous and posses

different clock speed . The nodes are connected over

internet and communicate with each other via Internet Service

Provider (ISP). The ISP is located at equidistance to all the

nodes in the desktop Grid. The Desktop Grid user generates

jobs at each node on Poisson distribution with mean . The

mean instruction/data size of a job (bytes) for each node i

follows exponential distribution with mean . The processing

time of a job at node i follows normal distribution with mean

 and variance

. The objective is to find a target node

for scheduling each job generated in the grid that minimizes

the average turnaround time per job in the Grid.”

3. RELATED WORK

This section describes some of the existing job scheduling

algorithms in the field of study.

Authors in [2] evaluated scalable search methods for the

selection of candidate host for the scheduling of job. The

search methods are namely expanding ring search, random

walk search, advertisement based search and rendezvous point

search and CCOF.

In expanding ring search, when a client node needs idle

cycles, it sends request to its immediate neighbors. If

neighbors are busy or no enough candidates are available, it

then sends the request to nodes on one hop farther. In random

walk search, the client node sends the request to k random

neighbors. In advertisement based search, when a node joins

the system, it sends out its profile to its neighbors in the

limited scope. The neighbors cache this profile along with the

nodeID for future use. In rendezvous point search, a group of

dynamically selected rendezvous points are used for

information gathering. Hosts advertise their profiles to the

nearest rendezvous point(s) and the client contact the

rendezvous point(s) to locate available hosts. The

experimental evaluation shows that the rendezvous point

search performs better than other methods under light

workload.

Nodes in a geographically wide spread grid environment

contains day zone and night zone nodes. The nodes generally

enter into day-time or night-time in the order of the time

zones around the world. So the idle computing times are

available on the human time scale. Authors D. Zhou and

Virginia Lo in [3] took the advantage of the night-zone and

day-zone nodes and presented wave scheduler algorithms

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.18, January 2013

8

namely migration immediate, wave immediate, migration

linger and wave linger algorithms.

In migration immediate, the client schedules the task on to a

machine that is immediately available. When node fails the

task is immediately migrated to a randomly available host. In

wave immediate, the task is migrated to a night-zone machine.

In migration linger, the task is allowed to stick onto the same

host even after its failure for a random amount of time. If the

host is still not available even after the specified time interval,

the task then migrates. Fixing the amount of lingering time

will influence the turnaround time of the job.

X. He et al. have presented Min-min algorithm [5] and Max-

min algorithm [6]. In Min-min heuristic the shortest job is

considered first for mapping onto a machine that offers

earliest completion time. In Max-min heuristic the longest job

is assigned to a node that offers minimum earliest completion

time is chosen first.

Some research projects [10,11] have taken profit into account

and applied economic models in grid resource scheduling.

Incentive based scheduling presented in [8] is to build a global

computational grid in which every participant has incentive to

stay and pay in it. If the resource provider causes the job to

miss its deadline, some penalty is imposed on the resource

provider.

Maheswaran et. al [4] presented on-line and batch-mode

heuristics for mapping independent tasks onto heterogeneous

computing systems. In on-line mode, each task is considered

once for matching and scheduling. The task need not wait for

the next mapping event to occur for scheduling. As soon as

the task arrives, the scheduler maps the tasks onto a machine,

the selection of a machine is done based on the heuristics:

machine that offers minimum completion time (MCT),

minimum execution time (MET), switching algorithm,

k-percent best and opportunistic load balancing.

All these scheduling heuristics are based on the greedy

choices that depend on the transitory completion times of the

jobs. These methods do not consider the information about the

changing environmental variables like node dynamism and

load changes when the job is in transit.

4. PROPOSED METHOD: RJSS

Each node in G has a potential job generator through which

jobs are generated dynamically. The jobs are executed either

locally or at the remote node based on the recommendations

of RJSS. In RJSS, the selection of a candidate node for job

scheduling is done based on the job turnaround time at the

remote node and the change in load characteristics of the

remote node when the job is in transit.

The scheduling strategy followed by RJSS is described below.

When a job j is generated at node i (), the node i collects

the current load information (load packet p) from the remote

nodes using k-random walk search. The load packet p possess

the following information.

 The turnaround time for local job j at the remote

node l along with transmission latency for .

 Probability that a new local job is generated at the

remote node l when job is in transit to node l.

 Remote jobs traffic intensity at node l when is

in transit to node l.

RJSS schedules the at remote node l when the following

performance criterion is met in k attempts.

 The turnaround time for at node l is less than the

turnaround time at node i.

 The probability of generating a new local job at

node l while is in transit is below the user

defined threshold value and

 The traffic intensity due to new remote jobs at node

l while is in transit is below the user defined

threshold value.

When RJSS does not encounter a candidate node in k

attempts, the job is scheduled at local node for execution.

6. ALGORITHM: RJSS

6.1. Algorithm RJSS

begin

Generate N nodes and perform the following steps

concurrently;

for each node i in the grid G do

generate job j following the arrival distribution of the

node i;

 for each unscheduled job j do

 Perform random walk and choose a node l from the

 Grid;

 for each chosen node l from k-random walks do

 Compute waiting time
 for job j at node l;

 Compute job transmission latency to

 node l;

 Let ;

 Compute turnaround time
 for job j at node l;

 Compute probability of new local job
 during ;

Compute average number of remote job arrivals per

unit time at node l;

where

 if (

) and (
 < 0.5 and

) then

Schedule job j at node l;

Mark job j of node i as scheduled;

 Break;

 endif

 endfor

 if (job j is unmarked) then

 Schedule job j at local node i;

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.18, January 2013

9

 Mark job j as scheduled;

 endif

endfor

endfor

end;

6.2. Accuracy of Prediction

An interesting question is whether our proposed model is

applicable in the real situations since the derived model is

based on the probabilistic estimation of jobs generated at the

remote node when the job is in transit. To verify the

correctness and effectiveness of the proposed method, we

have measured the prediction accuracy of the proposed

method with the actual load value realized during the

simulation.

The performance metric used to evaluate the accuracy of the

prediction in the proposed model is defined as

In our simulation, the mean arrival rate of the jobs (in the

grid is varied in the range from 30 to 50 jobs per 1000Sec,

mean processing time of the job () in the grid ranges from

20Sec to 40Sec, mean byte size of the job () ranges from

5KB to 40KB and mean clock speed of the node () in the

grid ranges from 200MHz to 500MHz.

Fig. 1 gives the mean and standard deviation of prediction

error with different nodes ranging from 100 to 500. As we

can see, the prediction error is less than 70% for most of the

cases. As the number of nodes increases, we find that the

prediction error decreases and becomes stable. Therefore, we

conclude that our model is stable with the increase in the

number of nodes.

Fig 1. Mean and STD of prediction error with different

nodes

6.3. Choosing ‘k’ in a k-random walk

As it is described in the section 3.1 RJSS performs a k-random

walk to select a target node for the scheduling of job. The

value of k chosen in the k-random walk is 10% of the number

of nodes (N). This is determined by analyzing the

performance of RJSS for different values of k. k- value is

varied between 5% to 100% of the number of nodes (N). Fig.

2 shows the change in Ḡt for different values of k and it is

shown that the best results are obtained when k is taken

between 10% to 20% of N nodes in the grid. Therefore, we

have chosen 10% of nodes as k-value in our simulation.

Fig 2. Change in Ḡt for varying k-value

7. SIMULATION SETUP

To conduct the experiment and analyze the performance of

scheduling strategies, a simulated desktop grid is designed

using object oriented system design. An instance of a node

that simulates the behavior of a node in a desktop grid

environment is shown in Fig 1. The node is designed with

entities like a job generxator, a job dispatcher, a decision

policy, and a job scheduler to generate events for simulation

based on their predefined parameters. An instance of a node

that shows the interconnection among these entities is shown

in Fig 1.

Fig 3: An instance of a node i in the Grid

7.1. Description of entities in the node:

UserInterfacei():- The nodes communicate with each other by

passing messages through user interface. User interface

forward messages to the other nodes and receive messages

from other nodes via central ISP server located at equidistant

to all the nodes.

Job_Generatori():- Each node has a local job generator. It

generates jobs for each node i on Poisson distribution with

mean . When a job is generated, it is sent to the local job

dispatcher queue (DQ).

Job_Dispatcheri() :- Job dispatcher possess a Dispatcher

Queue (DQi). It maintains the queue of locally generated jobs

to be scheduled and results of the completed jobs to be

dispatched. For each unscheduled job, it makes a scheduling

decision based on the recommendations of decision policy.

Based on the recommendations of decision policy, the job is

marked scheduled and is either sent to the local scheduler or

migrated to the remote node.

Job

Generator

DQ

Job Dispatcher

RQ

Job Scheduler

Decision Policy

Receive

Query/Job/

Result

Send

Query/Job/

Result
 result Job

Node = ?
Node=l

Node i

Node N

Node l

[[[[CPU

job

result

Generate

job

 U

se
r

In
te

rf
ac

e

 Job

Dispatcher

Job Scheduler

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.18, January 2013

10

Decision_Policyi() :- It is a part of the job dispatcher and it

makes scheduling decision for each unscheduled job about the

node at which the job is to be executed. To make scheduling

decision, it computes the turnaround time for local job at the

remote node and traffic intensity probability at the remote

node while job is in transit by collecting control (load)

information from remote nodes using k-random walk search.

 Job_Scheduleri() :- The Job scheduler of each node possess a

ready Queue(RQi). It maintains the queue of jobs that are

scheduled locally. The queuing discipline followed by the

scheduler is first come first serve (FCFS) without preemption

basis. Scheduler schedules the jobs from RQ to the local

CPUi. Upon the completion of the currently executing job, the

scheduler sends the result to the DQ. Local dispatcher

dispatches the result to the source node (local/remote).

CPUi():- The CPU is the processing unit for each node. It

executes the currently assigned job without pre-emption. The

status of the CPU will be busy during the execution of a job.

The status of the CPU becomes idle as soon as the completion

of the currently executing job.

7.2. Data/Control Flow among Entities

The sequence of data and control flow among the entities

shown in Fig. 3 is described below.

1. Job_Generatori() generates the job j for each node i.

2. Job_Dispatcheri() interact with the decision policy

for each unscheduled job j for making scheduling

decision.

3. Decision policy performs a k-random walk search in

association with the job dispatcher and interacts

with the user interface to fetch control information

from randomly chosen remote node l.

4. The control information from remote node l

obtained by user interface is forwarded to the

decision policy.

5. The decision policy computes the turnaround time

for local job at remote node along with the

probabilistic estimate of local/remote jobs at the

remote node while job is in transit.

6. Decision policy recommends the local node i or

remote node l based on turnaround time offered and

probabilistic estimate of the traffic intensity.

7. The job dispatcher schedules the job at local

scheduler i or migrates to the remote node l based

on the recommendations of decision policy.

8. The job scheduler submits each locally scheduled

job for CPU execution and collects the results upon

the completion of the execution of the same.

9. Job dispatcher dispatches the results to the source

node.

8. SIMULATION RESULTS

The simulation is done using object oriented programming

through java and the experiment is conducted by varying the

parameters like number of nodes (N), mean arrival rate of the

job in the grid , mean size of the job in the grid (), mean

processing time of the job in the grid (), and mean clock

speed of the node in the grid (. The performance of RJSS is

compared against the algorithm Resource Exclusion (RE) by

plotting the graphs for average turnaround time per job in the

Grid with respect to the number of jobs finished

execution .

Fig 4. The effect of varying on with respect to

Fig. 4 is drawn to study the effect of varying on with

respect to for the fixed parameters N=100, D=50Km,

C=0.1Sec, , =30Sec, . The mean ()

and variance (
 of the job arrival rate in the grid is shown in

the parenthesis in Fig. 4. As increases at each node, the

system becomes much busy with their local jobs and has less

idle computing cycles. The property of RJSS in estimating the

futuristic load characteristics of remote node makes RJSS to

take better scheduling decisions. It is observed in Fig. 4, that

 for RJSS is less compared to RE and NM for changing

values of mean arrival rate of jobs in the Grid. RJSS achieves

better turnaround time from the early stages of scheduling

process compared to RE and NM algorithm. It is also

observed that the changing causes variation that is indirectly

proportional to the variation in .

Fig 5.effect of varying on Ḡt with respect to Ut

Fig. 5 is drawn to study the effect of increasing mean

processing time of the job on and with fixed N=100,

D=50Km, C=0.1Sec, =20Sec, , ,

 . The increasing generates jobs with higher

processing time and hence jobs require longer time to finish

execution. This property makes nodes busy and influence on

the average turnaround time of the system. However RJSS for

its effective scheduling decisions, makes it to perform better

than RE and NM. From Fig. 4, it is observed that the

increasing values of has little effect on RJSS than RE and

NM.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.18, January 2013

11

Fig 6. effect of varying and on Ḡt with respect to Ut

Fig. 6 is drawn to study the effect of increasing and on

 and with fixed N=100, D=50Km, C=0.1Sec, =20Sec,

 , The increasing increases frequency

of job arrivals and makes the availability of large number of

high speed processing nodes in the Grid. When a job is

migrated to a high clock speed node it could complete at

much faster rate compared to a node with lower clock speed

machine. Thus jobs get completed at faster rate and nodes

become idle soon. This makes lot of idle CPU cycles available

in the Grid and hence executes the jobs at faster rate. The

values chosen for and is shown in parenthesis in Fig. 6. It

is observed that the increasing does not influence the

performance of RJSS as the increasing compensates that.

But, increase in increases the queue length of the jobs in

NM and choosing the high speed nodes in RE under utilizes

the slower nodes in the Grid, thus NM and RE increases

 with Ut. From this, it is observed that RJSS performs better

than RE and NM with varying and .

Fig 7. Effect of varying N on Ḡt with respect to Ut

Fig. 7 is drawn to study the effect of increasing number of

nodes N on and with fixed D=50Km, C=0.1Sec,

 =20Sec, , , The N value

chosen is shown in the parenthesis in Fig. 7. The increasing N

makes more number of nodes to qualify in the k-random walk

search and hence increases the decision making delay. This

influence on and hence a slight variation is observed in the

performance of the RJSS for increase in the number of nodes.

However, RJSS performs comparatively better than RE and

NM algorithms.

9. CONCLUSIONS AND FUTURE

SCOPE

The performance of RJSS is discussed in the previous section

for varying the parameters of the Grid. For all the cases it is

observed that RJSS performed better than RE and NM

algorithms.

The nodes considered in this paper are assumed to be

dedicatedly available for public execution. But, in a real

desktop grid environment, the volunteer nodes undergo

inferences due to high priority node owner’s jobs. Volunteer

autonomy makes the volunteer nodes join or leave the grid at

any instant of time and hence volunteer nodes will be

available in the desktop grid with different volunteer times.

We want to consider this factor into account to extend the

proposed algorithm further and study its performance.

10. REFERENCES

[1] SungJin Choi, Rajkumar Buyya, “ Group-based adaptive

result certification mechanism in Desktop Grids”, Future

Generation Computer Systems 26 (2010) 776_786,

Science Direct.

[2] V. Lo, D. Zhou, D. Zappala, Y. Liu, and S. Zhao,

”Cluster Computing on the Fly: P2P Scheduling of Idle

Cycles in the Internet,” The 3rd International Workshop

on Peer-to-Peer Systems (IPTPS’04), LNCS 3279,

pp.227-236, Feb. 2004.

[3] Zhou and V. Lo, ”Wave Scheduler: Scheduling for Faster

Turnaround Time in Peer-to-peer Desktop Grid

Systems,” 11th Workshop on Job Scheduling Strategies

for Parallel Processing (JSSPP’05), LNCS 3834, pp. 194-

218, Jun. 2005.

[4] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R.

F. Freund, ”Dynamic Matching and Scheduling of a

Class of Independent Tasks onto Heterogeneous

Computing Systems, The 8th Heterogeneous Computing

Workshop (HCW’99), pp. 30-44, Apr. 1999.

[5] He, X., X-He Sun and G.V. Laszewski, “QoS guided

Min-min heuristic for grid task scheduling. Journal of

computer science and Technology”, Vol. 18, pp. 442-

451, 2003.

[6] Estiminani, K. and M. Naghibzadeh. A Min-min and

Max-min selective algorithm for Grid task scheduling.

The third IEEE/IFIP International conference on Internet,

2007, Uzbekistan.

[7] SETI@home, http://setiathome.ssl.berkeley.edu

[8] Y. Zhu, L. Xiao, Z. Xu, L. M. Ni, ”Incentive-based

scheduling in Grid computing,” Concurrency and

Computation: Practice and Experience, vol. 18, issue 14,

pp. 1729-1746, Dec. 2006.

[9] Distributed.net, http://distributed.net

[10] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger,

"Economic Models for Resource Management and

Scheduling in Grid Computing," Special Issue on Grid

Computing Environments, The Journal of Concurrency

and Computation: Practice and Experience (CCPE), vol.

14, pp. 1507-1542, 2002.

[11] S. Shetty, P. Padala, and M. Frank, "A Survey of Market

Based Approaches in Distributed Computing," Technical

Report TR03-13, 2003.

